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Abstract: Nighttime lights are routinely used as a proxy for economic activity when official statistics
are unavailable and are increasingly applied to study the effects of shocks or policy interventions
at small geographic scales. The implicit assumption is that the ability of nighttime lights to pick
up changes in GDP does not depend on local characteristics of the region under investigation or
the scale of aggregation. This study uses panel data on regional GDP growth from six countries,
and nighttime lights from the Defense Meteorological Satellite Program (DMSP) to investigate
potential nonlinearities and measurement errors in the light production function. Our results for high
statistical capacity countries (the United States and Germany) show that nightlights are significantly
less responsive to changes in GDP at higher baseline level of GDP, higher population densities,
and for agricultural GDP. We provide evidence that these nonlinearities are too large to be caused
by differences in measurement errors across regions. We find similar but noisier relationships in
other high-income countries (Italy and Spain) and emerging economies (Brazil and China). We also
present results for different aggregation schemes and find that the overall relationship, including the
nonlinearity, is stable across regions of different shapes and sizes but becomes noisier when regions
become few and large. These findings have important implications for studies using nighttime lights
to evaluate the economic effects of shocks or policy interventions. On average, nighttime lights pick
up changes in GDP across many different levels of aggregation, down to relatively small geographies.
However, the nonlinearity we document in this paper implies that some studies may fail to detect
policy-relevant effects in places where lights react little to changes in economic activity or they may
mistakenly attribute this heterogeneity to the treatment effect of their independent variable of interest.

Keywords: nighttime lights; GDP; nonlinearity; panel data; MAUP; aggregation

1. Introduction

A growing literature in economics and other fields uses nighttime lights as a proxy for
economic activity when data on gross domestic product (GDP or GDP per capita) are un-
available. Nightlights have been used to compare economic activity across geographic units
at a variety of scales, from seminal work at the country level [1–3], over states/provinces [4],
down to the level of cities [5], villages [6,7], and grid cells [2]. An increasingly common
application of nightlights is to measure regional or local economic impacts of shocks (such
as floods [8], sanctions [9], or transportation cost shocks [5]) or spatially-targeted policies
(such as a rural employment scheme [10], federal transfers to a state [11], or regional
favoritism by political leaders [4]). However, little is known about whether the nightlights-
GDP relationship at smaller geographic scales is constant across locations. Note that
while we focus on the relationship between nightlights and GDP, other studies have used
survey data to study the correlation with income or income proxies when GDP data are
unavailable [6,12,13]. Beyond GDP, nightlights have been used to as a proxy for population
density [7,14], electrification [15], and infrastructure [16].
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Interpreting how changes in nightlights reflect unmeasured changes in economic activ-
ity requires having a reliable estimate from settings where both nightlights and economic
activity are measured. Recent work has explored how the relationship between growth
in nightlights and economic activity varies across contexts, both at national scale [17] and
at smaller geographies [7]. Some studies conclude that the subnational nightlights-GDP
relationship is not stable in emerging and advanced economies [18]. Others find that
luminosity is ineffective as a proxy for economic activity in less densely populated counties
in the United States and may be a poor predictor of GDP in areas where agriculture plays a
crucial role in the economy [19]. Given that physical features underlying economic activity
usually vary by economic sector (across agriculture and industry, for example) and by
population density, it seems plausible that the relationship between changes in nightlights
and economic growth varies across contexts. However, it is often overlooked that the
presence of measurement errors in nighttime lights and GDP complicates the interpretation
of such findings and makes it difficult to separate the influence of measurement errors
from heterogeneity in the data generating process. As a result, little is known about how
stable this relationship is at finer levels of spatial disaggregation and what this potential
heterogeneity might imply for studies using nightlights as a proxy for economic activity.
Unfortunately, this raises the potential of incorrect inference regarding the economic effects
of a policy, investment or shock. If, for example, nightlights are not associated with changes
in economic activity over some range of GDP or population density, then a policy interven-
tion or public investment in these kinds of areas might be incorrectly labeled as ineffective
if researchers estimate its economic impacts solely through nightlights. Similarly, variation
in the nightlights-GDP relationship might lead researchers to conclude that a policy had
heterogeneous impacts on economic activity across locations, even when the true economic
impact does not vary.

This paper makes three contributions. First, we compile subnational economic data
from several high and middle income countries together with data on nighttime lights and
discuss the sources of measurement errors in both. Second, we estimate the nightlights-
GDP elasticity—the percentage change in nightlights associated with a one percent change
in economic activity—in two different ways: (i) unconditionally for different income groups
to gauge whether the relative attenuation factors consistent with a constant elasticity are
plausible, and (ii) by conditioning the elasticity on population density. Our results illustrate
significant nonlinearity at subnational scale. The estimated elasticities tend to fall with
higher levels of GDP, higher population densities, and the size of the agricultural sector. We
find that the required variation in measurement errors would have to be implausibly large
and follow an improbable pattern to explain these findings, which implies that the structural
elasticity likely varies. Finally, we study changes in the nightlights-output relationship at
various configurations of geographic aggregation. We find that the average relationship and
the evidence in favor of nonlinearity is remarkably stable across geographies of different
shapes and sizes, even though the influence of measurement errors in lights and GDP
should decrease as units become larger. Simultaneously, the variation of estimates around
the average increases as the number of units falls. Given the previous evidence, this suggests
that in addition to sampling variation, spatial correlation in industrial composition and
population density contributes to this pattern.

2. Materials and Methods

Applied researchers typically use nighttime lights as a proxy for GDP when data on
income or production are unavailable. In the canonical regression equation setup, GDP
would be on the left hand side, if it were observed, and some policy intervention or other
variable of interest on the right hand side. The researcher is interested in the treatment
effect of the policy on GDP. Replacing GDP by nighttime lights (whether as a sum or density
per unit area) implies that the policy parameter of interest is not statistically identified.
Instead, the researcher obtains a product of the policy effect on GDP, say τ, multiplied
by the elasticity of nighttime lights with respect to GDP, say β. To see this, let the policy
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equation of interest be yG
i = τdi + ei while the structural relationship between lights and

GDP is yL
i = βyG

i + εi, where yG is GDP, yL is nighttime light output and di is the variable
for the policy being evaluated. Both quantities are in logs and could be measured in per
capita terms. Since GDP is not observed, the researcher actually estimates yL

i = θdi + εi.
In this case, it is straightforward to show that the probability limit of θ̂ is βτ. This is
precisely why the literature typically multiplies the policy parameter by an estimate of
the inverse elasticity of lights with respect to GDP, in order to relate their estimates back to
changes in aggregate income [3]. The elasticity of lights with respect to output is typically
assumed to be constant. In fact, usually an estimate of 0.3 [3,4] is used in order to back out
the effect of the policy on GDP. However, if there is heterogeneity in how nightlights react
to GDP, then this has an important implication: any systematic variation in the elasticity of
nightlights with respect to GDP will translate into differences in the estimated effect of the
policy across locations, even when the true effect of the policy is constant.

Unfortunately, both nighttime lights and GDP data are subject to measurement error.
The DMSP nighttime lights that are used in most of the literature suffer from four sources
of error: (1) bottom-coding as a result of filtering and limited detection of low lights,
(2) topcoding as a result of sensor saturation in bright areas, (3) blooming or overglow as a
result of atmospheric scattering and “pollution” from adjacent light sources, exacerbated
by geolocation errors, and (4) a lack of inter-annual calibration which makes it impossible
to convert the recorded digital numbers into a physical quantity such as radiance [5,20–23].
Moreover, as we discuss below, measuring subnational GDP in all countries often involves
assumptions about the location of certain economic activity, or interpolations of baseline
year surveys for industrial or agricultural output conducted infrequently [24]. GDP data
in developing countries are particularly error-prone and could be subject to outright
manipulation [25]. The presence of measurement error on both sides of the equation has
long been recognized in the economics literature focused on estimating the relationship
between nighttime lights and GDP, or optimal combinations of both [2,3,17,26].

The newer VIIRS day-night band solves many of the legacy technology issues of the
DMSP system. The sensor has a smaller ground footprint, better ability to detect lights
at both ends of the spectrum, and is radiometrically calibrated. This paper focuses on
DMSP for two reasons. First, most applications of nightlights in economics research have
used DMSP given the longer time series (VIIRS data are only available from 2012 onward,
resulting in short panels with GDP). Second, VIIRS satellites observe nighttime lights much
closer to midnight when most production and consumption have ceased. Nevertheless,
evidence suggests that the VIIRS data vastly outperforms the DMSP system when it comes
to predicting GDP [19]. While the number of studies using VIIRS is undoubtedly on the
rise, we use the DMSP data in this analysis to speak to the existing literature and leave a
similar exercise with VIIRS for future work.

