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Abstract: Land use, land-use change and forestry (LULUCF) is a greenhouse gas inventory sector that
evaluates greenhouse gas changes in the atmosphere from land use and land-use change. This study
focuses on the development of a Sentinel-2 data classification according to the LULUCF requirements
on the cloud-based platform Google Earth Engine (GEE). The methods are tested in selected larger
territorial regions (two Czech NUTS 2 units) using data collected in 2018. The Random Forest method
was used for classification. In terms of classification accuracy, a combination of these parameters was
tested: The Number of Trees (NT), the Variables per Split (VPS) and the Bag Fraction (BF). A total
of 450 combinations of different parameters were tested. The highest accuracy classification with
an overall accuracy = 89.1% and Cohen’s Kappa = 0.84 had the following combination: NT = 150,
VPS = 3 and BF = 0.1. For classification purposes, a mosaic was created using the median method.
The resulting mosaic consisted of all Sentinel-2 bands in 10 and 20 m spatial resolution. Altitude
values derived from SRTM and NDVI variance values were also included in the classification. These
added bands were the most significant in terms of Gini importance.

Keywords: Google Earth Engine; Random Forest; LULUCF; Sentinel-2; Czechia

1. Introduction

The land cover/land-use change (LCLUC) program is one of the most important
sources of information on the development of global environmental change. LCLUC forms
the primary source of data for numerous mathematical models that seek to define future
development scenarios in many areas of the environment, including climate change [1,2].
The UN Secretariat on Climate Change and the adopted Paris Agreements under the United
States Framework Convention on Climate Change (UNFCCC) have declared the LCLUCs
monitoring to be highly relevant, as LCLUCs have a significant impact on climate change
and the global carbon cycle. For these purposes, the binding regulation is provided for
the inventory and reporting of relevant land use classes, so-called LULUCF—land use,
land-use change and forestry (see Decision 529/2013/EU, European Commission 2013).
LULUCF information is collected and reported on an international scale and is one of the
main input data sources for climate change modeling and GHG (greenhouse gas) emission
estimates within the IPCC (Intergovernmental Panel on Climate Change).

The development of international agreements on climate and climate policy has
been shaping the role of LULUCF. Researchers are increasingly developing sophisticated
research strategies to represent the global dimension of land use and assess its impact
on climate mitigation [3]. Full LULUCF integration fits well with ongoing international
efforts to integrate forests and other aspects into the climate policy framework, e.g., the
context of REDD+ (Reduced Emissions from Deforestation and Forest Degradation) [4–6].
Standardized methods and accurate and harmonized LULUCF data are a key factor in
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accounting and evaluating the changes over a long period and modeling climate change
with predictive scenarios [7,8]. Earth observation (EO) is an effective and promising tool
for monitoring LCLUC [9,10]. The wide use of satellite data is currently possible mainly
due to the creation of freely available archives of satellite images from different missions
(e.g., Landsat and the Copernicus program). The Copernicus program has brought new
possibilities to EO. ESA is launching new satellite missions called Sentinels specifically
for the operational needs of the Copernicus program. The Sentinel-2 multispectral optical
dataset is now available with the aim to provide data with better resolutions (spatial,
temporal and spectral) than traditional data, such as Landsat images. Sentinel-2 data have
been available since 2015. The images are received via two parallel missions 2A and 2B and,
in the case of the overlapping scenes, the temporal resolution is less than five days [11].

EO has a prospective potential in monitoring LULUCF. In particular, medium-resolution
images, such as the 30 m Landsat resolution and Sentinel-2 (i.e., 10 m) resolution, seem to
be a suitable source of data for LULUCF [12]. Based on these opportunities, the EU and
other international institutions are looking for new LULUCF strategies. The use of large
volumes and a wide range of data causes significant difficulties related to the compatibility
and harmonization of input data [13,14]. Within LULUCF, the status and development
of the area of the following classes are inventoried and reported: Forest Land, Cropland,
Grassland, Wetlands, Settlements and Other Land. The definition and harmonization of
LCLUC inputs according to defined LULUCF classes are one of the most important tasks
within international LULUCF reporting [15].

In the LCLUC classification process, machine learning methods, such as Random
Forest (RF), are currently mainly used and developed. Random Forest was firstly described
by [16]. This method is widely used in multitemporal LCLUC classification. For example,
it was applied in [17,18]. Its essence is the creation of decision trees, where each tree
individually evaluates the class to which each individual pixel belongs. The classification
of a pixel into a class is assigned within the tree based on input parameters [19–21].

LULUCF reporting in Czechia has been exclusively based on the cadastral land
use information of the Czech Office for Surveying, Mapping and Cadaster (COSMC;
www.cuzk.cz, accessed on 3 September 2021). The Czech land-use representation and the
land-use change identification system use COSMC data. COSMC provides the annually
updated areas for all land-use categories. In addition, data obtained from the Forest Man-
agement Institute (FMI) on forests (harvest, increment, felling, etc.) are used in the LULUCF
categories involving forest land. However, according to many studies, e.g., [22,23], cadas-
tral data are not able to reflect all changes in time that occur in the landscape and do not
report them fully by the LULUCF classification nomenclature. Thus, the current LULUCF
reporting has several weaknesses that affect the quality of the collected data. Moreover,
there is no database derived from EO data to meet the LULUCF criteria (annual update,
classification nomenclature, minimum mapping unit, etc.). Therefore, this study focuses
on the development of an RF-based classification method that allows the classification
of Sentinel-2 data according to LULUCF requirements. Multispectral satellite data from
the Sentinel-2 mission are used due to their high spatial and temporal resolution. The
methodological procedures are developed and implemented on the freely accessible Google
Earth Engine (GEE) cloud platform. The methodology and results of the study are in
accordance with the LULUCF reporting process and are tested for selected larger territorial
units in Czechia using data collected by Sentinel-2 in 2018. From the research point of
view, the most important task is to find the most suitable combination of Random Forest
classifier input parameters to achieve the highest classification accuracy (Number of Trees,
Variables per Split and Bag Fraction). The LULUCF classification is based on a multitempo-
ral approach, which uses several images in the observed vegetation season. The Stratified
Random Sampling method [24] is used to evaluate the accuracy of the classification.

This study has the following subresearch objectives:

• Development and testing of methods of mosaicking, accurate clouds detection and
unmasking for Sentinel-2 data in the GEE.

www.cuzk.cz
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• Creation of the LULUCF classification nomenclature for Czechia with a detailed
semantic description and maximum compatibility with LULUCF.

• Based on Sentinel-2 data testing RF classification algorithms for LULUCF classification
with the classification accuracy of at least 85% (Kappa index value above 0.75) in
larger territorial units of Czechia, specifically, two NUTS 2 (NUTS are Nomenclature
of Territorial Units for Statistics used in European Union).

• Accuracy evaluation for individual LULUCF categories: Forest Land, Cropland, Grass-
land, Wetlands, Settlements and Other Land.

• Discussion on the methodology used, data and achieved results with regard to the
needs of LULUCF reporting.

• Ultimately, presenting the created methods and outputs in a freely accessible research
platform—GEE.

Research questions:

• Is it possible to classify large area units with an overall accuracy of more than 85% on
an annual basis using machine learning classification algorithms and high spatial and
temporal resolution satellite data (Sentinel-2)?

• For which of the LULUCF categories a higher accuracy of Sentinel-2 data classification
could be achieved and which categories appear to be problematic?

