
����������
�������

Citation: Li, Y.; Wu, J.; Zhong, B.; Shi,

X.; Xu, K.; Ao, K.; Sun, B.; Ding, X.;

Wang, X.; Liu, Q.; et al. Methods of

Sandy Land Detection in a

Sparse-Vegetation Scene Based on the

Fusion of HJ-2A Hyperspectral and

GF-3 SAR Data. Remote Sens. 2022, 14,

1203. https://doi.org/10.3390/

rs14051203

Academic Editor: Andrea Garzelli

Received: 19 January 2022

Accepted: 22 February 2022

Published: 1 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Methods of Sandy Land Detection in a Sparse-Vegetation Scene
Based on the Fusion of HJ-2A Hyperspectral and GF-3 SAR Data
Yi Li 1, Junjun Wu 2,*, Bo Zhong 2, Xiaoliang Shi 1, Kunpeng Xu 3, Kai Ao 2 , Bin Sun 3, Xiangyuan Ding 3,
Xinshuang Wang 4, Qinhuo Liu 2, Aixia Yang 2, Fei Chen 1 and Mengqi Shi 1

1 School of Surveying and Mapping, Xi’an University of Science and Technology, Xi’an 710054, China;
20210061035@stu.xust.edu.cn (Y.L.); xiaoliangshi@xust.edu.cn (X.S.); 20210010002@stu.xust.edu.cn (F.C.);
20210061026@stu.xust.edu.cn (M.S.)

2 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute,
Chinese Academy of Sciences, Beijing 100101, China; zhongbo@aircas.ac.cn (B.Z.); aokai@aircas.ac.cn (K.A.);
liuqh@aircas.ac.cn (Q.L.); yangax@aircas.ac.cn (A.Y.)

3 Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China;
xukp@ifrit.ac.cn (K.X.); sunbin@ifrit.ac.cn (B.S.); dingxiangyuan@ifrit.ac.cn (X.D.)

4 Shaanxi Basic Geographic Information Center, Ministry of Natural Resources, Xi’an 710054, China;
w.xinshuang@gmail.com

* Correspondence: wujj@aircas.ac.cn

Abstract: Accurate identification of sandy land plays an important role in sandy land prevention
and control. It is difficult to identify the nature of sandy land due to vegetation covering the soil in
the sandy area. Therefore, HJ-2A hyperspectral data and GF-3 Synthetic Aperture Radar (SAR) data
were used as the main data sources in this article. The advantages of the spectral characteristics of a
hyperspectral image and the penetration characteristics of SAR data were used synthetically to carry
out mixed-pixel decomposition in the “horizontal” direction and polarization decomposition in the
“vertical” direction. The results showed that in the study area of the Otingdag Sandy Land, in China,
the accuracy of sandy land detection based on feature-level fusion and single GF-3 data was verified
to be 92% in both cases by field data; the accuracy of sandy land detection based on feature-level
fusion was verified to be 88.74% by the data collected from Google high-resolution imagery, which
was higher than that based on single HJ-2A (74.17%) and single GF-3 data (88.08%). To further verify
the universality of the feature-level fusion method for sandy land detection, Alxa sandy land was
also used as a verification area and the accuracy of sandy land detection was verified to be as high as
88.74%. The method proposed in this paper made full use of the horizontal and vertical structural
information of remote sensing data. The problem of mixed pixels in sparse-vegetation scenes in the
horizontal direction and the problem of vegetation covering sandy soil in the vertical direction were
both well solved. Accurate identification of sandy land can be realized effectively, which can provide
technical support for sandy land prevention and control.

Keywords: sandy land; mixed pixel decomposition; polarization decomposition; support vector
machine classification; image fusion

1. Introduction

In 2015, the United Nations published Transforming Our World: The 2030 Agenda
for Sustainable Development Goals (SDGs). Therein, SDG 15 states explicitly to, “By 2030,
combat desertification, restore degraded land and soil, including land affected by desertifi-
cation, drought and floods, and strive to achieve a land degradation-neutral world”. The
expansion of sandy land not only poses a serious threat to the sustainable development
of human life [1–3] but also is a global problem related to biodiversity loss, deforestation,
and soil degradation [4–6]. Desertification refers to the degradation process of the natural
environment in arid, semi-arid, and even sub-humid areas due to the combined effects of
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human activities and climate change [7]. The dominant direct physical processes responsi-
ble for desertification are water erosion, wind erosion, and salinization [8]. Strong winds,
insufficient soil and air humidity, scarcity of water and vegetation cover, drought, and
soil erosion are the main characteristics of the desert [9,10]. Desertification in the arid and
semi-arid areas of northern China is one of the most typical ecological and environmental
problems, and it is an important content to be focused on and managed [11–13]. Accurately
identifying sandy soil and in real time detecting the distribution of sand land is an effective
way to prevent desertification for regional ecological and environmental protection and
sustainable development [14,15]. Under long-term control and protection, the area of sand
land is shrinking and desertification has been curbed as a whole [16,17]. However, there is
still degeneration in some areas, and technology supports must be improved to implement
desert prevention and control projects.