In our setting, the key implication of measurement error in both variables is that
we cannot simply take estimates obtained from regressions on subsamples, or nonlinear
regressions, at face value and definitively conclude that there is nonlinearity in the structural
elasticity. Differences in the elasticity could be due to structural differences in how light
reacts to GDP (e.g., higher densities in cities combined with economies of scale in light use
or differential light consumption by different economic sectors) or due to differences in
measurement error (e.g., due to greater informality or difficulty measuring the activity of
some regions). To circumvent this issue, we calculate how large the measurement error
would need to be in order to fully explain the observed variation in the elasticity. We
can then ask if the implied measurement error is plausible in countries where we expect
these errors to be small and constant across units, and then use these estimates to assess
the variation in countries where measurement errors should play a larger role. We study
what the literature calls the structural relationship (how lights react to GDP), as opposed
the predictive relationship (how lights predict GDP), but make no attempt to estimate the
structural relationship net of measurement error. Other work focuses on the country level
and proposes a method of identifying the elasticity under the presence of very general forms



Remote Sens. 2022, 14, 1190 4 of 25

of measurement error using proxies for the statistical capacity of each country [17]. We use
subnational data where variation in statistical capacity is not helpful for identification.

Our article examines the nightlights-GDP relationship in Brazil, China, Germany, Italy,
Spain and the United States, spanning a range of quality in national accounts (and by
extension subnational accounts) in order to gauge variation in the structural relationship in
both higher and lower measurement error contexts. In addition, these countries are large
and diverse in terms of their geography and economic structure, have subnational GDP
data available for a suitable number of years, and have a large number of second-level
administrative units (county/municipality/district) to ensure sufficient statistical power
for estimation. These countries also vary in terms of quality grades for their national
accounts, which we take as a proxy for the quality of their subnational accounts. For
example, if we take quality grades from the 1994 Penn World Table 5.6 and 2008 Penn
World Table 6.1 in order to reflect data quality during years corresponding to our study
period, then the United States and Germany have an A grade, Italy an A−, Spain a B+,
Brazil a B and China a C [27,28].

2.1. Empirical Strategy

We study the potential heterogeneity in the income elasticity of lights across subna-
tional units using two different but related approaches. Both take the constant elasticity
model underlying most of the applied literature as the benchmark and then set up different
conditions which would lead us to reject this model. We focus on GDP (as opposed to
other measures such as GDP per capita) because the economics literature studying the
relationship between nightlights and economic activity or employing nightlights as a proxy
focuses on GDP instead of GDP per capita. The implicit assumption is that growth in
nighttime lights increases equally in population growth and growth in per capita incomes.
Secondly, GDP per capita is not always positively correlated to total economic activity.

First, we specify single variable regressions of the observed nighttime lights (yL
it) on

GDP per area (yG
it ), both in logarithms, for samples split according to quartiles of average

GDP. More formally, for each subsample we specify

yL
it = βyG

it + µi + ψt + εit (1)

where µi and ψt represent geographic unit and year fixed effects, respectively, and εit is an
idiosyncratic error.

Together with the specification in logarithms, the inclusion of unit fixed effects implies
that we are relating a region’s growth in nighttime lights to growth in GDP. The inclusion
of time fixed effects allows for country-specific factors that vary over time but influence
every administrative unit in the same way (such as differences in the ability of sensors to
pick up nighttime lights, due to satellite changes or orbital or sensor degradation). We
are therefore estimating the relationship of changes in nightlights and economic activity
within a geographic unit over time, and not how the level of nightlights is associated
with economic activity across geographic units. This is the relevant estimation to inform
empirical exercises studying the impact of a shock, policy or investment at subnational level.

Our parameter of interest, β, is the income elasticity of nighttime lights, a unitless
measure indicating the percentage luminosity increase in response to a one percent change
in GDP. We estimate this parameter separately for subsamples split according to quartiles of
average GDP to obtain four coefficients (β̂k for k = 1, 2, 3, 4). These four groups of different
average GDP are a proxy for subnational differences in statistical capacity. Under the
conditional mean independence assumptions typically made in the related literature [2,3,26]
the resulting estimates will converge to the true coefficient times an attenuation factor.
If the true relationship were constant across all subsamples of the data and the variance
of the measurement error in GDP were constant, then the estimated elasticities should be
very similar in each partition of the data (with some expected sampling variation). More

formally, β̂k p→ βλ. If the true relationship is constant but the GDP error variance differs
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across subsamples, then the estimated coefficients will be attenuated differently, such that

β̂k p→ βλk. In this case, it is plausible that the highest GDP category would have the smallest
measurement error in GDP, resulting in the least attenuation of the coefficient. However,
our analysis does not presume any particular pattern of attenuation. Appendix A derives
these results and provides details on the required assumptions.

We use this relationship to study whether the differences in elasticities and the implied
attenuation factors are plausible. If the true structural elasticity is assumed constant,
the ratio of any two point estimates indicates how different measurement errors must be in
order explain the variation in the estimated elasticities across the two subsamples. For each
country, we estimate and report the ratios θk = βk/β1 comparing the quarter k to the data
up to the first quartile. If, for example, the variance of measurement errors in GDP falls
with higher incomes, then the sequence of coefficient estimates would be rising and we
would interpret a ratio of, say, θ̂4 = 0.5/0.25 as ‘the income elasticity of nighttime lights
has to be twice as attenuated in the lowest GDP quartile than the highest GDP quartile for
the constant elasticity model to be true’. The pattern would be reversed if the variance of
measurement errors in GDP increases with income. If we cannot reject the hypothesis that
the ratio is different from one, then we conclude that their attenuation factors could have
been the same.

Going one step further, we interpret values of θk statistically different from 1 in
countries with high statistical capacity as evidence against the constant elasticity model
typically assumed in the applied literature. Of course, it is plausible that the variation in
measurement errors of subnational GDP is substantial in developing countries, where there
may be more variation in informality across regions, or in the capacity of the statistical
apparatus to collect economic data. However, in developed countries with uniformly
high statistical capacity, we should not observe significant differences in the signal-to-
noise ratio of GDP across regions, and, in fact, expect the estimated θ̂s to be close to
one. Even if the signal-to-noise ratio in the best measured part of the data were, say, 0.8,
then a doubling or halving of this ratio for some regions would imply implausibly large
differences in measurement error in high capacity countries. This is why our sample of
countries deliberately spans highest quality subnational accounts (the US or Germany) and
countries where regional GDP is estimated with less precision (China or Brazil). We use the
estimates from developed economies to better understand the relative roles of “structural”
nonlinearities and measurement errors in the light-output relationship in developing
economies, where nighttime lights are most often used as a proxy for local GDP.

Note that our assumptions measurement errors in GDP and lights also imply that the
standard errors of the estimated coefficients are biased. While the sign is indeterminate, it
can be shown that the resulting t-statistics are underestimated. The standard errors of the
estimated relative attenuation factors are also affected by measurement errors. We leave
potential solutions to these issues for future research and note that our estimates of the
uncertainties are not free of large sample biases.

Our second approach to studying heterogeneity in the income elasticity models the
variation along a third variable:

yL
it = (β + γzi)yG

it + µi + ψt + eit = βyG
it + γ(yG

it zi) + µi + ψt + εit (2)

where zi is the logarithm of population density in the first year of the data and all other
variables are defined as before. We focus on population density since the light-GDP
relationship could vary along this dimension for several reasons. For example, fixed costs
of light infrastructure can be large at low population densities, while at high densities,
economies of scale and vertical city growth may decrease the responsiveness of lights to
changes in GDP.

Given that both light and GDP per area are in logarithms, taking the derivative of
Equation (2) with respect to yG

it results in an elasticity that varies with initial population
density. For this specification, we are no longer interested in ratios of these elasticities
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at different points in the distribution but instead focus on the sign and significance of
γ̂. It is important to note that all coefficient estimates in specifications with multiple
independent variables, of which at least one is measured with error, are biased in unknown
directions. However, if we are willing to assume that population density in the initial year
is measured without error and make additional independence and linearity assumptions,
then γ̂ converges to zero in probability if the constant elasticity model is correct (see
Appendix A for details on these results). Moreover, β̂ will still be attenuated by the same
signal-to-noise ratio as in Equation (1). Hence, we may compare the estimates of β̂ across
the long and short regressions and, with some caveats, interpret a significant result on γ̂ as
further evidence against the constant elasticity model.