• What methods of cloud mosaic and cloud detection/unmasking are most suitable for
data processing in the GEE cloud environment?

2. Materials and Methods
2.1. Area of Interest

Two NUTS 2 regions were analyzed for the purposes of this study, namely, Jihovýchod
(CZ06) and Střední Morava (CZ07), as shown in Figure 1. The region of interest selection
was guided by the criteria of a project, “Developing supports for monitoring and reporting of
GHG emissions and removals from land use, land use change and forestry”, from which this
study originates (https://www.copernicus-user-uptake.eu/user-uptake/details/developing-
support-for-monitoring-and-reporting-of-ghg-emissions-and-removals-from-land-use-land-
use-change-and-forestry-73, accessed on 22 September 2021). The total area of the region is up
to 23,217 km2. The region is very heterogeneous: the lowest point is at the confluence of rivers
Morava and Dyje at an elevation of 150 m a. s. l., the highest point is the mountain of Praděd,
reaching 1492 m a. s. l. The longest river is Morava, which forms the axis of the region and
flows from north to south. The majority of the land is used for agriculture and vineyards in the
lowlands in the southern parts. From south to west, east and north, the elevation of the area
gradually increases. Forests begin to dominate with increasing altitude. Deciduous forests
are found at lower altitudes (at the confluence of Morava and Dyje, Chřiby and Moravský
kras) and coniferous forests predominate at higher altitudes (Beskydy, Jeseníky and Vysočina),
which are often formed by monocultures of Norway spruce (Picea abies). The biggest cities
of the area of interest are Brno (381,346 inhabitants), Olomouc (100,663 inhabitants), Zlín
(74,935 inhabitants) and Jihlava (51,216 inhabitants).

2.2. Data

Freely available Sentinel-2 multispectral images from the joint ESA/European Com-
mission Copernicus Mission were used for compositing and classification. The images were
acquired in the late spring and early summer periods of 2018 and preprocessed through the
Sen2Cor algorithm [11,25]. Therefore, the atmospherically corrected data (L2A) from both
Sentinel-2A and Sentinel-2B satellites were used for this research. These data are provided
in 10 m spatial resolution (B2 Blue, B3 Green, B4 Red, B8 NIR bands) and 20 m spatial
resolution (B5–B7 and B8A Vegetation red edge and B11-B12 SWIR bands) [11,25]. Bands
with a resolution of 20 m were resampled to a higher resolution of 10 m using the nearest
neighbor method. Sentinel-2 images have a 12-bit radiometric resolution but are provided
in a 16-bit radiometric resolution [11], specifically through unsigned integers [19] with
values ranging from 0 to 65,535. Classifications were performed in GEE using JavaScript

https://www.copernicus-user-uptake.eu/user-uptake/details/developing-support-for-monitoring-and-reporting-of-ghg-emissions-and-removals-from-land-use-land-use-change-and-forestry-73
https://www.copernicus-user-uptake.eu/user-uptake/details/developing-support-for-monitoring-and-reporting-of-ghg-emissions-and-removals-from-land-use-land-use-change-and-forestry-73
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language, where the preprocessed Sentinel-2 Multispectral Instrument Level-2A dataset is
available [25,26].
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Figure 1. Area of interest—land cover is derived from CORINE Land Cover 2018 according to the
method documented in Appendix B.

The digital elevation SRTM (The Shuttle Radar Topography Mission) radar data were
used for classification. The dataset is provided within the GEE platform with approximately
30 m spatial resolution as an SRTM V3 (void-filled) product. The SRTM band was used as
one of the input bands for the classification process.

The Copernicus CLC (Corine Land Cover) 2018 database provided within the GEE
platform and the ZM 10 map data (“Základní mapa ČR v měřítku 1:10,000”, Basic map
of the Czech Republic at a scale of 1:10,000; WMS from ČÚZK) and LPIS for years 2018
(“Veřejný registr půd”, Public land register available from eAGRI; in shapefile format)
were used for the creation of training and validation datasets. Historical orthophotos
from 2017, 2018 and 2019 (WMS from ČÚZK) and historical imageries in Google Earth
Pro software were used to verify training polygons and validation points. Google Earth
Pro software provides imagery with very high spatial resolution—Maxar satellite imagery
with up to 0.3 m spatial resolution (from 2015 to 2021) and CNES/Airbus with up to 0.5 m
spatial resolution (from 2015 to 2021), users can examine these data using the internal Time
Machine plugin.

2.3. Legend

The first basic methodological step was the creation of the classification nomenclature.
The classification nomenclature follows the LULUCF regulations [15], which distinguish
and report the status and development of areas of the following classes: Forest Land,
Cropland, Grassland, Wetlands, Settlements and Other Land. Within the area of interest,
the following classes were defined:

Forest Land–vegetation can be considered a forest if it covers an area of at least
0.5 ha [27] and includes woodlands and clearcut localities where there is no forest present,
but is expected to grow within the next few decades.

Cropland includes agricultural land and permanent crops, including vineyards, hop
fields, gardens and orchards.
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Grassland includes both natural and managed grasslands (pastures and meadows).
Settlements in addition to built-up areas also include roads, urban greenery, gardens

near houses, landfills and active quarries.
Wetlands include marshlands, bodies of water and watercourses.
Other land mainly includes rocks, subalpine stands of dwarf Norway spruces (Picea abies)

and nonnative shrub mountain pines (Pinus mugo) in the higher parts of the Czech mountains,
as well as woodland/trees outside forest (ToF), such as groves and alleys, which cannot be
considered as a forest according to the LULUCF regulations.

In the initial stage of classification, the Woodland class was created instead of the
Forest Land class to highlight all the forested areas. Due to differences between LULUCF
classes Forest Land and Other Land, the Woodland class was later divided according to the
LULUCF regulations into Forest Land (polygons equal to or greater than 0.5 ha), and the
remaining polygons (areas of less than 0.5 ha) were added to the results of the Other Land
class during the post-classification process.

Detailed information on LULUCF classes, including their content description, is given
in Appendix A.

2.4. Methods

The complete methodological procedure of data processing is shown in Figure 2,
which defines the procedures of preprocessing, mosaicking and classification, as well as
methods for assessing accuracy and post-classification steps. The following parts describe
the individual steps in more detail.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 27 
 

 

2.3. Legend 

The first basic methodological step was the creation of the classification nomencla-

ture. The classification nomenclature follows the LULUCF regulations [15], which distin-

guish and report the status and development of areas of the following classes: Forest Land, 

Cropland, Grassland, Wetlands, Settlements and Other Land. Within the area of interest, 

the following classes were defined: 

Forest Land–vegetation can be considered a forest if it covers an area of at least 0.5 

ha [27] and includes woodlands and clearcut localities where there is no forest present, 

but is expected to grow within the next few decades. 

Cropland includes agricultural land and permanent crops, including vineyards, hop 

fields, gardens and orchards. 

Grassland includes both natural and managed grasslands (pastures and meadows). 

Settlements in addition to built-up areas also include roads, urban greenery, gardens 

near houses, landfills and active quarries. 

Wetlands include marshlands, bodies of water and watercourses. 

Other land mainly includes rocks, subalpine stands of dwarf Norway spruces (Picea 

abies) and nonnative shrub mountain pines (Pinus mugo) in the higher parts of the Czech 

mountains, as well as woodland/trees outside forest (ToF), such as groves and alleys, 

which cannot be considered as a forest according to the LULUCF regulations. 