According to different vegetation coverage, sandy land can be divided into fixed sandy
land, semi-fixed sandy land, and shifting sandy land. The characteristics of shifting sandy
land are obvious and easy to identify, but the influence of vegetation cover makes it more
difficult to identify the sandy soil in fixed sandy land and semi-fixed sandy land. Remote
sensing technology has provided a more objective and accurate data basis for the monitoring
and evaluation of sandy land due to its wide observation range, the fact that it provides
real-time information, and its dynamics [18–21], and it has become one of the indispensable
methods of monitoring sandy land on a regional and even global scale [22]. A variety
of remote sensing methods of monitoring sandy land have been proposed by different
scholars. Quantitative inversion based on soil characteristic parameters [23–27] and mixed-
pixel decomposition [28] were used as important methods of sandy land detection. In
the research on sandy land detection based on quantitative inversion of soil characteristic
parameters, the measured data on soil characteristic parameters obtained by investigation
or analysis in a small area was used for remote sensing quantitative inversion modeling
and verification and then used for large-scale sandy land detection [29]. Mixed-pixel
decomposition assumes that each pixel is composed of several “pure” endmembers and
pixel spectral can be decomposed into the proportion of several endmembers that contribute
to the pixel signal [30]. Generally speaking, mixed-pixel decomposition has been mainly
applied to hyperspectral data [31–33], and it is rarely applied to multispectral data because
of the limited bands. In the research on sand detection based on mixed-pixel decomposition,
most research has just identified the abundance of sandy land [34], which still has a certain
deviation from real sandy land. In terms of the above problems, accurate identification
of sandy soil was achieved by determining a reasonable threshold and its accuracy had
reached more than 80% [28]. However, the problem of vegetation covering the nature of
sandy land has not been well resolved. Therefore, detecting the essence of sand land and
penetrating vegetation cover by remote sensing technology are problems that need to be
urgently solved.

SAR data can be obtained clearly under all weather conditions and has a penetration
characteristic in the vertical direction. Polarization decomposition technology is a new
method developed in the last two decades to reveal the scattering mechanism of ground
objects [35,36]. However, this method is mainly used in qualitative research for remote
sensing image classification. Accurate identification of sandy land can be realized by
using the main scattering features of ground objects that have been effectively extracted
by polarization decomposition methods [37]. Hyperspectral remote sensing data have
the advantage of high spectral resolution, and sensitive bands can be captured due to its
continuous spectral of ground features, which greatly improves the ability to detect sandy
land. Generally speaking, remote sensing fusion technology can be divided into three
different levels: pixel level, feature level, and decision level. Pixel-level fusion is to fuse
multiple data sources with a single resolution, which was used to extract and classify the
land cover [38]. Feature-level fusion refers to extracting features from different data sources
and then merging them into one or more feature maps to replace the original data. Feature-
level fusion and decision-level fusion were used to achieve land cover classification in
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urban areas [39]. Decision-level fusion is to make a final fusion decision based on the results
of different algorithms; the methods include the voting method, the statistical method,
and the fuzzy logic method [40,41]. The choice of the classification method has a crucial
influence on the classification result. In recent years, the SVM classification method has
been widely used in land cover classification research due to its advantages of requiring
fewer samples and having high classification accuracy [42]. The biggest advantage of this
method is that there is no need for data dimensionality reduction during classification
and it shows high performance in terms of algorithm convergence, training speed, and
classification accuracy.

The United Nations Convention to Combat Desertification and the Law of the People’s
Republic of China on Sand Prevention and Control were proposed to provide for land
desertification prevention and desertification control. To evaluate the effectiveness of
various ecological restoration projects, it is necessary to carry out dynamic monitoring and
evaluation of sandy land and to grasp the current status and dynamic succession laws
of sandy land in a timely and accurate manner. In this way, various policies and plans
for desertification prevention and control can be implemented more efficiently [43,44].
Aiming at the scientific problem that the nature of sandy land is difficult to identify due to
vegetation shading, the advantages of spectral characteristics of hyperspectral data and
penetration characteristics of SAR data were made full use of for sandy land detection in
this paper. HJ-2A data were used to carry out mixed-pixel decomposition in the horizontal
direction to monitor the pure sand; SAR data were used to decompose and quantify the
effect of vegetation covering on the sandy soil in the vertical direction in order to reveal the
nature of the sandy land. The advantages of multi-source remote sensing data were fully
used for sandy land detection, which provided technical support for dynamic monitoring
of sandy land and prediction of desertification trend. The main objectives of this work are
as follows: (i) with a focus on the advantages of multi-source data, proposing a new fusion
method to detect sandy land, (ii) comparing the results of the new fusion method with
those of others, such as mixed pixel decomposition and polarization decomposition, and
(iii) determining the best and more accurate method to detect sandy land.