Another likely source of structural differences in the nightlight-economic output re-
lationship are differences in industrial composition. For example, if nighttime lights fail
to pick up changes in agricultural GDP [29,30], then differences in sectoral composition
across regions are sufficient to generate variation in the measured light-output relationship.
Given that agricultural areas are typically less densely populated than regions with large
manufacturing or service hubs, this would also imply some variation of the light-output
elasticity with respect to population density. Moreover, it is an open question whether
lights primarily respond to value-creation in industry or services and whether the elasticity
is constant within each economic sector. Light in densely populated urban areas with a high
concentration of services, for example, might not scale linearly in output. To explore this in
our data, we run regressions of nightlights on GDP separately for agricultural, industry
(including construction), and service sector GDP, with and without interactions with popu-
lation density. Just as with aggregate output, we cannot simply compare the coefficients for
different sectors to gauge whether structural elasticity varies because measurement errors
are likely to vary across sectors. Instead, maintaining the same assumption from above, we
again ask if the implied relative measurement errors are plausible and check whether the
interaction with population density is significant.

Finally, we analyze whether aggregation to geographic units of different shapes and
sizes changes the pattern of the resulting estimates. This may occur for two reasons
related to our analytical framework. First, aggregating smaller units to larger units could
reduce measurement errors in both GDP and lights. For example, county GDP errors
due to downscaling state data or workplace versus place of residence mismatches are
offset when small regions are grouped together. Similarly, overglow of nightlights into
neighboring regions becomes internalized when analyzing larger areas, and the relative
importance of topcoding decreases as the size of units increases. A second reason for
why aggregation could affect the pattern of elasticities is the grouping of smaller units
(with potentially different structural elasticities) into larger, more economically mixed units.
Regardless, assessing how geographic scale affects the observed elasticities can help explain
the disparate findings documented in the literature, which typically finds large variation
in elasticities across countries and across different levels of aggregation within the same
country [18,19].

Previous research on the Modifiable Areal Unit Problem (MAUP) in urban economics
suggests that size and shape of administrative units matters little in comparison to other
specification issues but also finds that aggregating to large units can distort the underlying
relationship [31]. No study has systematically examined this problem in the context of
nighttime lights and GDP.

We use methods from the literature on the MAUP [31,32] to study whether the de-
sign of regions creates variation in sectoral composition and population density, which,
in turn, generates differences in the structural nightlights-economic output relationship.
Specifically, we use disaggregated data on local GDP for the continental United States
(3080 counties) and Brazil (5569 municipalities) to create many alternative administrative
divisions of varying shapes and sizes. We construct simulated partitions for a given number
of administrative units, k, using the following random-seed-and-grow algorithm [31]. We
start out with the finest level of aggregation into n units. First, we randomly pick one
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seed unit. Second, we identify the unit’s closest neighbor before merging these two units
so that now there are n− 1 units remaining. We repeat these steps until n = k. The re-
sulting partition is geographically contiguous. We run the algorithm 1000 times for every
200th number of units from k = 50 to some country-specific maximum k̄. We take 50
as a lower bound since this is the number of US states and then simulate the result for
k ∈ {50, 200, 400, 600, . . . , k}, where k is 3000 for the US and 5400 for Brazil. This results
in thousands of alternative divisions of the Unites States and Brazil over which we can
aggregate nighttime lights, GDP and population, and estimate the specifications given
in Equations (1) and (2). A persistence of nonlinearity in simulations with high levels of
aggregation (where measurement errors become less severe) would provide additional
evidence that the structural elasticity varies.

2.2. Data

We compile data on subnational GDP, sectoral composition, and population from
a variety of sources. For each country, Table 1 lists the smallest geography for which
subnational GDP data are available, the number of units, years for which the data are
available, the industrial classification used (if available), and the primary source. We deflate
current local currency units by the national GDP deflator from the World Development
Indicators if the data are not provided in real (constant price) quantities. In the case of the
U.S. and European countries, we compute the GDP in each industrial sector by aggregating
all NAICS or NACE sectors to a three-sector classification (agriculture, manufacturing and
construction, and services). We also obtain high-quality vector geometries representing
the geographical units within each country from national statistical offices or other public
databases. Data for China is not widely available, which is why we use GDP (in USD) for
299 prefectures from the Economist Intelligence Unit and supplemented this data with
information from annual yearbooks and the CEIC’s China Economic Database for the
30 missing prefectures, four municipalities and nine county-level cities.

Measuring economic activity at small geographic scale can be challenging in any
country. In addition to the usual data collection and processing errors that arise for
national accounts, subnational accounts are particularly prone to non-statistical errors.
These include imputations, conceptual differences, index construction, sectoral definitions,
and the scope of the exclusions (such as home production, subsistence farming, illegal
activity and smuggling) [33]. Often, subnational estimates of GDP require triangulating
with multiple data sources, or downscaling data collected for higher-level administrative
regions. This is true even in high statistical capacity countries. In the United States,
the Bureau of Economic Analysis relies on the income approach to measure GDP at state
and county level, computed as the sum of compensation of employees, taxes on production
and imports minus subsidies, and gross operating surplus (capital income). This method
has the potential to underestimate capital-intensive industries whose production relies
heavily on physical or financial capital [34]. It measures GDP at people’s place of work,
as opposed to place of residence. Interpolation between benchmark years and downscaling
from state-level data introduce other sources of measurement error. For example, years
when the Economic Census is available (every 5 years) are used as benchmark years,
with other years interpolated using sales data from the National Establishment Time Series
(NETS) database. In addition, some state-level data on OIC (income payments other than
employees and proprietors) are distributed among counties using NETS, the Quarterly
Census of Employment and Wages (QCEW), Economic Census data, and industry-specific
data from various sources [35].

Similar methodological challenges exist in the European Union, although analysis
on revisions suggest that estimation errors are small (when countries undergo revisions
they constitute less than 1% of GDP). However, there are likely to be larger errors in
the historical series. Regional GDP is calculated as regional Gross Value Added plus
taxes on products minus subsidies. GVA, in turn, is calculated using the production
approach (value of output minus intermediate inputs) or the income approach (similar
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to the U.S.) depending on the member state [36]. Ongoing work in the European Union
is tackling methodological questions for regional GDP such as recording foreign direct
investment, non-market services, incorporating global production and integrated global
accounts, the digital economy and other price and volume measures for intellectual property
products [37,38].

Table 1. Sources of subnational GDP data.

Country Geography Units Availability Industrial Class. Source

USA Counties 3080 2001–2019 NAICS BEA
Germany Districts 401 1992–2018 NACE Rev. 2 ADERCO
Italy Provinces 110 1992–2018 NACE Rev. 2 ADERCO
Spain Provinces 58 1992–2018 NACE Rev. 2 ADERCO
Brazil Municipalities 5569 2002–2018 Primary to tertiary IBGE
China Prefectures 342 1999–2018 n/a EIU

Notes: Data on counties in the United States are from the Bureau of Economic Analysis (BEA), which publishes
data on real GDP by NAICS industry and population at the county level. We define all NAICS codes starting
with 11 as agriculture, 21–33 as industry and 42–92 remaining codes as services. Data on German districts (Kreise),
Italian provinces, and Spanish provinces (Provincias, islas, and Ceuta y Melilla) are from the Annual Regional
Database of the European Commission’s Directorate General for Regional and Urban Policy (ADERCO). ADERCO
publishes data on real GDP by NACE industry and population at the NUTS-3 (rev. 2016) level. We define all
NACE codes starting with A as agriculture, B–E as industry and F as services. ADERCO includes historical
estimates and projections for the most recent years. We only use data until 2018 which matches the availability of
actual GDP figures reported by the relevant national offices. Data on Brazilian municipal GDP is from the Instituto
Brasileiro de Geografia e Estatística (IBGE). GDP data exist for all 5570 municipalities, however 1 municipality
had zero nightlights over the period (Marajá do Sena) and was dropped when taking logarithms. Data on Chinese
prefecture-level GDP is available from the Economics Intelligence Unit (EIU) for 289 prefectures, and augmented
with data for 53 more prefectures from Provincial Yearbooks or the CEIC Database.