In the initial stage of classification, the Woodland class was created instead of the 

Forest Land class to highlight all the forested areas. Due to differences between LULUCF 

classes Forest Land and Other Land, the Woodland class was later divided according to 

the LULUCF regulations into Forest Land (polygons equal to or greater than 0.5 ha), and 

the remaining polygons (areas of less than 0.5 ha) were added to the results of the Other 

Land class during the post-classification process. 

Detailed information on LULUCF classes, including their content description, is 

given in Appendix A. 

2.4. Methods 

The complete methodological procedure of data processing is shown in Figure 2, 

which defines the procedures of preprocessing, mosaicking and classification, as well as 

methods for assessing accuracy and post-classification steps. The following parts describe 

the individual steps in more detail. 

 

Figure 2. Workflow. 

2.4.1. Cloud Masking and Mosaicking 

Due to the size of the area of interest, a decision was made to create a mosaic for 

classification purposes. The mosaic was created by using the full potential of Sentinel-2 

data, i.e., using images taken from both Sentinel-2A and Sentinel-2B. All images for 
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2.4.1. Cloud Masking and Mosaicking

Due to the size of the area of interest, a decision was made to create a mosaic for
classification purposes. The mosaic was created by using the full potential of Sentinel-2
data, i.e., using images taken from both Sentinel-2A and Sentinel-2B. All images for mosaic
creation were taken in the period from May to the end of July with a total cloud cover
below 75% in the whole scene. This period was used mainly because there are only the last
remnants of snow cover in the peak parts of the area of interest, and the main vegetation
season takes place in the selected months. At the same time, it was the period in which
there seemed to be the lowest cloud cover throughout the year 2018. This set of selected
images was used in a further step—cloud masking.

For the cloud masking of Sentinel-2 data in GEE, the Sentinel-2: Cloud Probability
dataset (so-called s2cloudless) was used [28]. It is constituted of a single band with 20 m
spatial resolution that represents the probability of cloudiness (0–100%) for each pixel
of all Sentinel-2 tiles in the entire archive. The selection of this approach was inspired
by [29], who compared different Landsat 8 and Sentinel-2 cloud masking approaches, and
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the s2cloudless dataset significantly outperformed other methods. Cloud shadow was
detected using an algorithm developed in GEE [30], which is based on cloud projection
intersection (defined by the solar azimuth angle obtained in each Sentinel-2 tile metadata)
with low-reflectance near-infrared pixels. The next parameter to detect low-reflectance near-
infrared pixels as the cloud shadow is a distance from the cloud. After testing and visual
inspection, the following parameters were chosen for the used algorithm: cld_prb_thresh
(cloud probability, where higher values were considered as clouds) = 40%, nir_drk_thresh
(reflectance in the NIR band, where lower values were considered as cloud shadows) = 0.15
and cld_prj_dist (maximum allowed distance in km to search for cloud shadows from
cloud edges) = 1 km; erosion 2 pixels (resolution 20 m/pixel) and dilation 5.5 pixels
(buffer 3.5 pixels) were applied for the elimination of small features and gaps in clouds
and shadows.

Figure 3 illustrates the process of cloud masking. Figure 3a shows the initial step of
masked shadows, clouds and the created buffer. Figure 3b shows the final masked area
applied to all the parameters. It is evident that not all pixels that are initially identified as
clouds or cloud shadow (dark pixels) in Figure 3a were included in the final cloud mask.
The final mask does not include objects that were eliminated by erosion, as well as dark
pixels that are not within a defined distance and angle from the detected cloud.
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Figure 3. Demonstration of cloud masking method and its effectivity based on the selected part of
the image 20180617T095029_20180617T095028_T33UXR with 64.95% cloudiness in the whole image.
(a) shows the initial step of masked shadows, clouds and the created buffer, (b) shows the final
masked area applied to all the parameters.

At the next step, a median mosaic was created—inspired by [31,32]. All available
images with lower than 75% cloud cover were selected. All S-2 bands with a resolution of
10/20 m and the NDVI index (calculated from bands B4 and B8) were used. Only pixels
that were identified as cloud free were included in the median calculation. The 75% cloud
cover threshold was chosen to avoid data gaps mainly in mountainous areas, where it was
difficult to detect pixels not infected by clouds or cloud shadows. If high cloud cover is
documented in the metadata of a scene, some areas may not be covered by clouds. This
higher threshold made it possible to work with a larger number of images, which resulted
in a cloud-free mosaic. The median approach was chosen because it is not as affected by
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outliers as the average value. Figure 4 shows a graph comparing the quantile value ranges
and the average values calculated from the available unmasked values (May to July) for
the selected training polygons (ID 331—Cropland; ID 488—Grassland). The mean values
of surface reflectance of training polygon 331 in 6 bands of 10 were higher than 75% of the
values from which these means were calculated. This was caused by outliers.
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Figure 4. Spectral signatures of selected two training data polygons; (a) spectral signature of training
polygon 331—Cropland and (b) spectral signature of training polygon 488—Grassland.

The mosaic also includes a band representing the variance of the NDVI values in the
period from May to October. This band helps to distinguish relatively invariant surfaces
such as buildings (small variance) from surfaces dynamically changing during the season,
e.g., arable land, which refers to high variance of the NDVI value.

Figure 5 represents the variance of NDVI in the sample selected area. The map
displayed on the left side of the image divides these values into three intervals. Forests and
buildings have the lowest variance (see aerial image and ZM 10 in the middle and right
map fields), and grasslands have a higher variance (visualized in yellow on ZM 10). Arable
land shows the highest NDVI variance.
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selected area.



Remote Sens. 2022, 14, 1189 8 of 26

Another band added to the resulting mosaic was SRTM DEM containing altitude
data with a spatial resolution of 30 m. The SRTM band was used together with Landsat
8 multispectral satellite data in [31]. These data were important for distinguishing similar
surfaces in terms of land cover, but different land use approaches for LULUCF purposes.
Examples are stone and paved surfaces, where it is necessary to distinguish blockfields
(Other Land) from paved areas within the Settlements class. The resulting mosaic has a
spatial resolution of 10 m. All input data with a resolution lower than 10 m (S-2 bands
with a resolution of 20 m and SRTM with a resolution of 30 m) were resampled using the
Nearest Neighbor method.

The significance of the bands for classification was recorded using Gini importance
for the 4 parameter combinations in Appendix C. As can be seen in Appendix C, the
importance of SRTM elevation and NDVI variance is the most significant, whereas the B8
band is of the least importance.

2.4.2. LULUCF Classification

The Random Forest (RF) method was selected, tested and used for classification.
This method has been successfully used in the classification of multitemporal satellite
data, e.g., [18,31]. Compared to other classification algorithms (CART, SVM, kNN and
MLC), this method achieved the best results in many studies [17,32–34]. It is a method of
controlled nonparametric classification using machine learning. Its essence is the creation of
decision trees, where each tree individually evaluates to which class each individual pixel
belongs; see [16,34]. The basic parameter is the Number of Trees (NT). Other adjustable
classification parameters are the Variables per Split (VPS), Bag Fraction (BF), Max Nodes
and Min Leaf Population.