2. Study Area

The Otingdag Sandy Land in the Xilin Gol League of Inner Mongolia is located between
112◦41′–117◦30′ E and 42◦06′–43◦45′ N. This region has a mid-temperate continental climate.
The annual rainfall is about 360 mm, mainly in July, August, and September. The Otingdag
Sandy Land is one of the four major sandy lands in China, and most of its surface is covered
by shifting, semi-fixed, and fixed sandy land. Its surrounding area is typical arid and
semi-arid temperate grassland, and this area belongs to the ecotone of grassland and sandy
land. Therefore, it is important to identify the boundaries of grassland and sandy land
accurately and to monitor the range of the sandy land. This study took a partial area of
the Otingdag Sandy Land as the study area, which is located at the junction of Sunite Left
Banner, Abaga Banner, Zhengxiang White Banner, and Zhenglan Banner.

Alxa Left Banner is located in the west of Inner Mongolia. It is a temperate desert and
arid area with a typical continental climate, characterized by heavy sandstorms, aridity,
and strong evaporation. The annual rainfall is 80–220 mm, and the annual evaporation is
2900–3300 mm. Sandy lands cover an area of 34,000 km2 and mainly include the Tengger
Desert and the Ulanbuh Desert. This study took part of the area of Alxa as the verification
area. The locations of the study area and the verification area are shown in Figure 1.
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Figure 1. Locations of the study area and the verification area.

3. Data and Materials
3.1. Remote Sensing Data Acquisition and Processing

HJ-2A hyperspectral data, GF-3 SAR data, and Landsat 8 OLI multispectral data were
gathered as the main remote sensing data. The specific image information is provided
in Table 1. HJ-2A was launched by China on 27 September 2020. It is equipped with a
wide-view CCD camera, an infrared multi-spectral scanner, and a hyperspectral imager.
The HJ-2A hyperspectral data have a total of 215 bands, whose ability to detect and identify
ground feature is greatly improved. Since the resolution of HJ-2A’s visible light and
near-infrared band is 48 m and the resolution of short-wave infrared is 98 m, this study
used HJ-2A’s high-resolution visible light and near-infrared bands, which have a total
of 100 bands. GF-3 is China’s first C-band radar satellite, with a high-resolution, fully
polarized spaceborne SAR system. It has 12 conventional imaging modes, with a maximum
spatial resolution of 1 m and a maximum width of 650 km. This study used full polarization
strip 1 imaging mode data of GF-3, which provide more information than single-polarized
SAR data and provide the possibility for the quantitative inversion of surface parameters.
Landsat 8 OLI data contain nine different bands, whose imaging width can be up to 185 km.
The panchromatic band range is narrow, which can better distinguish vegetation and non-
vegetation areas. Therefore, it can be used to calculate vegetation coverage and provide
reference information for accuracy assessment. The imaging time of HJ-2A and GF-3 were
both in the non-growing season, in order to reduce the influence of vegetation on sandy
land extraction. Landsat 8 OLI data were selected in the growing season to observe the
vegetation cover.
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Table 1. Remote sensing data information.

Area Type of Data Imaging Time Spatial Resolution Image Quality

Otingdag
HJ-2A 17 February 2021 48 m No cloud coverage
GF-3 5 January 2021 8 m No cloud coverage

Landsat 8 OLI 13 August 2021 30 m No cloud coverage

Alxa
HJ-2A 2 February 2021 48 m No cloud coverage
GF-3 18 March 2020 8 m No cloud coverage

Landsat 8 OLI 7 August 2021 30 m No cloud coverage

HJ-2A hyperspectral data were pre-processed by radiation calibration and atmospheric
correction. Then, geometric correction was conducted based on Landsat 8 OLI image and
the error was controlled to within 1 pixel. Firstly, GF-3 data were processed for multiple
views to make the image’s geometric features closer to the actual situation on the ground,
while the speckle noise was reduced; secondly, it was processed for coherent speckle noise
filtering; finally, geocoding was performed to re-sample and re-project the map.

Sensitive bands can be captured because hyperspectral remote sensing data have
continuous spectral of ground features, which greatly improves the ability to detect sandy
land. HJ-2A hyperspectral data were used to achieve mixed-pixel decomposition, which
was based on the spectral information of remote sensing images to obtain sandy land
information. SAR data have penetration characteristic in the vertical direction in order to
reveal the nature of the sandy land. GF-3 data were used to achieve polarization decom-
position, which can extract the main scattering features of ground objects effectively and
realize sandy land detection accurately. Landsat 8 OLI data were used to conduct geometric
correction for HJ-2A data. Meanwhile, they were used for vegetation coverage inversion to
provide a judgment basis for the accuracy evaluation of the sandy land detection.