Less is known about the quality of subnational accounts in Brazil and China. Brazilian
municipal GDP is based on Gross Value Added calculated at state level with the production
approach, where state GDP is distributed among municipalities using various methods
depending on the good or service [39]. China officially uses both the production and income
methods for national accounts; value-added of agriculture, forestry, animal husbandry and
fishery is calculated by the production method, while the current value-added of other
industries is calculated using the income method. Regional GDP is measured by local gov-
ernments using the production approach from major surveys on large industrial firms, large
service sector firms, and some construction firms. These data are supplemented by surveys
of smaller firms and administrative data from government departments. In addition, they
estimate expenditure by household surveys and investment project surveys. Since local
Chinese governments are rewarded for meeting growth targets, the Chinese National
Bureau of Statistics revises local GDP estimates in computing national GDP [40,41].

We obtain nighttime lights within each geography from 1992 until 2013 from the
Defense Meteorological Satellite Program (DMSP) Operation Line Scan (OLS) sensors.
Specifically, we use annual composites which report yearly average “stable lights” as a 6-bit
digital number (DN) from 0 to 63, after observations affected by cloud cover, background
noise and other disturbances have been removed. We follow common practice to delete
gas flares from the annual composites. Gas flares are disproportionately bright in relation
to the change in output they represent and create significant overglow into neighboring
pixels. Like Henderson et al. [3], we also set all pixels that are not on land to zero. For each
region-year pair, we calculate the sum of lights and total area of all pixels. Our outcome of
interest is the logarithm of lights per area (ln DN/km2). Table 2 provides the distribution
of nightlight density values across subnational regions by country.

Physical detection limits of the DMSP sensors and the difficulty of separating back-
ground noise and transient lights from permanent light sources effectively impose a bottom-
coding threshold where pixels with DNs of 1–2 and small clusters of pixels with values of
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less than 4 DN are removed in the stable lights composite. Solutions to this problem range
from adding the minimum detection threshold to recorded lights in a region [5] to using
auxiliary data to distinguish background noise from “human lights” [42]. The problem is
most severe in Sub-Saharan Africa, where a lack of consistent electrification implies that
mid-sized settlements can be missed. Rural electrification rates are close to 100% in Brazil
and China today—the two emerging economies in our data—so we consider this source of
error to be less important in our study than others. In fact, very few observations record
zero light (see Table 2).

Table 2. Distribution of nightlight density values across subnational regions.

Lights/Area USA Germany Italy Spain Brazil China

0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 367 (0.6%) 0 (0%)
0–1 4179 (10.4%) 0 (0%) 0 (0%) 0 (0%) 25,551 (39.8%) 889 (18.5%)
1–5 10,192 (25.5%) 42 (0.5%) 10 (0.41%) 224 (17.3%) 24,567 (36.8%) 1873 (39.0%)
5–10 9354 (23.4%) 346 (3.9%) 125 (5.2%) 393 (30.3%) 7809 (11.7%) 894 (18.6%)
10–20 8779 (21.9%) 2888 (32.7%) 759 (31.4%) 323 (24.9%) 4271 (6.4%) 756 (15.7%)
20–50 5676 (14.2%) 3040 (34.5%) 1316 (54.4%) 290 (22.3%) 2249 (3.4%) 335 (7.0%)
>50 1859 (4.6%) 2506 (28.41%) 210 (8.7%) 68 (5.2%) 952 (1.4%) 55 (1.2%)

Notes: Lights/area refers to the sum of nighttime lights in a subnational region in a given year in the sample
divided by the region’s area. Values refer to the number of region-years with the given level of nightlights per
area, and the percentage in parentheses is the percentage of all observations from that country with that level of
nightlight density.

A potentially serious issue in subnational analyses is that the DMSP data are heavily
topcoded. Topcoding primarily occurs in city centers as the sensor gradually reach its
saturation limit and affects values well below 63 DN in the yearly averages [21,23]. The
intensity of topcoding is correlated with our variables of interest, such as average GDP,
density, and industrial structure. To deal with this issues, one of our tests uses topcoding
corrected data [23] which applies a Pareto-correction to the stable lights composites (and
builds on the radiance-calibrated data available in selected years [21]).

The DMSP data exhibit overglow or blurring effects for a variety of reasons. The nomi-
nal resolution of the data provided by the National Centers for Environmental Information
(NCEI) is 30 arc seconds. However, the effective instantaneous field of view (EIFOV)
expands from 2.2 km to about 5.4 km at the edge of the scan and the system “smoothes”
these data on-board by forming pixel blocks that are 2.7 km by 2.7 km (with different
location offsets for each nightly image [22]). As a result, the same light source will show
up in several 30 arc second pixels. On-board processing also magnifies the blur effect
for brighter light sources [22]. Geolocation errors which displace lights by about 3 km
exacerbate this problem [20]. We discuss the biases introduced by overglow within adminis-
trative units when presenting the results and allow for spatial correlation across units in a
robustness check.

A final challenge in using the DMSP data is that the recorded DN cannot be mapped
to a physical quantity (radiance). This occurs because the sensors dynamically adjust their
low-light detection ability over the lunar cycle but the sensor’s ‘variable gain’ settings
are not stored [21]. Efforts have been made to calibrate using light emitted from islands
(such as Sicily) and using active targets for some nights [43]. However, there are simply no
permanently constant light sources on Earth that can unequivocally solve this problem in
the historical data, while ad hoc calibration adjustments have the potential to introduce
more noise. Another source of variability across years is that the orbit of the DMSP satellites
slowly degrades over time, recording lights at a slightly earlier time each day. This feature
has recently been used to extend the DMSP data from 2012 to 2019 using pre-dawn data
from older satellites that crossed back into a dawn-dusk orbit [44]. We do not use the
extended series as the orbital shift to pre-dawn hours introduces an additional source of
measurement error. Following the economics literature [3], we average the data whenever
two years are available and include year fixed effects in all regressions. This accounts for
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differences in average sensor settings in each year which affect all regions in the same
manner. If all pixels were illuminated and topcoding did not exist, then a constant shift in
each year would fully account for this problem. However, since differences in gain settings
also imply that some pixels cross the detection threshold and others become topcoded
before on-board averaging occurs, there is likely to be some residual region-year specific
error which cannot be accounted for.

As motivation, Figure 1 illustrates the raw correlations between light density and
economic density. We observe a strong degree of nonlinearity whenever the correlation is
based on highly disaggregated data (as in the case of US counties, municipalities in Brazil,
and, to a lesser extent, districts in Germany) and less nonlinearity when the data are more
aggregated (provinces and prefectures in Italy, Spain and China).

(a) (b) (c)

(d) (e) (f)

Figure 1. Raw correlation of nighttime lights with real GDP, in logarithms. (a) USA, (b) Germany,
(c) Italy, (d) Spain, (e) Brazil, (f) China.

3. Results
3.1. Analysis of Estimates by Income Group

We begin by investigating potential heterogeneity in the light-output relationship using
regressions estimated on samples split according to quartiles of average GDP. For each
country in our data set, Figure 2 shows the estimated income elasticities of nightlights
using four equal-sized groups of the data, with β1 referring to the coefficient for regions up
to the lowest GDP quartile, and β4 for the regions above the highest quartile.

The results in Figure 2a,b show the patterns for the U.S. and Germany, the countries
with the highest statistical capacity in our sample. Rather than estimates which are constant
or rise with average incomes, we observe the highest elasticities among regions in lowest
quartile (β̂1 = 0.482 for the United States and β̂1 = 0.499 for Germany) followed by a
steady decline as we move up in the distribution of average incomes which matches the
raw correlations presented in Figure 1. In fact, the estimates for the group with the highest
incomes are either approaching zero in the case of the United States (β̂4 = 0.158) or cannot
be distinguished from zero in the case of Germany (β̂4 = 0.050). Of course, the presence of
measurement errors implies that we cannot take this evidence at face value. However, it is
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difficult to rationalize this pattern with measurement errors alone since it implies that the
errors in GDP would have to be increasingly severe as incomes rise if the constant elasticity
model were correct.
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Figure 2. Income elasticity of nightlights for samples split by quartiles of average GDP. (a) USA,
(b) Germany, (c) Italy, (d) Spain, (e) Brazil, (f) China.