2.4.3. Training Polygons

An important aspect of the resulting classification accuracy is the training data. The
training polygons for this study were created by two methods. The first method is the
semi-automatic creation of training polygons within the CORINE Land Cover 2018 (CLC
2018) vector layer. The second method was the manual creation of the additional train-
ing polygons.

From the CLC 2018 polygon database, the core areas of the training polygons were
created using the Buffer function with the following parameter: −100 m. Inside these areas,
training polygons of a circle shape with a diameter of 80 m were randomly generated.
This can be seen in Figure 6, where one of these training polygons is visualized. These
polygons/circles were generated with 2500 m minimal distance.

For some evaluated classes/surfaces, no training polygons were used in the procedure
above. It is given by both geometric and thematic characters. For example, in the case of
watercourses, this is due to the fact that no polygon in this class has a core area of 100 m
inwards. Only one polygon was generated for the other land class, which, however, did
not include some important elements of this class, e.g., no training polygon was created on
the territory of a photovoltaic power plant. Therefore, 7 training polygons were manually
created for the Other Land class, 5 of them were located in rubble fields in the Hrubý
Jeseník mountains; in one case, they were rocks in the Suché skály nature reserve, and
in another case, they were scrub mountain pines in the alpine vegetation zone of Hrubý
Jeseník. Polygons for specific areas of mountain meadows in the Beskydy mountains
were collected manually. Training polygons for peatbogs and reeds were added to the
Wetlands category. Due to the high heterogeneity of the Cropland class, some polygons
were added to cover some specific types of land cover. It was found during preliminary
classification testing that some areas within the Cropland class were misclassified as other
classes. As a result, some additional training polygons were manually added at these
localities. Polygons that were deforested due to droughts and bark-beetle disturbances
(Ips typographus) and are currently in the initial stages of forest growth were also created.
Cropland and Grassland polygons were also manually added to better differentiate these
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surfaces. A total of 299 training polygons were created; their distribution within the area
of interest can be seen in Figure 7. The number and structure of manually added training
polygons are shown in Table 1.
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Table 1. Amount of training polygons for individual training classes.

Class LULUCF Semi-Automatically Created Polygons Manually Created Polygons Total

Settlements 16 18 34

Cropland 122 24 146

Woodland 60 12 72

Grassland 18 13 31

Wetlands 2 6 8

Other land 1 7 8

Total sum 219 80 299

A conversion table of CLC to LULUCF classes was created to systematically determine
the LULUCF class. The individual training polygons determined from CLC belong to
the LULUCF class, which was decided based on this conversion table, as presented in
Appendix B.

All created training polygons from the CLC were verified using an orthophoto to check
if their declared land cover matched the LULUCF class. This verification was performed
using orthophotos from ČÚZK available for the area of interest. Most of the images of the
area were captured in 2018, and only the western parts of the area were missing images
from the same year; therefore, images from 2017 and 2019 were used. If the land cover of
the checked training polygon did not change in aerial photographs in this time interval
(2017–2019), there was no reason to consider the class incorrectly assigned. If the specified
orthophoto land cover did not match the declared CLC land cover, the training polygon
was deleted or manually adjusted to be within the declared land cover. Therefore, emphasis
was placed on the polygon lying in its entirety in one class without interfering with other
classes. The affiliation of training polygons to the Grassland class was checked using LPIS
data and ZM 10 maps from ČÚZK. This detailed inspection was carried out due to the
difficult to distinguish Cropland and Grassland classes using orthophotos.

2.4.4. Parameters of Classification

In the classification process, the most important task was to define a combination of
parameter settings that would deliver the highest accuracy. The Number of Trees parameter
was tested from 50 to 400 at 25-tree intervals, the Variable per Split parameter was tested
from 1 to 6 at 1-variable interval and the Bag Fraction parameter was tested from 0.1 to 0.5
at 0.1-fraction intervals. The other Max Nodes parameters were left with the default value
‘NULL’, that is, without limits, as well as the default value of 1 for the min Leaf Population.
A total of 450 combinations of the parameters Number of Trees, Variables per Split and Bag
Fraction were generated and evaluated.

Per-pixel classification often brings a ‘salt-and-pepper’ effect. This effect was elim-
inated by filtering and replacing isolated pixels with neighboring values. At this step,
the areas represented by one pixel were eliminated and replaced by the majority value
of the pixels in the 3 × 3 kernel window filtering. The point of this step is documented
in Figure 8a,b. The main complication is the pixels on the borders between two classes,
or in the case of tree growth, trees can cast shadows into their immediate surroundings,
which are mostly incorrectly classified as Wetlands. These lonely pixels were filtered. The
minimum mapping unit of the classification is 2 pixels, i.e., 200 m2.
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2.4.5. Accuracy Assessment

The validation points were created in the ESRI ArcGIS Pro software, where the Create
Accuracy Assessment Points tool (Spatial Analyst) was used. A total of 2235 points were
created (in WGS 84/UTM zone 33N EPSG: 32633 coordinate system), and the Stratified
Sampling method based on preliminary classification testing was used for the accuracy
assessment and random creation of control points [24]. The affiliation of control points
to the LULUCF class was performed in the same way as in the case of training polygons;
see Section 2.4.3. Due to the low number of control points generated randomly for the
Other Land, 31 points in this category were manually created. For effective validation, an
innovative algorithm was created in the cloud-based platform GEE. The control points
were uploaded to GEE, where the Classifier package was used to validate the classifications.
Specifically, the classifier.confusionMatrix() function was used for confusion matrices
and the errorMatrix() function for overall accuracy [35] and the ConfusionMatrix.kappa()
function for the Kappa index by [36]. The Kappa index value (Cohen’s Kappa) was
calculated for each combination of input parameters. The combinations of input parameters
that achieved the highest Kappa index value were selected, and validation matrices and
overall accuracy were subsequently generated for them. The combinations of parameters
with the highest accuracy were selected as the most suitable for classification.

2.4.6. Post-Processing Classification

According to the definitions of LULUCF, tree growth with an area of less than 0.5 ha
cannot be considered as a forest, but as trees outside forest (ToF). For this reason, all
Woodland growths with an area of less than 5000 m2 (less than 50 pixels) were converted
to the Other Land class. Figure 8b the state before the division of the Woodland class into
Forest Land and ToF and in Figure 8c the state after the division. Based on this step, the
minimum mapping unit for Forest Land differed from the other categories and was 5000 m2

(0.5 ha).
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3. Results
3.1. Influence of Parameter Selection on the Resulting Accuracy of Classification

One of the main goals of the study was to develop an RF-based classification method
that allows the classification of Sentinel-2 data in GEE according to the LULUCF require-
ments. In terms of classification, the most important task was to find the most suitable
combination of RF classifier input parameters that will lead to the highest accuracy of the
LULUCF classification. The evaluated parameters were Number of Trees, Variables per
Split and Max Nodes. For this purpose, an innovative script was developed in the GEE
environment, which can evaluate hundreds of combinations of input parameters in a short
time and use the overall accuracy and Kappa index to select the combination with the
highest accuracy achieved.

From the achieved results of individual combinations (Appendix E), it was seen that
the highest value of the Kappa index (κ) was achieved in the case of a combination of the
settings of the parameters NT: 150, VPS: 3 and BF: 0.1 with the value κ = 0.8383. At the
same time, this setting of the examined parameters achieved the highest overall accuracy
of all combinations, with a value of 89.01%. The results of κ and the overall accuracy for
the individual parameter combinations are given in Appendix E.