3.2. Field Data

According to the research tasks and goals, a research team was established and went
to the research area. A total of 26 field samples were obtained through the research survey
(Figure 2). The selection of the sample position was of vital importance; a sample position
should be representative and include all land cover types and different types of vegetation
coverage. GPS was used to obtain latitude and longitude information. The investigated
content included land cover/land use, soil type, vegetation coverage, and sandy land
degree, which were obtained to provide reliable verification data for the development of
this study.
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4. Methodology

After pre-processing of multi-source remote sensing data, firstly, sandy land was
detected based on a single HJ-2A hyperspectral image. The mixed-pixel decomposition
method was used to obtain a sandy land abundance map and appropriate threshold
selected for sandy land detection. Secondly, sandy land was detected based on GF-3 data.
The polarization decomposition method was used to obtain polarization decomposition
characteristics, and sandy land detection was realized by the support vector machine
method. Then, sandy land was detected based on the fusion image of hyperspectral and
SAR data; pixel-level fusion and feature-level fusion were used for sandy land detection,
respectively. Finally, the field data were used to verify the accuracy of sand land detection.
The technical flow chart is shown in Figure 3.
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4.1. Sandy Land Detection Based on a Single HJ-2A Hyperspectral Image

Firstly, the pure pixel index (PPI) was used to extract the pure pixels and the endmem-
bers spectrum curve were obtained, which laid the foundation for the decomposition of
mixed pixels. Secondly, the abundance layers of ground features in the remote sensing
image were obtained based on the linear spectral unmixing (LSU) model. Finally, the sandy
land could be detected by selecting an appropriate threshold.

Endmembers are the land cover types that make up a single pure spectrum of mixed
pixels. The key step of mixed-pixel decomposition is endmember extraction [45], which
directly affects the final decomposition accuracy. A random unit vector was mapped
through N-dimensional scatter diagram iteration during the PPI process. The extremum
pixels of each mapping were recorded, the DN value of each pixel indicating the number of
times that the pixel was marked as an extremum. Therefore, the larger the pixel value, the
higher the purity of the pixel.

The result of mixed-pixel decomposition was a series of grayscale images of the
endmember, which indicated the proportion of the endmember spectrum in this pixel
spectrum. The LSU model was formulated as follows (Equation (1)):
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DNi = ∑p
j=1 mij ∝j +ei (1)

where i = 1, 2, . . . , L; j = 1,2, . . . , p. Here, i is the band index and j is the endmember
number, L is the total number of bands, and p is the total number of endmembers; mij
represents the reflectance of endmember j in band i; ∝j represents the proportion of the
area endmember j occupies in a pixel; and ei is the error in band i.

4.2. Sandy Land Detection Based on Single GF-3 Data

To reveal the main scattering characteristics of ground objects in GF-3 radar data,
polarization characteristics caused by different scattering mechanisms of ground objects
can be separated by polarization decomposition. Pre-processed GF-3 data were used to
perform polarization decomposition by Pauli decomposition, H/A/α decomposition, and
Freeman decomposition. Nine decomposition features were obtained as classification
features, as shown in Table 2. Finally, sandy land detection was realized by the support
vector machine method.

Table 2. Characteristic parameters corresponding to each polarization decomposition.

Decomposition Method Extract Features Feature Meaning

Pauli
Decomposition

T11
T11 is the surface scattering information contained in

Pauli decomposition.

T22
T22 is the dihedral scattering information contained in

Pauli decomposition.

T33
T33 is the volume scattering information contained in

Pauli decomposition.

H/A/α
Decomposition

α
α is the average polarization scattering angle of H/A/α decomposition,

identifying the main scattering mechanism.

H H is the polarization entropy of H/A/α decomposition, which
measures the degree of polarization.

A A is the anisotropy of H/A/α decomposition, which measures the
relative magnitude of non-dominant scattering.

Freeman
Decomposition

OddF−D OddF−D is the surface scattering power in Freeman decomposition.
DblF−D DblF−D is the dihedral scattering power in Freeman decomposition.
VolF−D VolF−D is the volume scattering power in Freeman decomposition.

Pauli decomposition was established based on the polarization scattering matrix S,
and each polarization basis matrix represented different types of ground objects [46]. The
basic scattering matrix S can be expressed in Pauli basis as:

S =

[
SHH SHV
SVH SVV

]
=

a√
2

[
1 0
0 1

]
+

b√
2

[
1 0
0 −1

]
+

c√
2

[
1 0
0 1

]
+

d√
2

[
1 −j
j 1

]
(2)

where SHH and SVV are co-polarized components; SHV and SVH are cross-polarized compo-
nents; and a, b, c, and d are all complex numbers and represent the weights of the scattering
matrix on 4 bases, respectively:

a =
SHH + SVV√

2
, b =

SHH − SVV√
2

, c =
SHV + SVH√

2
, d = j

SHV − SVH√
2

(3)

The scattering matrix S was vectorized on the basis of Pauli decomposition to obtain
the eigenvector K of the target as:

K = [a b c d] =
1√
2
[SHH + SVV SHH − SVV SHV + SVH i(SVH − SHV) ]

T (4)
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When the medium satisfies the mutually different condition, SHV = SVH, the Formula (4)
becomes:

K = [a b c ] =
1√
2
[SHH + SVV SHH − SVV 2SHV ] T (5)

The polarization scattering matrix S was reflected by Pauli coherent polarization
decomposition to three basic scattering types, namely odd scattering, dihedral scattering
with 0◦ rotation around the axis, and 45◦ dihedral scattering with rotation around the axis.