Figure 2c,d report the results for Italy and Spain which, like Germany, use EU reporting
standards but had somewhat lower statistical capacity and a larger informal sector in the
1990s. For Italy, the estimated elasticities are lower at every split of the data (consistent with
greater attenuation throughout) but they also show a decreasing pattern as incomes rise.
For Spain, we find elasticities that are indistinguishable from zero for the first two GDP
quartiles and even negative in the highest quartile. While some of the lack of statistical
significance is likely due to having few cross-sectional units for Italy and Spain, the pattern
is consistent with the findings for the United States and Germany.

Figure 2e,f present the estimates for the two emerging economies in our data set where
measurement error in GDP likely plays a larger role. The estimates for Brazil suggest that
the relationship is approximately constant (with estimates around 0.2) until we reach the
highest quartile of aggregate income (where we estimate a negative elasticity of −0.119).
Somewhat remarkably, the estimates for Chinese prefectures follow the same decreasing
pattern of the US counties or German districts, and even have comparable magnitudes
(β̂1 = 0.386 and β̂4 = 0.132).

Figure 3 plots the implied relative attenuation effects and their 95% confidence inter-
vals, or more specifically, the ratio of the coefficient (βk) estimated for each GDP quartile to
the coefficient estimated in the data up to the first quartile (β1). The first ratio θ1 is equal to
one by construction, and we are interested in substantively large and statistically significant
deviations from one in the other three quarters of the data.

Figure 3a,b show the results for the United States and Germany. As a result of
the similar coefficient estimates up to the median of average GDP, we find no evidence
suggesting that the signal-to-noise ratios differ in these two quarters of the data (see
θ̂2s). However, we estimate large differences the more we move up in the distribution
of average GDP. For the United States, the coefficient in the third (fourth) GDP quarter
would need to be more than two (three) times as attenuated as the coefficient estimated
up to the first GDP quartile. For Germany, the ratio of coefficients in the third to the first
quartile implies that the former is about 1.5 times more attenuated than the latter, while
our estimate of θ̂4 is about 0.1, suggesting that the coefficient in the highest quartile is
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10 times more attenuated than that of the lowest quartile if the structural elasticity were
truly constant. Given the high quality of the GDP data in these two countries and the fact
that we have sufficient units in each group to estimate the uncertainties of these ratios
relatively precisely, we consider these implied differences in measurement errors across
income groups too large to be plausible. We are not aware of studies suggesting that
such differences in measurement errors across subnational units are likely, especially since
regional accounts in the United States and Germany are developed by a single federal
authority (the Bureau of Economic Analysis for United States and the Federal Statistical
Office of Germany). Moreover, the suggested pattern of increasing measurement error with
higher incomes appears unlikely. Instead, these results strongly suggest that the structural
elasticity declines as GDP rises.
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Figure 3. Estimates of relative measurement errors for samples split by quartiles of average GDP.
(a) USA, (b) Germany, (c) Italy, (d) Spain, (e) Brazil, (f) China.

Figure 3c–f repeat this exercise with data from Italy, Spain, Brazil and China. The es-
timates for Italy and Spain also suggest that measurement errors rise with GDP but the
confidence interval of these ratios are comparatively wide. For Italy the upper bound of
the 95% confidence intervals for θ̂4 is 0.546 and the confidence intervals for Spain always
include one. We find near constancy in Brazil up to the third quartile but then the estimate
of θ̂4 falls below zero which cannot be meaningfully interpreted in terms of relative attenu-
ation factors that are theoretically bounded by zero from below. The estimates for China
mirror the results for the United States and Germany. They suggest that if the constant
elasticity model were correct, measurement errors would have to be strictly increasing in
average GDP. Moreover, the coefficient in the highest quarter would have to be close to
three times more attenuated than that in the first.

An important robustness check, given that we observe this decreasing pattern of
elasticities, is whether these differences are simply driven by topcoding in the lights data.
If topcoding is severe, then changes in GDP do not translate into changes in observed lights
beyond some threshold of GDP and this effect might gradually become more pronounced as
more pixels in a region reach the topcoding threshold [21]. Figure S1 in the Supplementary
Materials repeats this analysis using the topcoding corrected data [23]. While this somewhat
moderates the steep decline of the estimated elasticities in the last quarter of the data, we
still observe the same pattern of declining coefficients across all four quarters and estimate
relative measurement errors that too large to be plausible. For example, θ̂4 is around 0.485
in the United States and 0.500 in Germany, suggesting that the coefficients would still need
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to be twice as attenuated in the fourth quartile of GDP than in the first for the constant
elasticity model to be correct.

Another concern is that overglow and geolocation errors lead to light being recorded
in pixels adjacent to a light source, which can cause significant measurement errors when
regions are small. This is more likely in urban areas since they generate more overglow
and cities are often their own (geographically small) administrative region. Since we are
studying changes in light intensities within regions and control for year fixed effects, higher
baseline levels of overglow in urban regions are not a concern. Bias would arise if the
change in overglow over time rose differently in regions with higher GDP. However, this
bias would work in the opposite direction of the nonlinearity we observe (by driving up
the change in observed light in periurban regions for the same change in GDP). Spillovers
in light to adjacent regions, however, do create spatial correlation in the error terms even
after netting location and time fixed effects. Figure S2 in the Supplementary Materials
re-estimates the relative attenuation factors allowing for spatial correlation in the error
terms up to 500 km (and arbitrary correlation within units over time). Only some of the
confidence intervals increase marginally and none of our substantive findings are affected.

3.2. Analysis of Interactions with Population Density

We now move to investigate the nonlinearity in the relationship using the regression
framework in Equation (2). Panel A in Table 3 shows the income elasticity of nightlights
by country, using nightlight density per square kilometer and GDP density per square
kilometer. Regressions in Panel B show the variation in the elasticity across levels of popu-
lation density in the initial year. The logarithm of population density has been normalized
such that the average for each country is set to zero, meaning that the coefficients on GDP
represent the elasticities at the mean population density for the country.

The results in Panel A show a statistically significant association between GDP and
nightlights in four of the six countries, with the highest elasticity in the U.S., followed by
Germany and China, and Brazil having the lowest significant coefficient at 0.1. The U.S.
elasticity of 0.4 indicates that a 10% increase in a county’s GDP is associated with a 4%
increase in nightlights. Italy and Spain have insignificant coefficients with the largest
standard errors (notably, these countries have the smallest number of subnational regions,
a point we will return to in Section 3.4). Of course, these estimates are biased downward
by measurement errors in GDP and we make no attempt to assess the absolute size of these
errors. The results in Panel B show that the income elasticity at the mean population density
is similar (though slightly smaller) than the uninteracted estimates in Panel A. In the case
of US counties and German districts, the income elasticity of nightlights is around 0.3
at the mean population density. In all countries, the interaction with population density
is negative and significant, indicating that the effect of increasing GDP on nightlights
becomes smaller at higher population densities. The magnitudes of the coefficient on
the interaction term suggests that the effect of GDP changes on nightlights approaches
zero at population densities around 3–4 times higher than the mean (for the U.S. and
China), and around double the population density mean in Germany and Brazil. While the
interaction terms are significant in the case of Italy and Spain, the noisy estimates of the
baseline GDP coefficient makes interpretation difficult over the upper half of the population
density domain. For the two emerging economies in our sample, Brazil and China, we
find lower elasticities (0.06 and 0.2, respectively) at the mean population density but they
also exhibit variation in the elasticity across levels of population density that is statistically
significant at all conventional levels. In sum, the evidence in Panel B suggests that there is
some cross-country variation in the elasticity of nighttime lights with respect to GDP at
mean population density (as would be expected when measurement error differs across
countries) but also strong evidence that this elasticity varies with population density within
all six countries.
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Table 3. Income elasticity of nighttime lights by population density.

(1) USA (2) Germany (3) Italy (4) Spain (5) Brazil (6) China

Panel A: Real GDP density without interaction

GDP 0.405 *** 0.348 *** 0.096 −0.092 0.100 *** 0.292 ***
(0.043) (0.034) (0.081) (0.124) (0.015) (0.042)

Regions 3080 392 110 58 5569 342
Observations 40,039 8624 2420 1276 66,398 4802

Panel B: Real GDP density interacted with Pop Dens

GDP 0.278 *** 0.291 *** 0.072 −0.037 0.061 *** 0.195 ***
(0.026) (0.025) (0.058) (0.126) (0.013) (0.037)

GDP × PopDens −0.094 *** −0.206 *** −0.275 *** −0.165 *** −0.108 *** −0.058 ***
(0.019) (0.015) (0.032) (0.031) (0.007) (0.009)

Regions 3080 392 110 58 5569 342
Observations 40,039 8624 2420 1276 66,398 4802

Notes: Nightlights, GDP, and population density are all in logarithms. GDP refers to GDP density (GDP divided
by region area) in constant prices. All regressions use the sum of lights divided by region area as the dependent
variable. Panel A shows the constant elasticity model, while Panel B interacts GDP with the population density
in the first year that region is included in the regression. All regressions include region and year fixed effects.
Standard errors in parenthesis are clustered at the region level, and significance levels are denoted at conventional
levels *** p < 0.01.