Upon closer inspection of the settings and relevance of individual parameters, the
average values of κ (calculated from testing control points) for individual values of input
parameters are documented in Figure 9. In the case of the NT parameter, each average
value was calculated from a total of 30 κ values (6 combinations of the VPS parameter
and 5 combinations of the Bag Fraction parameter), the Variables per Split parameter was
calculated from 75 values and the Bag Fraction was evaluated from 90 κ values. The
parameters values used for the final (most accurate) classification are highlighted in red.
If we look at the values obtained from individual parameters, then the average value κ

of the NT parameter had an ascending character, together with the number of trees, and
the highest value of κ was reached at the maximum number of trees (400). However, the
increase in the value of κ from 150 was no longer as significant. The value of 150 trees
was evaluated as the most suitable in combination with other parameters. For the VPS
parameters, the highest average value of κ was reached at the parameter value of 2. A
comparatively lower average value was obtained by the value of parameter 3, which
was selected for the combination of the final classification. This parameter also had the
largest range of the minimum and maximum average values of κ, which may indicate that
this parameter has a significant effect on the resulting combination for the most accurate
classification. For the Bag Fraction parameter, the highest average value of κ matched the
finally selected value of 0.1. Other BF parameter settings evaluated had lower κ values.

Figure 10 describes in detail the average values of κ for the pair of evaluated param-
eters. The average values of the combination of VPS and NT (VPS/NT) were calculated
from 5 values of κ, the combinations of BF and NT (BF/NT) were calculated from 6 values
of κ and the combinations of VPS and BF (VPS/BF) were calculated from 15 values.

When evaluating a VPS/NT combination, the VPS parameter values are expressed
in rows and NT in columns. The highest values of κ were reached by the combination
NT = 275 and VPS = 2 (NT = 150, VPS = 2 are the values used in the final combination of
three parameters for classification). The values of κ did not change much in the rows, unlike
the evaluated NT parameters in the columns. Therefore, the average value of κ is more
affected by the VPS parameter than the number of trees (especially obvious when setting
the number of trees above 50). The high relevance of the VPS parameter is also evidenced
by the evaluation of the VPS/BF parameter combination; in this case, the VPS influence
appears even stronger. The combination with the highest value of κ (BF = 1, VPS = 3) was
the same, which was selected as the most suitable in the combination of all three parameters.
When comparing these two parameters, the largest difference between the maximum and
minimum average values of κ was evident. On the contrary, the smallest differences in the
variability of κ values could be seen by comparing combinations of BF/NT parameters.
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The values of κ were found in the relatively narrow range of 0.811–0.820. BF = 0.1 and
NT = 150 are the values contained in the resulting combination of three parameters.
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3.2. Accuracy Assessment of the Classification

In addition to the calculation of κ, the values of overall accuracy (OA) and validation
matrices were calculated for a detailed evaluation of the accuracy of the classification.
The validation matrix for the resulting combination of classification parameters (NT: 150,
VPS: 3 and BF: 0.1) is documented in Table 2. The overall accuracy reached 89.01%,
and Cohen’s Kappa was 0.8383 for this combination. When a closer inspection of the
producer accuracy and user accuracy values was performed, Settlements were most often
misclassified as the Cropland class. On the contrary, the Other Land class was most often
misclassified as Settlements. More validation points of Settlements were classified as
another class than validation points of other classes classified as Settlements. It follows
that the Settlements class should have a slightly undervalued classified area. Cropland
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was most often misclassified as Grassland and, conversely, Grassland was most often
misclassified as Cropland. Changing the Grassland class to the Cropland class with an
amount of 54 points was the most common change in the classification and accounted for
about one-fifth of all errors (2.24% of all validation points). The Cropland class appeared
to be slightly overvalued (especially at the expense of Grassland). The Woodland class
was most often misclassified as Grassland and vice versa. This could be caused by grass-
like clearings that formed in the forests after the trees were logged. This type of forest
could be observed within the area of interest due to bark beetle calamities and droughts
consequences. The Wetlands control points were most often misclassified as the Cropland
class. The main cause of this phenomenon could be seen in the location of control points in
places where there are swamps, reeds and peat bogs, i.e., wetlands with a more substantial
representation of the vegetation component. When comparing user accuracy and producer
accuracy, the Wetlands class appeared to be slightly underestimated. The Other Land class
seemed to be clearly underestimated, as less than half of the points belonging to this class
were correctly classified (confusion mainly with Settlements). On the other hand, no control
point from any other class was classified as Other Land.

Table 2. Validation matrix of the final classification.

Settlements Cropland Woodland Grassland Wetlands Other Land User Accuracy

Settlements 107 26 10 18 1 0 66.05%

Cropland 8 882 6 26 1 0 95.56%

Woodland 1 11 728 32 0 0 94.30%

Grassland 1 54 23 243 1 0 75.47%

Wetlands 0 5 1 1 17 0 70.83%

Other Land 16 1 0 1 0 14 43.75%

Producer Accuracy 80.45% 90.09% 94.79% 75.70% 85.00% 100.00% Overall accuracy 89.01%

The LULUCF classification was performed in the area of interest with a heterogeneous
character both from a physical–geographical and socio-economic point of view. The hetero-
geneous character of the area was determined by the diverse representation of individual
LULUCF classes. From the results documented in Table 3 and Figure 11, it is clear that the
Cropland class had the highest area in 2018 with more than 42% of the total area. Grassland
class occupied over 15%. The total area of agricultural land, i.e., Cropland and Grassland,
accounted for 58%. Around 36% of the area of interest was classified as Forest Land, which
is close to the average forest area in the Czech Republic (34%). The Settlements area was
close to 5%. The remaining two categories did not exceed 1%, the Wetlands class occupied
0.77% and the Other Land occupied 0.96% of the area.

Table 3. Areas and representations of individual LULUCF classes according to the final classification.

Class Area Percentage

Settlements 1059.8 km2 4.56%

Cropland 9936.4 km2 42.80%

Forest Land 8259.6 km2 35.58%

Grassland 3560.7 km2 15.34%

Wetlands 178.6 km2 0.77%

Other Land 222.1 km2 0.96%
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Figure 11. LULUCF classification of the area of interest, generalized as the dominant class in each
ZSJ administrative unit. Note: The Other Land class does not appear in the legend as it does not
predominate in any of the ZSJ.

Figure 10 shows the spatial distribution of the classes examined. Large areas of the
Cropland class occur in the most fertile areas south of Brno and in the vicinity of Olomouc.
Forest growth occurs mainly in less fertile mountain regions on the eastern and northern
edges of the area of interest, also in highland areas around Brno (Drahanská vrchovina
and Chřiby). The Grassland class dominates in less favored areas for agriculture (LFA) in
mountain and foothill areas, especially in the Beskydy, Hrubý Jeseník and Nízký Jeseník.
The heterogeneous composition of the land cover can be seen in the hills in the western
part called Vysočina (around the towns of Jihlava, Pelhřimov, Havlíčkův Brod and Žd’ár
nad Sázavou). It is the most heterogeneous area within the area of interest. Significant
water surfaces are located around Novomlýnské reservoirs and near Tovačov, where there
are large anthropogenic lakes created after sand mining.