Freeman decomposition was the most representative of the decomposition methods
based on the scattering model. It was divided into two-component and three-component
decomposition. The three-component decomposition method was used to describe three
basic scattering mechanisms by modeling, namely volume scattering, surface scattering,
and dihedral angle scattering. Among them, volume scattering represents a group of small
scattering objects with anisotropy, which represents vegetation and other ground object
types. Secondary scattering refers to the scattering on two perpendicular scatterers, such as
the commonly used radar corner reflector. Surface scattering refers to a medium roughness
scatterer [45].

The covariance matrix corresponding to odd scattering was expressed as:

Cs = fs

 |β|2 0 β

0 0 0
β∗ 0 1

 (6)

The polarization covariance matrix corresponding to the second scattering was ex-
pressed as:

Cd = fd

 |∝|2 0 ∝
0 0 0

∝∗ 0 1

 (7)

The polarization covariance matrix corresponding to volume scattering was expressed as:

Cv = fv

 1 0 1
3

0 2
3 0

1
3 0 1

 (8)

where fs, fd, and fv are the surface, double-bounce, and volume (or canopy) scatter contri-
butions to the VV cross section, respectively.

Three components of the Freeman decomposition were independent and irrelevant in
the statistical. The sum of the three scattering mechanisms can be represented by the total
covariance matrix obtained by the fully polarized SAR:

C = Cs + Cd + Cv (9)

The total scattered power Span was expressed as:

Span = C11 + C22 + C33 = fs

(
1 + |β|2

)
+ fd

(
1 + |∝|2

)
+ fv (10)

4.2.1. Sandy Land Detection Based on Pixel-Level Fusion

To detect sandy land accurately, three fusion methods, HSV, PCA, and GS, were
adopted in this study (Table 3).
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Table 3. Description of fusion methods.

Fusion Methods Fusion Effect

HSV Fusion
The edge information of the multi-spectral image, the target spectrum information, and the
high-resolution features of the panchromatic image are retained. The texture details of the

image are enhanced.

PCA Fusion

It has the function of data compression and information concentration. The information
content of the first principal component is relatively high. When the panchromatic image is
used to replace the first principal component for inverse transformation, the phenomenon

of spectral distortion appears to a certain extent.

GS Fusion The spectral information of the original multi-spectral image can be maintained, the spatial
information is also significantly enhanced, and the spectral fidelity effect is better.

4.2.2. Sandy Land Detection Based on Feature-Level Fusion

The bands of the best fusion image and nine polarization features based on polar-
ization decomposition were used as classification features to participate in the support
vector machine classification. The mean value, standard deviation, entropy, and average
gradient of the image were calculated as the indexes to evaluate the fusion image quality in
this study.

The mean value referred to the average of pixel gray levels, which reflected the average
brightness of the image. If the mean value was moderate, the visual effect was good.

M =
1

m× n

m

∑
x=1

n

∑
y=1

F(x, y) (11)

where m is the total number of rows of the image, n is the total number of columns of the
image, and F(x,y) is the grayscale value of the i-th row and the j-th column of the image.

Entropy was an important indicator to measure the abundance of image information.
Generally speaking, the greater the entropy, the more abundant the information contained
in the image, and the better the fusion quality.

H(x) = −
255

∑
i=0

pi log2 pi (12)

where pi is the probability that the gray value of the image pixel is i.
The image’s ability to express the contrast of small details can be sensitively reflected

by the average gradient. So it can be used to evaluate the image clarity. Generally speaking,
the larger the average gradient, the more the layers of the image, and the clearer the image.

g =
1

(m− 1)(n− 1)

m−1

∑
x=1

n−1

∑
y=1

√√√√((∆Fx(x, y)
∆x

)2
+

(
∆Fy(x, y)

∆y

)2
)

/2 (13)

where m is the total number of rows of the image, n is the total number of columns of the
image, F(x,y) is the grayscale value of the i-th row and the j-th column of the image, ∆Fx(x,y)

∆x

represents the gradient in the horizontal direction, and ∆Fy(x,y)
∆y represents the gradient in

the vertical direction.

4.3. Accuracy Verification Based on Field Data

The confusion matrix was adopted to analyze the quantitative accuracy evaluation.
Image classification data and field samples were used for cross tabulation to provide
multiple accuracy metrics, including overall accuracy, producer accuracy, and user accuracy.
According to the field data, the sample point was judged to identify sandy land or non-
sandy land in the results of sandy land detection and then it was compared with the
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actual type of the sample point to determine whether the sample point was misclassified.
Meanwhile, the user accuracy, the producer accuracy, and the overall accuracy of the sandy
land detection were calculated.

5. Results

The vegetation coverage was used as auxiliary information to analyze the results of
sandy land detection, as shown in Figure 4. Landsat 8 OLI data on August 13 was selected
to invert the vegetation coverage in this study. During this period, the overall vegetation
coverage of the sandy land was still at a relatively high level, and there was no artificial
grassing operation.
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To ensure the scientific effectiveness of sandy land detection, different methods were
used and verified for accuracy (Table 4).

Table 4. The accuracy of sandy land detection based on field data.