The implied difference in the elasticity across the observed range of population den-
sity is economically significant. In the case of the United States, the elasticity at the 10th
percentile of population density is 0.489 (95% CI is 0.387–0.587) while the elasticity at the
90th percentile is 0.09 (0.006–0.175). The elasticity in Germany at the 10th percentile of pop-
ulation density is 0.531 (0.465–0.598) while at the 90th percentile it is −0.053 (−0.115–0.008).
These estimates are very close to the estimates by the income group reported earlier, sug-
gesting that average incomes and initial population density capture similar variation across
groups of regions.

Figure S3 in the Supplementary Materials shows the income elasticity by population
density. The elasticity declines in all countries as population density rises, reaching zero at
the highest population density levels (it rarely becomes negative and negative estimates
are supported by very few observations). Table S1 shows that the patterns are the same
when using the topcoding corrected lights, indicating that topcoding in the DMSP data is
not driving the variation in the relationship we are documenting here.

3.3. Analysis by Economic Sector

Having documented variation in the income elasticity of nighttime lights across initial
levels of population density, we proceed to explore whether the elasticity varies systemati-
cally by economic structure. Measurement errors still bias these elasticities downwards, so
that we continue to give more weight to the results from the United States and Germany
where statistical capacity and reporting quality is highest. We also note that this analy-
sis cannot be run for China given that we do not have data on sectoral composition for
all prefectures.

We first estimate the overall elasticities by sector without explicitly allowing for
variation across regions. We note that the number of regions in the United States decreases
from those in Table 3 and varies across sectors because some counties do not report the share
of GDP across economic sectors (for privacy reasons if the sector is too small). The results
are shown in Table 4. We find that the income elasticity of nightlights is smallest for
agricultural activity (Panel A), higher for industrial and construction activity (Panel B),
and highest for the service sector (Panel C) in the United States, Germany, and Brazil. In the
case of the United States, for example, the elasticity for agricultural GDP is close to zero
(0.01), 0.15 for industrial GDP, and 0.46 for the service sector. Italy follows this pattern for
the first two sectors but not services (where the estimate has a wide 95% confidence interval
which includes 0 but also elasticities up to around 0.18). As above, Italy and Spain result in
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the noisiest estimates, likely for reasons we will explore in the next section. The difference
in magnitudes across economic sectors is also telling: if the constant elasticity model were
correct, the 45-to-1 difference in magnitude between the service and the agricultural sector
in the United States would have to be due to differences in measurement error between
sectors. In unreported results, the estimates change somewhat when we include all sectors
at the same time but the differences in magnitudes across sectors remains similar. While
variation in measurement error across sectors is plausible even in high statistical capacity
countries, such high ratios in the United States or Germany suggest that the structural
elasticity varies by sector.

Table 4. Income elasticity of nighttime lights across economic sectors.

(1) USA (2) Germany (3) Italy (4) Spain (5) Brazil

Panel A: Agricultural GDP density

GDP 0.008 *** −0.039 *** 0.006 0.069 ** 0.012 **
(0.002) (0.011) (0.020) (0.030) (0.005)

Regions 2982 392 110 58 5567
Observations 31,428 8624 2420 1276 66,372

Panel B: Industrial GDP density

GDP 0.146 *** 0.157 *** 0.073 * 0.014 0.058 ***
(0.017) (0.016) (0.037) (0.077) (0.006)

Regions 2939 392 110 58 5569
Observations 30,681 8624 2420 1276 66,363

Panel C: Service sector GDP density

GDP 0.458 *** 0.315 *** 0.034 −0.085 0.140 ***
(0.065) (0.035) (0.078) (0.121) (0.015)

Regions 2872 392 110 58 5569
Observations 27,608 8624 2420 1276 66,396

Notes: Nightlights and GDP are in logarithms. All regressions use the sum of lights divided by region area as
the dependent variable. Panel A uses GDP in the agricultural sector (multiplying regional GDP by the share of
agriculture in GDP) in constant prices, divided by region area to produce a GDP density. Panel B uses real GDP
density in the industrial and construction sectors, and Panel C uses real GDP density in the service sector. All
regressions include region and year fixed effects. For all regressions, standard errors in parenthesis are clustered
at the region level. Significance levels denoted at conventional levels *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5 shows the results from adding an interaction with initial population density.
The regressions are based on same specification in Equation (2) above, now separating out
the analysis for agricultural GDP (Panel A), industrial GDP including construction (Panel B),
and service sector GDP (Panel C). The results show that the variation in the elasticity across
population density is evident in all countries and nearly all sectors. The United States and
Germany exhibit curvature in all three sectors, while four of five countries show curvature
in industrial GDP. The curvature tends to be strongest in the services sector, where the size
of estimated interaction terms is at least half of the elasticity at mean population density
but often considerably larger and statistically significant for all countries. The results for
the service sector most closely approximate the results in Table 3, which is not surprising
given that services are the dominant sector in all of these economies.

3.4. Spatial Aggregation in the United States & Brazil

Our results so far illustrate that the structural relationship between nighttime lights
and GDP varies with level of GDP, population density, and industrial composition. Since
nightlights are used to proxy for economic activity at multiple subnational scales, we
proceed to explore how the structural relationship between nightlights and GDP varies
according to the size and number of subnational partitions in a country. Specifically, we test
whether partitioning a country into subnational regions of different shapes and sizes affects
how nightlights respond to increases in economic activity. We use disaggregated data
from two countries, the United States and Brazil, that are at opposite ends of the income
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spectrum covered by our sample but are physically large and exhibit a varied pattern of
regional economic specialization. Figure 4 shows an example of how we randomly partition
the United States and Brazil into 50 administrative units.

Table 5. Income elasticity of nighttime lights by population density and by economic sector.

(1) USA (2) Germany (3) Italy (4) Spain (5) Brazil

Panel A: Agricultural GDP density

GDP 0.006 *** −0.011 0.001 0.028 0.011 **
(0.002) (0.012) (0.022) (0.036) (0.005)

GDP × PopDens −0.005 *** −0.035 *** 0.054 ** 0.033 ** −0.007 *
(0.001) (0.009) (0.023) (0.013) (0.004)

Regions 2982 392 110 58 5567
Observations 31,428 8624 2420 1276 66,372

Panel B: Industrial GDP density

Real GDP 0.113 *** 0.159 *** 0.088 ** 0.064 0.045 ***
(0.012) (0.016) (0.042) (0.072) (0.005)

GDP × PopDens −0.045 *** −0.046 *** 0.043 −0.084 *** −0.033 ***
(0.012) (0.013) (0.042) (0.019) (0.004)

Regions 2939 392 110 58 5569
Observations 30,681 8624 2420 1276 66,363

Panel C: Service sector GDP density

Real GDP 0.232 *** 0.237 *** 0.036 −0.038 0.105 ***
(0.032) (0.031) (0.047) (0.122) (0.013)

GDP × PopDens −0.115 *** −0.197 *** −0.231 *** −0.167 *** −0.118 ***
(0.029) (0.013) (0.022) (0.026) (0.007)

Regions 2872 392 110 58 5569
Observations 27,608 8624 2420 1276 66,396

Notes: Nightlights, GDP and population density are all in logarithms. All regressions use the sum of lights
divided by region area as the dependent variable. Panel A uses GDP in the agricultural sector (multiplying
regional GDP by the share of agricultural share in GDP), divided by region area to produce a GDP density. Panel B
uses real GDP density in the industrial and construction sectors, and Panel C uses real GDP density in the service
sector. PopDens refers to the population density in the first year that region is included in the regression. All
regressions include region and year fixed effects. For all regressions, standard errors in parenthesis are clustered
at the region level. Significance levels denoted at conventional levels *** p < 0.01, ** p < 0.05, * p < 0.1.