In addition to the LULUCF class map for the entire evaluated area, scale-detailed
maps of 3 selected areas are provided in Appendix D. The first area documents LULUCF
between the Pilská reservoir and the village of Polnička. The local landscape is a composite
of individual monitored classes. To the south of the village Polnička there is a quarry,
which was successfully classified as Settlements according to the LULUCF nomenclature.
In the middle row, the documented area has been strongly anthropogenically affected.
There is a D1 highway with widely developed road infrastructure and large construction
complexes. Both surfaces were well classified as Settlements. The sparsely built-up areas of
the villages of Pávov and Nový Pávov (in the west) were also well classified. The bottom
row shows the area inside the Libavá military district, which has been severely affected
by droughts and bark beetle disturbances. In the case of this area, certain weaknesses of
the classification algorithm were documented, where some pixels without vegetation were
incorrectly classified as Settlements. On the other hand, most of the affected forest area was
successfully classified as Forest Land.

4. Discussion

The main aim of this study was to develop an RF-based classification method that al-
lows the classification of Sentinel-2 data according to LULUCF requirements. Multispectral
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satellite data from the Sentinel-2 mission were used for their advanced spatial and temporal
resolution. Methodological procedures were developed and implemented in the freely
accessible cloud platform GEE. The methodology was tested, and the results were validated
for a larger region (two NUTS 2 units with a total area of 23,217 km2) in Czechia using data
collected in 2018. A motivation of this study was to prove a high relevance and perspective
of EO data from the Copernicus program for LULUCF reporting. LULUCF reporting in
Czechia has been exclusively based on cadastral land use information, which has several
weaknesses that affect the quality of the collected data [22,23]. The compatibility of the
cadaster land use with defined LULUCF classes is also problematic. For example, the Other
Land class in the cadastral register includes highly diverse surfaces that should be divided
into individual LULUCF classes.

From the research point of view, the most important task was to test the Random
Forest classifier for the purpose of LULUCF classification. Although LULUCF classes
often include very different surfaces in terms of spectral reflectance, the positive finding
is that the use of an RF classifier did not require these surfaces to be classified as separate
classes and subsequently aggregated. Thus, quite different surfaces within one LULUCF
class entered the classification, such as orchards and arable land as the Cropland class, or
built-up areas and roads as the Settlements class. The Random Forest classifier was able to
correctly classify these surfaces with relatively high accuracy. However, the basic condition
was the quality of training. A semi-automatic method was developed for the creation of
training polygons using the CLC 2018 database to provide high-quality training of the
monitored classes. However, for minority classes and specific surfaces (approximately less
than 2% of the total area), this method was not able to fully ensure a sufficient number of
training polygons. For such classes, it was necessary to create training polygons manually.

A relevant research aspect was to test and find the most suitable combination of
Random Forest classifier input parameters (Number of Trees, Variables per Split and Bag
Fraction) to achieve the highest classification accuracy. For this purpose, an algorithm
was created in GEE, which allows a large number of combinations of input parameters
to be tested and then the one that achieves the highest accuracy to be selected. From
the achieved results of individual combinations accuracy, the highest value of the Kappa
index and the overall accuracy were achieved in the case of the use of the following
combination of parameters NT: 150, VPS: 3 and BF: 0.1 with the value κ: 0.8383 and the
overall accuracy of 89.01%. Comparing the obtained results, where GEE was used for RF
classifier implementation, in [31,37,38], the number of trees 100 and other parameter values
were used as the default in GEE (VPS is default defined as the square root of the number
of bands of an image; BF is 0.5). Such a setting would lead to the result κ: 0.8206 and OA:
87.87% in this study. The RF classifier was also used to map Cropland in Southeast Asia
using GEE [39], where the method defined a value of 300 as the most appropriate NT and
left the default value for other attributes. If this setting was used in this work, the result
would be κ: 0.82 and OA: 87.79%.

The LULUCF classification used in this study is based on a multitemporal approach
that uses several images during the observed vegetation season. Due to the large extent
of the area of interest and multitemporal approach, it was decided to create a mosaic for
classification purposes. The mosaic was created using the full potential of Sentinel-2 data;
all images taken in the period from May to the end of July with a total cloud cover below
75% were used to create the mosaic. The Sentinel-2: Cloud Probability dataset (so-called
s2cloudless) was used for the cloud masking of Sentinel-2 data in GEE [29]). However,
according to the results of experiments within this study, masking clouds shadows remain a
complicated and poorly elaborated task in the s2cloudless dataset. For this reason, another
algorithm in GEE was used [30]. Shadows are defined by cloud projection intersection
with low-reflectance near-infrared (NIR) pixels. The median method was chosen to create
the resulting mosaic. For each pixel, a median of the cloudless values was determined
as the final value. This method was proven to be suitable for such a large area with very
heterogeneous conditions prevalent throughout the year. In the case of the median, it
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is advantageous to eliminate the influence of the resulting mosaic by outliers caused by
noise or due to imperfections of cloud correction. This method allows the elimination of
time-limited/exceptional surface conditions. For example, rapeseed (Brassica napus) has a
highly different reflectance during the full flowering period compared to before or after
flowering. This flowering phenological phase negatively influences the classification of the
broadly defined LULUCF class Cropland. The choice of suitable tiling methods was also
tested by [32], who evaluated the effect of using the tiling method on the resulting overall
accuracy value. The mosaic created by averaging the available surface reflectance values
was classified by 88% accuracy and the median mosaic had an accuracy of less than 86%.
However, it should be noted that it dealt with the classification of three less large areas
(25 km2) in Calabria (southern Italy) with lower heterogeneity and minimal cloud cover
in the summer months. Another study [38] created a classified mosaic for each Landsat 8
and 7 spectral band as the 75th percentile of six values representing the average reflectance
over each of six two-month periods (January–February, March–April, . . . ) during a year.
In [40], a classified mosaic was created using a minimum value for each month to ensure
that the resulting values were not affected by clouds. This approach does not seem to be
the best solution after the experiences in this study, because the recorded minimum values
were often hit by a cloud shadow.

In addition to the selection of the specific mosaicking method, the decision on the
length of the time interval from which images will be used remains an important research
question. In this work, the interval of 3 months from May to the end of July was used.
Based on the testing, this interval was chosen because it was a period that covers significant
vegetation/phenological phases and from which it was possible to create a mosaic based on
relevant values for the entire area of interest. The selection of time period is also dependent
on weather conditions, especially cloudiness, which could be various for different years.
For this reason, it is not possible to recommend a standard optimal time period. The
3-month median mosaic was also used in [41] to map cropland using the Random Forest
in China. The mosaic was created together with images from Landsat 8 and 7. In [39],
cropland in Southeast Asia was analyzed using a time interval of 4 months for the mosaic.

The input of altitude values from DEM (SRTM) in the classification proved to be highly
useful. According to the calculated Gini importance, it was the most important band in the
classification (Appendix C). This band also reached the highest significance in the case of
the study [31], which classified the territory of Mongolia using Landsat 8 and SRTM data.
Another significant input was the calculated NDVI variance band for the period from May
to October. The choice of this input information was inspired by several previous works,
e.g., in [38], arable land mapping (corresponding to the Cropland class) was performed
using Random Forest. When classifying, he used the standard deviation of NDVI from the
observed three years. In terms of Gini importance determination, the standard deviation
of NDVI achieved the fifth highest relevance from the twelve compared. The elevation,
slope, range of NDVI and minimum of NDVI had higher relevancy in [38]. In the case of
this work, the NDVI variance band was second in terms of importance.