Methods User Accuracy Producer
Accuracy Overall Accuracy

Decomposition of mixed pixels based on single-sensor HJ-2A 63.64% 82.35% 60.00%
Polarization decomposition based on single-sensor GF-3 88.89% 94.12% 92.00%

Multi-source data GS pixel-level fusion 68.00% 100.00% 72.00%
Multi-source data PCA pixel-level fusion 60.87% 82.35% 56.00%
Multi-source data HSV pixel-level fusion 60.87% 82.35% 56.00%

Multi-source data feature-level fusion 88.89% 94.12% 92.00%

5.1. Sandy Land Detection Based on a Single HJ-2A Hyperspectral Image

The pure pixel index (PPI) method was used to extract pure pixels. In the process of
iterating pure pixels, the number of extracted pure pixels tended to be stable when the
iterations number was 5000, which laid the foundation for the mixed-pixel decomposition.
Finally, it was found that when the abundance of the sandy land endmember exceeded
50%, the pixel was definitely a sandy land type. Therefore, this threshold was used for
sandy land detection (Figure 5).
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The producer accuracy of sandy land detection based on the single-sensor HJ-2A
hyperspectral image was 82.35%. However, the user accuracy was 63.64% and the overall
accuracy was 60.00%. Combining sandy land detection and vegetation coverage, the
identified sandy land areas were mainly distributed in the northwest of the image. The
vegetation coverage in the northwestern region was sparse, and the detection effect of bare
sand was good, but sandy land in the northeast areas with a high vegetation coverage was
poorly detected. Therefore, a bare sand area could be well identified based on an HJ-2A
hyperspectral image but sandy land covered by vegetation was difficult to identify.

5.2. Sandy Land Detection Based on Single GF-3 Data

Nine decomposition features were obtained by Pauli decomposition, H/A/α de-
composition, and Freeman decomposition, and sandy land detection was realized by the
support vector machine method (Figure 6).
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The user accuracy of sandy land detection based on single-sensor GF-3 data reached
88.89%, the producer accuracy was as high as 94.12%, and the total accuracy reached
92.00%. It can be seen that sandy land detection based on GF-3 data was considerable and
the detected area of sandy land was relatively large, consistent with the actual situation. It
can not only detect the exposed sandy land but also identify the nature of the sandy land
with high vegetation coverage in the northeast. Compared with the accuracy of sandy land
detection based on a single-sensor HJ-2 hyperspectral remote sensing image, the overall
accuracy of sandy land detection based on a single-sensor GF-3 data was improved by 32%.

5.3. Sandy Land Detection Based on a Fusion Image of HJ-2A and GF-3 Data
5.3.1. Sandy Land Detection Based on Pixel-Level Fusion

The spectral curve of ground features was obtained by an HJ-2A image (Figure 7). The
spectrum information of sandy land had an obvious peak inflection point at a wavelength of
570 nm; the spectrum curve of sandy land at 760 nm had an obvious valley inflection point,
and the spectrum curve of sandy land was at the peak inflection point; three different types
of land spectrum curves at 900 nm were at the peak inflection point and had no intersection.
Because the wavelengths of 570 nm, 760 nm, and 900 nm were sensitive to sandy land
information, GF-3 data and the corresponding wavelength band of HJ-2A were selected
to perform GS fusion, HSV fusion, and PCA fusion, respectively. Then the appropriate
training samples were selected based on the fusion image and the region of interest was
calculated by the Jeffries–Matusita (JM) distance so that the conversion resolution obtained
by the JM distance quantitatively was greater than 1.9 to ensure good separability between
samples. Finally, the support vector machine classification method was used to obtain
sandy land information (Figure 8).
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Figure 7. Spectral curves of different features.

The three methods based on pixel-level fusion showed relatively small differences
in the distribution of sandy land. Compared with the method of sandy land detection
from single HJ-2A data, the results of non-sandy land information detection near waters
in the central and eastern regions were better. It can be seen from Table 4 that producer
accuracy of the three fusion methods of sandy land detection was above 82%, indicating
that the sandy sample points were correctly classified by these methods. However, the user
accuracy and the overall accuracy were relatively low. Combined with the results of sandy
land detection from pixel-level fusion images and the distribution of vegetation coverage,
sandy areas with low vegetation coverage could be well identified but sandy areas with
high vegetation coverage were not identified well.
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5.3.2. Sandy Land Detection Based on Feature-Level Fusion

The mean value, standard deviation, entropy, and average gradient of the fusion
results were calculated in this study so as to make a quantitative evaluation of the fusion
images (Table 5).

Table 5. The quantitative evaluation indexes of multi-source data fusion.