Figure 5 shows the distribution of estimates of Equation (2) for 16,200 simulations of
partitions of the United States and 28,000 simulations of partitions of Brazil over which we
aggregate nighttime lights, GDP, and population. For a given number of total units (ranging
from 50–3000 for the United States and 50–5400 for Brazil), we simulate 1000 partitions in
which the spatial aggregation of original units is based on a unique random starting seed in
each iteration. We report results for the elasticity at the mean of population density (β̂) and
the interaction with population density (γ̂) for the United States in Figure 5a,b and Brazil
in Figure 5c,d. We observe that the overall average elasticity (at mean population density)
is around 0.3 in the case of the US and 0.053 in the case of Brazil. Both of these values
are close to the regression results presented in columns (1) and (5) of Table 3. For the US,
almost every single estimated value using simulated partitions is larger than zero (99.97%
of simulations) and does not contain zero in its 95% confidence interval (98.23%), while we
estimate elasticities below zero only in 4.1% of the sampled partitions in the case of Brazil.

We find strong evidence of nonlinearity in nearly all simulated partitions. Figure 5b,d
illustrate that the average of all simulated interaction coefficients is −0.104 for the US and
−0.11 for Brazil (again close to Table 3). Less than 1% of the US estimates are positive and
only 8.7% of the estimates include zero in their 95% confidence interval. Similarly, only
9 out of 28,000 simulations for Brazil yield a positive interaction coefficient and only about
1% cannot be distinguished from zero.
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(a)

(b)

Figure 4. Examples of spatially contiguous random partitions. (a) USA: Partition 1 for 50 administra-
tive units, (b) Brazil: Partition 1 for 50 administrative units.

Figure 6 presents results conditional on the scale of spatial aggregation, that is, the num-
ber of administrative units. The random aggregation is simulated 1000 times for each total
number of administrative units. We present the regression results as box-and-whisker plots
(outliers outside the lower and upper adjacent values are indicated as red dots). Several
features stand out. The elasticity at the mean of population density, shown in Figure 6a,c, is
remarkably stable in both countries (a result which carries over to specifications without an
interaction term, see Figure S4 in the Supplementary Materials). The conditional means
fluctuate only moderately around the overall means documented above. While the mean is
stable, the variance of the estimates increases markedly as the number of partitions become
smaller and the average size of each unit increases. For relatively coarse levels of spatial
aggregation, it is not difficult to find partitions at which we observe no relationship between
nighttime lights and GDP over time. For example, at 50 artificial US “states”, large parts
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of the distribution of estimates cross zero and around 31% of the underlying coefficients
contain zero in their 95% confidence interval, while almost every single draw for partitions
of size 200 and more yields a coefficient for which we can reject the null hypothesis of zero.
We observe a similar relationship in the data for Brazil, where around 89% of all estimated
coefficients with partitions using 50 units have zero in their 95% confidence intervals but
this figure drops to less than 10% at 2800 units and less than 1% at 3400 units.
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Figure 5. Unconditional distribution of estimates across partition simulations. (a) USA: Elasticity at
average (β̂), (b) USA: Interaction (γ̂), (c) Brazil: Elasticity at average (β̂), (d) Brazil: Interaction (γ̂).

The interaction effects in Figure 6b,d follow the same pattern of stable mean and
increasing variance as the number of administrative units falls. A total of 59.7% of the
partitions of the United States into 50 “states” yield estimates of the interaction term that
cannot be distinguished from zero. This is particularly interesting in light of an estimate
of −0.23 (with a standard error of 0.05) which we obtain when running our baseline
regression on data aggregated to the actual US states. This value sits at the 10th percentile of
the distribution of simulated results for partitions into 50 units and is more than 2.5 times
larger than the average elasticity across all simulations. At 200 units, 37.4% contain zero in
their 95% confidence interval, and at 800 units, this falls to 5.5%.

Taken together, these simulations demonstrate a robust association of lights with GDP
and provide strong evidence of nonlinearity across different geographic scales. As aggre-
gation reduces measurement errors, we take this as another indication that measurement
errors are not the driving force behind this nonlinearity. Moreover, we show that it is easy
to obtain insignificant results at high levels of aggregations, where the estimated elasticities
depend on how larger regions align with the spatial structure of production and density.
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Figure 6. Distribution of estimates across partition simulations, by number of units. (a) USA: Elasticity
at average (β̂), (b) USA: Interaction (γ̂), (c) Brazil: Elasticity at average (β̂), (d) Brazil: Interaction (γ̂).

4. Discussion

This article investigates whether the ability of the nighttime lights to pick up changes
in GDP varies across subnational regions and their characteristics. We show theoretically
that any variation in the structural light-output relationship spills over into estimating
policy-relevant parameters in applied work using nightlights as an outcome. Measurement
errors in both nightlights and economic activity complicate inference about this relationship.
We develop a framework for assessing the implied, relative magnitude of measurement
errors across subnational regions, and apply it to study heterogeneity in the light-output
relationship in several countries with varying degrees of statistical capacity.

Our findings document significant variation in the relationship between economic
activity and nightlights at the subnational level which cannot be explained by variation
in measurement errors alone. Variation in the elasticity persists whether we estimate
the elasticities by income group, economic sector, or specify interactions with population
density. Moreover, the elasticities with respect to industry and service GDP declines as
population density rises. The elasticity in the agricultural sector is much smaller (in the
United States it is 20 times smaller than the industry elasticity and over 50 times smaller than
the service sector elasticity) and less consistent across countries. Since services dominate
the economies we study, pooling across sectors results in the nonlinearity by population
density exhibited in the service sector. The evidence favoring these nonlinearities is most
robust in countries with the highest statistical capacity. However, the relationship follows a
similar, albeit noisier, pattern in the other countries in our sample.

The second contribution of our study is on the stability of the nonlinear nightlight-
GDP relationship over different levels of spatial aggregation. We find that the nonlinear
relationship is remarkably stable over many alternative administrative divisions of varying
shapes and sizes. However, our estimates of the GDP elasticities are more stable under
random partitions where the total number of regions is large (keeping their size small).
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At the same time, these smaller regions exhibit stronger nonlinearity since smaller units
are more homogeneous in terms of population density, economic activity, and economic
structure. At larger geographies, estimates are less stable, and there is a higher likelihood
of drawing statistically insignificant estimates. This may help explain why other studies
have failed to find significant relationships between nightlights and economic activity at
some levels of aggregation [18]. It is also worth noting that the less precise estimates for
Italy and Spain in our analysis are consistent with these two countries having the fewest
number of regions.

We note that our findings provide a framework for reconciling other empirical re-
search. Papers documenting the relationship between nightlights and economic activity at
subnational scale have not found a consistent statistical relationship [18], and at smaller
scales there is evidence for nonlinearity as well [2,7]. Our work helps scholars adjudicate
between measurement error and structural nonlinearity in explaining observed nonlinearity
in the NTL-GDP elasticity. We offer observable covariates such as population density, GDP
density, and economic structure as predictors for the local NTL-GDP elasticity. We also
show that larger subnational scales exhibit larger variation in the estimated elasticity.

Researchers using nightlights as a proxy for economic activity at small geographies,
for example, to study the effects of conflict or measure economic inequality, need to be
conscious of the variation we find in this paper. The income elasticity of nighttime lights
may be considerably smaller in agricultural regions, regions with higher GDP, and regions
with high population density. Changes in economic activity in such areas may result
in small changes in nightlights that are, perhaps, not distinguishable from zero. As a
result, a researcher may erroneously conclude that a policy or investment did not affect
economic growth or inequality because the change in nightlights is insignificant (a null
finding, of course, which includes a wide range of potential effects sizes in addition to
zero). Moreover, even when the policy has an effect, additional analyses of treatment effect
heterogeneity across regions may be driven solely by the heterogeneity of the light-output
elasticity we document in this paper. The nonlinearity also implies that large changes in
nightlights might occur in some contexts despite little change in economic activity.

In addition, our results suggest caution in taking estimates from other contexts to
infer how changes in nightlights in a particular location translate into changes in GDP.
The presence of a nonlinear relationship between nightlights and economic activity across
subnational regions of different population densities, GDP levels, or economic structures
means that researchers should consider whether taking an elasticity from the literature and
applying it to a specific empirical context is appropriate. While such an elasticity might
reflect the average relationship between nightlights and changes in economic activity over
many subnational units, research focused on one or a small number of regions should
rely on nightlights-GDP elasticities estimated from regions with similar characteristics and
have some sense of the scale of measurement errors in their context. Moreover, research on
agricultural, high GDP, or high population density settings may want to examine alternative
proxies of economic activity and not make inferences only from nightlights.