From the point of view of the data used, the Sentinel-2 data appear to be a promising
data source for LULUCF purposes. This is evidenced by several studies that have success-
fully used Sentinel-2 data to classify similar LULUCF classes [12]. This study confirmed the
high relevance of modern classification methods based on machine learning (specifically
RF) and the high perspective in the use of cloud-based technologies. The GEE environment
is undergoing dynamic development due to its free availability for noncommercial use and
its wide range of data and useful algorithms.

Considering the shortcomings of the data and methods used in this work with regard
to the LULUCF regulations, an important aspect is the use of satellite data, which reflect
land cover classification rather than information on land use. However, the LULUCF
methodology is based more on a land use approach. From this point of view, the following
research steps should focus on the possibilities of combining satellite data (Sentinel-2,
Planet.com) and cadastral data with the maximum use of the advantages of these data
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sources for the purposes of accurate and time-compatible reporting. The LULUCF clas-
sification method, which would be based on standardized data (Copernicus data), could
deliver comparable (harmonized) LULUCF results for use in the IPCC and could be ap-
plicable in many countries around the world. To evaluate the accuracy and applicability
of the proposed method, it is necessary in the future to focus on the evaluation of LU-
LUCF changes over several years. Classification inaccuracies may be more noticeable in
change detection between two time periods. Moreover, it would be useful to use alter-
native methods for accuracy assessment, e.g., Mapcurves GOF for categorical variables.
The created algorithm is placed and open in Github to be freely used and developed:
https://github.com/hawk919/LULUCF-GEE-classification/blob/main/CODE.

5. Conclusions

LULUCF is a greenhouse gas inventory sector that reports the extent of and changes in
the following classes: Settlements, Cropland, Forest Land, Wetlands and Other Land. Due to
the international scope, different methodologies with different data are used. LULUCF data
from Czechia are reported based on cadastral data, which have limited abilities to detect
land-use changes [22,23]. On the other hand, EO data and methods have been significantly
developed in recent periods, especially due to important programs and missions, i.e.,
Copernicus or Landsat. For this reason, the main aim of this study was to use and test
the Sentinel-2 data for the purpose of LULUCF in the two selected NUTS 2 regions in
Czechia in 2018. The methodological workflow was implemented in the freely accessible
platform GEE. From the research point of view, the most important task was to find the
most suitable combination of Random Forest classifier input parameters (Number of Trees,
Variables per Split and Bag Fraction) to achieve the highest classification accuracy. The
classification with the highest accuracy (the overall accuracy of 89.1% and Cohen’s Kappa
of 0.84) was achieved with the following combination of parameters: NT = 150, VPS = 3
and BF = 0.1. It was proven that the parameter VPS was of the greatest importance for
the accuracy of the classification. To select and evaluate the relevance of parameters, an
innovative algorithm was developed in GEE, which enabled the simultaneous execution
and evaluation of 450 classifications at once. This innovation is probably the biggest benefit
of this work, because this method allows the users to operatively evaluate and select
suitable classification parameters for the area of interest in a short time.

Due to the large extent of the area of interest and multitemporal (multiple images)
approach, it was decided to create a mosaic for classification purposes. The mosaic was
created to exploit the full potential of Sentinel-2 data. For this reason, all images taken in
the period from May to the end of July with cloud cover lower than 75% were used. The
median method was chosen to create the resulting mosaic. This method was proven to be
suitable for such a large area with very heterogeneous conditions prevalent during the year.
Moreover, altitude values derived from SRTM and NDVI were added in the mosaic and
used in the classification. The input of altitude values was highly useful, and according to
the calculated Gini importance, it was the most important band in the classification (similar
to the study [31]). The NDVI variance values were the second most significant in terms of
Gini importance.

Another goal was to create a LULUCF classification nomenclature for Czechia with
a detailed semantic description and maximum compatibility with LULUCF. To ensure
compatibility with the LULUCF approach, the Woodland class was originally created and
subsequently divided into Forest Land (areas greater than 0.5 ha) and Other Land (trees
outside the forest area of less than 0.5 ha). The results of the classification show that the
most dominant LULUCF classes within the area of interest in 2018 were Cropland and
Woodland/Forest Land. The highest classification accuracy of over 90% was achieved for
the classes Cropland and Woodland. In terms of user accuracy, the Settlements (66.05%)
and the Other Land (43.75%) were the most problematic classes.

The developed method is based on the classification of Sentinel-2 data using the Ran-
dom Forest classifier in the cloud-based platform GEE. This approach seems to be very

https://github.com/hawk919/LULUCF-GEE-classification/blob/main/CODE
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promising for the systematic implementation of EO data in LULUCF. The Sentinel-2 data
from Copernicus programme appear to be a relevant data source for LULUCF purposes.
The following research steps should focus on the possibilities of combining satellite data
(Sentinel-2) and cadastral data with the maximum exploitation of the advantages of in-
dividual data sources for the purposes of time-compatible LULUCF reporting. For this
reason, it is necessary to focus on the evaluation and validation of LULUCF within a longer
period and assess the accuracy of the changes. The cloud-based classification method,
which would be using the standardized data (Copernicus data) and would be applicable in
many countries around the world, could bring significant progress in the use of EO data in
LULUCF. A closer dialogue between stakeholders/end-users and EO experts is the next
important step for that goal.
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Appendix A. LULUCF Classification Nomenclature and Description of Categories

1. Forest Land

Forest Land is an area that should be covered with woody vegetation, and the tree
canopy cover should be at least 10%. The area should exceed 0.5 ha and contain trees
able to reach a minimum height of 5 m at maturity. It also includes systems with woody
vegetation that currently fall below, but are expected to exceed, the threshold for the Forest
Land category. These areas normally form part of the forest area which is temporarily
unstocked as a result of human intervention, such as harvesting or natural causes, but
which is expected to revert to forest (Figure A1a–d) [15,27].

https://github.com/hawk919/LULUCF-GEE-classification/blob/main/CODE
https://github.com/hawk919/LULUCF-GEE-classification/blob/main/CODE
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Figure A1. (a) coniferous forest, (b) deciduous forest, (c) logged area and (d) recovery forest area
(source: authors).

2. Cropland

This category includes managed land used for growing temporary (Figure A2a–c) and
permanent crops (Figure A2d). It also includes arable land that was left for one or several
years before being cultivated again or is temporarily used for grazing. Permanent crops
include trees and shrubs that produce fruits, such as orchards and vineyards [15].
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Figure A2. (a) plowed arable land, (b) ripe wheat, (c) different crops and (d) vineyard (source:
authors).

3. Grassland

This category includes meadow (Figure A3a,c) and pasture land (Figure A3b) that is
not considered cropland. Grasslands generally have vegetation dominated by permanent
grasses. This category includes all grasslands from wild lands (Figure A3d) and agricultural
to recreational. This category includes natural grasses (steppe vegetation, grasslands above
tree line) and sparse vegetation (below tree crown cover of at least 10%) [15,27].
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Figure A3. (a) late summer meadow, (b) pasture with cows, (c) spring meadow and (d) natural
mountain grassland (source: authors).