Methods Mean Standard Deviation Entropy Average Gradient

GS 149.98 43.53 4.50 6.92
PCA 169.02 18.60 4.28 5.21
HSV 91.27 73.79 5.19 7.04

It can be seen from Table 5 that the mean value of HSV fusion was the lowest, that
is, the image brightness was the lowest and had a certain degree of spectral distortion.
The standard deviation of HSV fusion was the largest, which means that the gray levels
in the HSV fusion image were scattered and the image quality was better. The entropy
levels of three fusion images were relatively high, the entropy of the HSV fusion image
reaching 5.19, indicating that the HSV fusion image had rich information and the best
fusion quality. The average gradient of HSV fusion was the largest, which means that
the HSV fusion image had a strong ability to express the contrast of small details and the
image was clearer. To sum up, although the HSV fusion image had a certain degree of
spectral distortion, the information it provided was rich and the image details were clearer.
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Therefore, the bands of the HSV fusion image and nine polarization features based on
polarization decomposition were used as classification features for support vector machine
classification. After many experiments, it was found that the best classification result was
obtained when the polynomial kernel function was selected and the degree was set to 2
using PolSARpro software to achieve SVM classification (Figure 9).
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Figure 9. Sandy land detection based on feature-level fusion.

The user accuracy of sandy land detection based on the feature-level fusion reached
88.89%, the producer accuracy was as high as 94.12%, and the overall accuracy was 92.00%.
Combined with vegetation coverage, it was found that the results of sandy land detection
included bare sandy land with low vegetation coverage in the northwest and the sandy
land with high vegetation coverage in the northeast. Sandy land’s nature can be well
recognized by fusing the hyperspectral and radar data, and the detection accuracy was
improved a lot because not only the problem of mixed pixels in the sparse-vegetation
scene in the horizontal direction was solved but the problem of the sandy land covered by
vegetation in the vertical direction can also be solved.

5.4. The Accuracy Evaluation of Sandy Land Detection Based on a Google Earth Image

The field data had 26 sample points and were unevenly distributed in the study area
(Figure 2). To ensure the scientific validity of sandy land detection, a grid was constructed
for the study area so that the sample points were evenly distributed in space (Figure 10).
The high spatial resolution of Google Earth images was used to identify the topographic
categories of sample points, which verified the accuracy of sandy land detection by different
methods (Table 6).
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Table 6. The accuracy of sandy land detection based on a Google Earth image.

Methods User Accuracy Producer
Accuracy Overall Accuracy

Decomposition of mixed pixels based on single-sensor HJ-2A 94.34% 75.19% 74.17%
Polarization decomposition based on single-sensor GF-3 93.89% 92.48% 88.08%

Multi-source data GS pixel-level fusion 98.02% 74.44% 76.16%
Multi-source data PCA pixel-level fusion 97.12% 75.94% 76.82%
Multi-source data HSV pixel-level fusion 96.36% 79.70% 79.47%

Multi-source data feature-level fusion 93.94% 93.23% 88.74%

It can be seen from Table 6 that the user accuracy of sandy land detection based on a
single-sensor HJ-2A hyperspectral image was as high as 94.34% but its producer accuracy
and overall accuracy were just 75.19% and 74.17%, respectively, which were relatively
lower. According to the distribution of sandy land, the result was good in identifying bare
sandy areas but the sandy land covered by vegetation was difficult to identify. The user
accuracy of sandy land detection based on single-sensor GF-3 data was as high as 93.89%;
meanwhile, the producer accuracy was as high as 92.48% and the total accuracy was 88.08%.
Not only can bare sandy land be detected, but the nature of the sandy land in areas with
high vegetation coverage in the northeast can also be identified. Compared with the result
of sandy land detection based on a single hyperspectral image, the overall accuracy was
improved by 14%. The user accuracy of sandy land detection based on the feature-level
fusion was as high as 93.94%, the producer accuracy was as high as 92.23%, and the total
accuracy was 88.74%, which were slightly better than sandy land detection based on single
GF-3 data. Therefore, accurate identification of sandy land can be realized based on the
feature-level fusion.

5.5. Application Promotion and Verification Analysis

The HJ-2A hyperspectral data were a new sensor. The data that can be obtained were
limited, and the fully polarized GF-3 data were less in the Otingdag Sandy Land. The
above reasons led to a small study area covered and an imbalance in the number of sample
points of different land types.

At the same time, the overall accuracy of sandy land detection based on feature-level
fusion was slightly higher than that based on single-sensor GF-3, though there may be some
discrepancy. Therefore, in order to prove the feasibility and universality of the method of
sandy land detection based on feature-level fusion, part of the area of Alxa was selected as
the verification area. The distribution of vegetation coverage and sample points are shown
in Figure 11.
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Combined with the distribution of vegetation coverage (Figure 11) and the sandy
land detection (Figure 12), the sandy land was mainly distributed in the northern part of
the verification area. The intermediate transition zone was mostly sandy land covered
by sparse vegetation. However, there were also small sand belts passing by here, which
were clearly separated from the non-sandy land. It can be seen from Table 7 that the user
accuracy of the multi-source data feature-level fusion was as high as 95.65%, the producer
accuracy was 95.65%, and the total accuracy was 94.90%, which were higher than the
accuracy obtained by using the single-sensor GF-3 to detect sandy land. In addition, the
nature of sandy land covered by sparse vegetation in the middle of verification area can be
identified well.
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Table 7. The accuracy of sandy land detection in the verification area.