While our work documents significant variation in the nightlights-income relationship,
it has some fundamental limitations. First, we can only explore the relationship in countries
with a sufficiently long panel of subnational GDP data. Our work considers a set of high-
income and middle-income countries. It would have been ideal also to have data from
low-income countries with robust statistical capacity that report subnational GDP because
the research we are trying to inform is most often conducted in low-income settings where
nightlights are one of the few available proxies for subnational GDP.

A second challenge is that the actual degree of measurement error in GDP at the
subnational level is unknown. We use the elasticities across regions in countries with the
highest statistical capacity—Germany and the United States—to conclude that the range
is too wide to be explained by differences in measurement errors in GDP across regions.
However, we can only infer this from the high statistical capacity of these countries and
have no way to verify the true differences in measurement error in subnational GDP in any
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country. Moreover, we know very little about the scale of errors introduced by standard
approaches to calculating (and usually scaling up) estimates of local GDP.

Finally, our study uses data on nighttime lights derived from a system with many
known limitations. The main advantage of the dated DMSP-OLS system over the newer
VIIRS data is that it allows us to study changes within regions over one or two decades,
depending on the availability of GDP data. While we use a topcoding corrected version of
this data to shut down one of the most likely sources of nonlinearity (which correlates with
population density and GDP), we cannot entirely rule out that unfortunate features of the
data generating process contribute to our findings.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs14051190/s1, Table S1: Income elasticity of topcoding corrected nighttime lights by popula-
tion density. Figure S1: Estimates of relative measurement errors using topcoding corrected nighttime
lights. Figure S2: Estimates of relative measurement errors using spatially correlated standard errors.
Figure S3: Income elasticity of nighttime lights by log population density. Figure S4: Unconditional
and conditional distribution of estimated elasticities across simulated partitions.
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Appendix A. Analytic Background

This section derives in detail some of the equations used in the main text and provides
the relevant background for our estimation strategy. All true (unobserved) quantities are
denoted by ‘*’ and all observed variables are demeaned across units and time.

Appendix A.1. Estimating the Relative Sizes of the Measurement Errors Using Single Regressions

We first formalize the set up described in the main text. Both observed lights and GDP
are observed with error:

yG
it = yG∗

it + eG
it (A1)

yL
it = yL∗

it + eL
it (A2)

In both equations, we assume that the the measurement errors are mean independent
conditional on the values of the latent variable(s) and that there is no systematic bias in
observed GDP or lights, such that E[eG

it |y
G∗
it ] = E[eL

it|yL∗
it ] = 0,

Our structural model of interest is the constant elasticity model:

yL∗
it = βyG∗

it + εit (A3)

which is the relationship that is typically assumed in the related literature on measurement
error in the light-output relationship and applied papers using a constant elasticity to
translate their effects from changes in nighttime lights to changes in GDP. By the same logic
of the assumptions made above, we require E[eG

it εit|yG∗
it ] = E[eL

itεit|yG∗
it ] = 0.

In addition, a key assumption in our analysis is that the error term of GDP is not corre-
lated with the error term in lights conditional on unobserved GDP, i.e., E[eG

it eL
it|yG∗

it ] = 0.
This assumption has been made in virtually all of the related literature on measurement

https://www.mdpi.com/article/10.3390/rs14051190/s1
https://www.mdpi.com/article/10.3390/rs14051190/s1
www.github.com/rbluhm/ntl_gdp
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errors in nighttime lights [2,3,26] but is not innocuous. While lights and GDP are quantified
in very different ways (satellites vs. subnational accounting), their errors could still be
correlated if, for example, topcoding in urban areas is (inversely) correlated with measure-
ment errors in GDP. We use topcoding corrected data as a robustness check to rule out one
potential source of such a correlation.

Substituting observed for unobserved quantities yields:

yL
it = βyG

it − βeG
it + eL

it + εit (A4)

which we estimate as

yL
it = βyG

it + υit (A5)

where the composite error υit = εit − βeG
it + eL

it does not satisfy the usual assumptions for
consistency. Instead, it is well known that

β̂
p−→ β

σ2
yG∗

(σ2
yG∗ + σ2

eG )
= βλ (A6)

where σ2
yG∗ is the variance true output and σ2

eG the variance of the error in GDP. λ is known
as the signal-to-noise ratio or the attenuation factor and, since 0 < λ < 1, the bias is
towards zero.

If we additionally assume that σ2
eG behaves like a decreasing step-function in yG∗, then

we should also observe decreasing attenuation factors if we group the data by observed
GDP. This assumption mirrors the good data country and bad data country samples used
in [3] but conjectures that the variance of these errors varies across subnational units (and
indicates statistical capacity). If the constant elasticity assumption is correct, then the true β
is the same in different sub-samples of the data. Therefore, any ratio of coefficients where
each coefficient is estimated separately on ordered samples of yG∗, say high GDP and low
GDP, identifies the relative size of the measurement errors:

β̂h

β̂l

p−→
(σ2

yG∗ + σ2
eG

l
)

(σ2
yG∗ + σ2

eG
h
)
=

λh

λl = θh. (A7)

In the main text we present estimates of these ratios and their standard errors for
samples split along quartiles of average GDP, denoted as θk = λk/λ1 for k = 1, 2, . . . , 4.
In fact, the precise shape of the conditional heteroskedasticity in σ2

eG (yG∗) is not important.
Any difference in the error variance across different subsamples of GDP will translate into
differences in the estimated θs. If we observe large and statistically significant deviations in
these relative signal-to-noise ratios within countries with uniformly high statistical capacity,
then we can interpret this as evidence against the constant elasticity model and in favor of
variation in the structural elasticity.

Appendix A.2. Estimating the Coefficients in the Interacted Model

Suppose that instead of Equation (A3), the structural model of interest is

yL∗
it = βyG∗

it + γyG∗
it zit + εit (A8)

where zit is observed without error. In our application, zit is population density in the
initial year, which is considerably easier to observe than GDP. Of course, with γ = 0 we are
back to the constant elasticity model assumed earlier.

Substituting observed for unobserved quantities results in

yL
it = βyG

it − βeG
it + γyG

it zit − γeG
it zit + eL

it + εit (A9)
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which we estimate as

yL
it = βyG

it + γyG
it zit + υit (A10)

where the new composite error is υit = εit − βeG
it − γeG

it zit + eL
it.

In general, estimates of coefficients in models with more than one independent variable
where one or more of these variables are measured with error are biased in an unknown
direction. To see this, consider the formulae for the regression coefficients estimated on the
basis of Equation (A10):

β̂ =
var(yG

it zit)cov(yL
it, yG

it )− cov(yG
it zit, yG

it )cov(yL
it, yG

it zit)

var(yG
it )var(yG

it zit)− (cov(yG
it zit, yG

it ))
2

(A11)

γ̂ =
var(yG

it )cov(yL
it, yG

it zit)− cov(yG
it , yG

it zit)cov(yL
it, yG

it )

var(yG
it )var(yG

it zit)− (cov(yG
it , yG

it zit))2
(A12)

Typically, both β̂ and γ̂ depend on the true β, γ and several (co)variances, so that the
direction of the bias is indeterminate.

In our case, however, it could be plausible that cov(yG
it , yG

it zit) = 0, if we are willing to
make the stronger assumptions that eG

it is independent of yG∗
it , z and the structural error,

and cov((yG∗
it )2zit) = 0 (which restricts the relationship between population density and

unobserved GDP to be linear).
It is straightforward to see that under these conditions

β̂
p−→ β

σ2
yG∗

(σ2
yG∗ + σ2

eG )
(A13)

which is the same as Equation (A6) and does not depend on the value of γ.
Similarly, we have

γ̂
p−→ γ

σ2
yG∗z

(σ2
yG∗z + σ2

eG σ2
z )

(A14)

which is attenuated by the signal-to-noise ratio in the product of observed GDP with

population density. In the constant elasticity case, γ = 0, so γ̂
p−→ 0. Hence, any evidence

rejecting the null of γ = 0 suggests that the constant elasticity model is incorrect (or that
one or more of the assumptions made here is violated). Again, it is important to note that
these results rely on substantially stronger assumptions than the single regression estimates
presented above. We only view the resulting estimates as additional (and weaker) evidence
on the whether the constant elasticity model is empirically supported.
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