4. Wetlands

This category includes land that is covered or saturated by water for the whole or part
of the year (e.g., peatland and reeds-Figure A4d) and that does not fall into the Forest Land,
Cropland, Grassland or Settlements category. It includes managed reservoirs, e.g., ponds or
valley reservoir (Figure A4a,b) and unmanaged natural rivers (Figure A4c) and lakes [15].
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5. Settlements

This category includes all developed land, including transportation infrastructure
(Figure A5c) and human settlements of any size (Figure A5a,b). The important aspect of
settlements is the terrestrial components of developed land that are managed and may
influence CO2 fluxes between the atmosphere and terrestrial carbon pools. In this context,
the category Settlements” includes all classes of urban tree formations, namely, trees grown
along streets, in public and private gardens and in different kinds of parks, provided that
such trees are functionally or administratively associated with cities or villages. Landfills,
open pit mines (Figure A5d) and sludge ponds also fall into this category [15].
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Figure A5. (a) Dense urban fabric, (b) discontinuous urban fabric, (c) highway and (d) sand mine
(source: authors).

6. Other Land

This category includes bare soil, rock (Figure A6c,d), sand, ice and all unmanaged land
areas that do not fall into any of the other five categories. Simultaneously, this class also
includes uncultivated stands of trees (Figure A6a) or shrubs that do not meet the conditions
set for the forest (area less than 0.5 ha). These are mainly bosques, unmanaged bushes, etc.
Scrub mountain pines in the top parts of the mountains (Figure A6b) are also included, as
they do not exceed a height of 5 m [15,27].
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Appendix B. CORINE and LULUCF Categorizations

Table A1. CORINE Land Cover categories and their equivalent LULUCF: categories in the case study.

CLC3 CLC Name LULUCF

1.1.1 Continuous urban fabric Settlements
1.1.2 Discontinuous urban fabric Settlements
1.2.1 Industrial or commercial units and public facilities Settlements
1.2.2 Road and rail networks and associated land Settlements
1.2.4 Airports Settlements
1.3.1 Mineral extraction sites Settlements
1.3.2 Dump sites Settlements
1.3.3 Construction sites Settlements
1.4.1 Green urban areas Settlements
1.4.2 Sport and leisure facilities Settlements
2.1.1 Non-irrigated arable land Cropland
2.2.1 Vineyards Cropland
2.2.2 Fruit tree and berry plantations Cropland
2.3.1 Pastures Grassland
2.4.2 Complex cultivation patterns Cropland/Grassland
2.4.3 Land principally occupied by agriculture, with significant areas of natural vegetation Cropland/Grassland/Forest Land
3.1.1 Broad-leaved forest Forest Land
3.1.2 Coniferous forest Forest Land
3.1.3 Mixed forest Forest Land
3.2.1 Natural grassland Grassland
3.2.2 Moors and heathland Grassland/Other Land
3.2.4 Transitional woodland/shrub Forest Land
3.3.3 Sparsely vegetated areas Other Land /Grassland
4.1.1 Inland marshes Grassland/Wetlands
4.1.2 Peatbogs Forest Land/Wetlands
5.1.1 Water courses Wetlands
5.1.2 Water bodies Wetlands

Source: [42].

Appendix C. Gini Importance

In this Table A2, the Gini indices of the individual bands and their order in relation
to the other bands are evaluated for four different combinations of input parameters. The
bands are ordered by the average rank of importance from all four combinations.

Table A2. Gini importance of selected combinations of input parameters.

Band

NT: 100, VPS: 1,
BF: 0.1

NT: 200, VPS: 2,
BF: 0.2

NT: 300, VPS: 3,
BF: 0.3

NT: 400, VPS: 4,
BF: 0.4

Gini
Importance

Rank of
Importance

Gini
Importance

Rank of
Importance

Gini
Importance

Rank of
Importance

Gini Im-
portance

Rank of
Importance

SRTM elevation 220.4 2. 544.8 1. 956.1 1. 1318.9 1.
NDVI variance 238.9 1. 452.3 2. 623.5 2. 736.2 2.

B11 180.9 5. 368.2 3. 526.9 3. 681.9 3.
B2 191.2 3. 321.1 5. 442.6 4. 545.4 5.
B6 172.8 8. 330.3 4. 438.3 5. 516.2 8.

B12 167.5 11. 317.7 6. 431.6 6. 550.4 4.
B8A 169.4 10. 311.1 8. 431.5 7. 528.4 6.
B5 170.2 9. 313.2 7. 427.3 8. 505.6 9.

NDVI 175.7 7. 305.2 10. 418.2 9. 516.5 7.
B4 185.3 4. 308.4 9. 402.8 11. 470.6 11.
B3 180.5 6. 304.9 11. 407.5 10. 480.3 10.
B7 155.0 13. 278.2 12. 375.6 12. 456.7 12.
B8 164.3 12. 276.9 13. 369.1 13. 449.3 13.
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Appendix E.

Appendix E is available at https://drive.google.com/file/d/12Uic7KqExjBV-IsucF2
FwBcItAFfvLXc/view?usp=sharing.

References
1. Koomen, E.; Stillwell, J.; Bakema, A.; Scholten, H.J. (Eds.) Modelling Land-Use Change the GeoJournal Library; Springer: Dordrecht,

The Netherlands, 2007; ISBN 978-1-4020-6484-5.
2. Verburg, P.H.; van Berkel, D.B.; van Doorn, A.M.; van Eupen, M.; van den Heiligenberg, H.A.R.M. Trajectories of land use change

in Europe: A model-based exploration of rural futures. Landsc. Ecol. 2010, 25, 217–232. [CrossRef]
3. Michetti, M. Modelling Land Use, Land-Use Change, and Forestry in Climate Change: A Review of Major Approaches. SSRN

Electron. J. 2012, 46, 1–57. [CrossRef]
4. Meyfroidt, P.; Lambin, E.F. Global Forest Transition: Prospects for an End to Deforestation. Annu. Rev. Environ. Resour. 2011, 36,

343–373. [CrossRef]
5. Ellison, D.; Lundblad, M.; Petersson, H. Reforming the EU approach to LULUCF and the climate policy framework. Environ. Sci.

Policy 2014, 40, 1–15. [CrossRef]
6. Nielsen, T.D. From REDD+ forests to green landscapes? Analyzing the emerging integrated landscape approach discourse in the

UNFCCC. For. Policy Econ. 2016, 73, 177–184. [CrossRef]
7. Latta, G.S.; Baker, J.S.; Ohrel, S. A Land Use and Resource Allocation (LURA) modeling system for projecting localized forest CO2

effects of alternative macroeconomic futures. For. Policy Econ. 2018, 87, 35–48. [CrossRef] [PubMed]
8. Liu, S.; Li, Y.; Gao, Q.; Wan, Y.; Ma, X.; Qin, X. Analysis of LULUCF accounting rules after 2012. Adv. Clim. Chang. Res. 2011, 2,

178–186. [CrossRef]
9. Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS

satellite data. Remote Sens. Environ. 2012, 124, 334–347. [CrossRef]
10. Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107,

8650–8655. [CrossRef]
11. Lastovicka, J.; Svec, P.; Paluba, D.; Kobliuk, N.; Svoboda, J.; Hladky, R.; Stych, P. Sentinel-2 data in an evaluation of the impact of

the disturbances on forest vegetation. Remote Sens. 2020, 12, 1914. [CrossRef]
12. Lewinski, S.; Malinowski, R.; Rybicki, M.; Gromny, E.; Nowakowski, A.; Jenerowicz, M.; Krupiński, M.; Krupiński, M.;
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