Methods User Accuracy Producer Accuracy Overall Accuracy

Polarization decomposition based on single-sensor GF-3 94.12% 92.75% 91.80%

Multi-source data feature-level fusion 95.65% 95.65% 94.90%
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6. Discussion

The classification result can be improved by the fusion image of hyperspectral im-
ages and SAR data, which can not only highlight the hyperspectral thematic information
and eliminate or suppress irrelevant information but also retain the backscatter informa-
tion of the target in the SAR image and detect the vertical structure information of the
ground object.

According to the sandy land detection results in this study, sandy land with low
vegetation coverage can be identified by different methods, that is, the nature of bare sandy
land can be better revealed. According to the accuracy of sandy land detection based
on field data, it can be seen that sandy land detection based on a single hyperspectral
image and pixel-level fusion was poor and the nature of sandy land covered by vegetation
could not be identified well. The results of sandy land detection based on single GF-3
data and feature-level fusion had the same accuracy. Not only can better information on
bare sand in the horizontal direction be acquired, but the problem of information on sand
covered by sparse vegetation in the vertical direction can also be better resolved. According
to the accuracy of sandy land detection based on Google Earth images, it can be seen
that when the number of sample points was large and the points evenly distributed, the
verification accuracy of sandy land detection was improved. Compared with the method
of sandy land detection with single-sensor data, the accuracy of detecting bare sandy
land based on pixel-level fusion was improved but the nature of sandy land covered by
vegetation was still difficult to identify. Sandy land detection based on feature-level fusion
was slightly better than that based on single GF-3 data in terms of user accuracy, producer
accuracy, and overall accuracy. Not only can bare sandy land be accurately detected, but
the nature of sandy land covered by vegetation can also be revealed through decomposing
and quantifying the impact of vegetation on soil.

According to sandy land detection in the verification area, it can be seen that sandy
land detection based on feature-level fusion was better than that based on single GF-3 data
in terms of user accuracy, producer accuracy, and overall accuracy and the nature of the
sandy land covered by sparse vegetation in the middle of verification area can be better
identified. Due to the large area of verification data and the balanced number of samples of
different land types, the results were more objective and the methods were more feasible
and repeatable. Therefore, it can be concluded that not only can bare sand be identified
better but the nature of the sand covered by sparse vegetation can also be identified.

The Normalized Differential Sandy Areas Index (NDSAI) was proposed by Sahar et al.
to separate the sandy areas from the non-sandy areas. Because SWIR1 is highly sensitive to
vegetation, it was used to develop the new NDSAI. Therefore, NDSAI can better distinguish
sandy land from vegetation [47]. The feature-level fusion algorithm proposed in this article
focuses on the advantage of data to reveal the nature of sandy land in sparse-vegetation
scenes. Its accuracy was slightly better than that of NDSAI, but the data processing was
more complicated. Tan et al. proposed an unsupervised classification method based on
fully polarimetric SAR data. It integrated three key steps: new decomposition (ND), super
pixel segmentation, and LSC algorithm. The polarization parameters can be obtained
effectively by ND-LSC, and the classification accuracy was improved [48]. SAR data were
also used in this article, focusing more on SAR’s penetration characteristic in the vertical
direction. Multi-source data fusion and the SVM classification method were used to detect
sandy land effectively.

In summary, the advantages of hyperspectral and SAR data were fully used by the
feature-level fusion. The problem of mixed pixels in the sparse-vegetation scene in the hori-
zontal direction was solved, as was the problem of vegetation covering the sandy land in
the vertical direction, which provided favorable technical support for sandy land detection.
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7. Conclusions and Prospects

In this study, an HJ-2A hyperspectral image was used for mixed-pixel decomposition
to detect sandy land horizontally and GF-3 data were used for polarization decomposition
to detect sandy land vertically, while the fusion image of HJ-2A and GF-3 data was used
to detect sandy land horizontally and vertically. The results of sandy land detection were
evaluated for accuracy based on the distribution of vegetation coverage, field data, and
sample points based on Google Maps. The results showed that when the exposed sandy
land is widely distributed in the study area, the pixel-level fusion based on GS can be used
to detect sandy land. When the vegetation coverage is high and the sandy land is mostly
covered by vegetation, feature-level fusion is a good selection to be used to detect sandy
land. Based on the feature-level fusion method, the nature of the sandy land covered by
vegetation is revealed and accurate identification of sandy land can be realized. The method
proposed in this paper made full use of the horizontal and vertical structure information
of remote sensing data. The problem of mixed pixels in the sparse-vegetation scene in the
horizontal direction was solved, as was the problem of vegetation covering sandy land
in the vertical direction. It can provide an important reference for sandy land detection
in arid and semi-arid areas and provide technical support for sandy land prevention
and control. In the follow-up study, wide-range and high-resolution data will be used
to verify the method of sandy land detection based on the feature-level fusion image of
hyperspectral and radar data proposed in this paper. In addition, a new fusion method
will be developed to improve the fusion accuracy in order to further improve the accuracy
of sandy land detection.
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