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Urban areas are the center of human settlement with intensive anthropic activities and
dense built-up infrastructures, suffering significant evolution in population shift, land-use
change, industrial production, and so on. Urbanization-induced environmental pollution,
climate change, and ecosystem degradation are the research hotpot that highly relates to the
sustainable human future. Remote sensing (RS) imageries from different platforms (drone,
airborne, and spaceborne) and different sensors (optical, thermal, SAR, and LiDAR), provide
essential information for these applications in urban areas with various characteristics and
spatiotemporal resolutions. Especially, the continually improved spatial resolution can satisfy
the description of the complex urban geographical system, and it is applicable for monitoring
numerous natural and anthropogenic issues at different scales.

This Special Issue (SI) aims to invite recent advances in the applications of RS imagery
for urban areas, and 17 papers in total were selected and published. Among them, 12 papers
emphasize the novel urban application algorithms based on RS imageries, such as urban
attribute mapping, building extraction, classification, change detection, and so on [1–12], and
5 papers directly employed RS imageries to analyze the environmental variations and urban
expansion in typical cities, such as urban heat island, air pollution, lightning, and so on [13–17].

RS imageries provide new opportunities to extract the urban building information and
detect its changes, and thus there are four papers focused on this issue [1–4]. Cao et al. [1]
proposed a stacking ensemble deep learning model (SENet) to obtain fine-scale spatial and
spectral building information, based on a sparse autoencoder integrating U-NET, SegNet,
and FCN-8s models. The model was assessed by a building dataset in Hebei Province,
China, and the results indicate that its accuracy is significantly improved compared to all
three models. Xue et al. [2] proposed a multi-branched network structure to fuse the seman-
tic information of the building changes at different levels. Experimentation with the WHU
Building Change Detection Dataset showed that the proposed method obtained accuracies
of 0.8526, 0.9418, and 0.9204 in IoU, Recall, and F1 Score, respectively, which could assess
building change areas with complete boundaries and accurate results. Luo et al. [3] utilized
GF-7 high-resolution stereo mapping satellite double-line camera images and multispectral
images for the segment of building boundary, based on a multilevel features fusion net-
work (MFFN). The results show that high accuracy of 95.29% can be achieved in building
extraction. The 3D building model can be efficiently built in Level of Details 1 (LOD1)
based on the extracted building vector and elevation information from the digital surface
model, and the urban scene was produced for realistic 3D visualization. Chen et al. [4]
reconstructed bias U-Net with self-attention for semantic segmentation of building rooftops.
Concretely, a self-attention module is added to learn the attention weights of inputs in the

Remote Sens. 2022, 14, 1204. https://doi.org/10.3390/rs14051204 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14051204
https://doi.org/10.3390/rs14051204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2094-6480
https://orcid.org/0000-0001-7204-9346
https://doi.org/10.3390/rs14051204
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14051204?type=check_update&version=1


Remote Sens. 2022, 14, 1204 2 of 4

encoding part. The proposed method achieves IoU scores of 89.39% and 73.49% for WHU
and Massachusetts datasets, respectively.

Except for building information extraction, classification, target detection, and change
detection are also very important for urban applications using RS imageries, and there are
five papers on these issues [5–9]. As for classification, Ling et al. [5] proposed a research
framework to quantify the urban land cover (ULC) classification accuracy using optical
and SAR data with various cloud levels, using three typical supervised classification meth-
ods. The experimental results indicate that the ULC classification accuracy decreases with
increasing cloud content, and the fusion of SAR and optical data can significantly help
reduce the confusion between land covers under clouds and improve the classification
accuracy. Shi et al. [6] proposed an attention-guided classification method (AGCNet) for
multispectral and panchromatic images, based on a lightweight multi-sensor classifica-
tion network. AGCNet mainly consists of a share split network (SSNet) and a selective
classification network (SCNet), which are used to balance the classification performance
and time cost better. The classification maps and accuracies show the superiority of the
proposed AGCNet, and it can be easily extended to other multi-sensor and multi-scale
classifications. As for target detection, Chen et al. [7] proposed a Rotation-Invariant and
Relation-Aware (RIRA) CDAOD network. It is trained at the image level and the proto-
type level based on relation aware graph to align the feature distribution and added the
rotation-invariant regularizer to deal with the rotation diversity. The results show that the
method can effectively improve the detection effect in the target domain, and outperforms
competing methods. Shen et al. [8] proposed an algorithm combining the constrained
energy minimization (CEM) algorithm and the improved maximum between-class variance
(OTSU) algorithm (t-OTSU), to obtain the initial target detection results and adaptively
segment the target region. The detection accuracy is above 99%, and the false alarm rate is
below 0.2%. Yang et. al. [9] focused on the change detection in high-resolution RS imageries
and proposed an MRA-SNet model based on the UNet network. The Siamese network is
used to extract the features of bi-temporal images in the encoder separately and perform
the difference connection to generate difference maps better. The multi-Res blocks and the
residual connections are applied to extract detailed spatial and spectral features of different
scales, and the Attention Gates module is added to better focus on the changing features
and suppress the irrelevant features.

There are also three other papers that aimed at different demands of urban RS ap-
plications [10–12]. Chao et al. [10] analyzed the ability to utilize contextual features from
very-high-spatial-resolution (<2 m) and medium-spatial-resolution (Sentinel-2, 10 m) im-
ageries to model the urban attributes and population density under the human-modified
landscape. The results suggest that contextual features can model urban attributes well
at very high spatial resolutions, with out-of-sample R2 values up to 93%. Feng et al. [11]
aimed at the image quality for urban analysis, and proposed a region-by-region registration
algorithm that combines the feature-based and optical flow methods. Concretely, the initial
displacement fields for a pair of images are calculated by the block-weighted projective
model and Brox optical flow estimation, respectively, in the flat- and complex-terrain re-
gions. The abnormal displacements resulting from the sensitivity of optical flow in the
land use or land cover changes, are adaptively detected and corrected by the weighted
Taylor expansion. The experimental results demonstrated that the proposed method could
achieve the sub-pixel alignment accuracy of different optical RS images. Zhang et al. [12]
investigated the mechanisms of the radar return changes induced by urban flooding under
different polarizations, and proposed an urban flooding index (UFI) for unsupervised
inundated urban area detection. The Sentinel-1 PolSAR is used as the basic data, and
the Jilin-1 high-resolution optical images acquired on the same day are used for visual
interpretation as ground truth. The results indicate that the UFI-based method can achieve
higher overall accuracy than the conventional unsupervised method.

For the remaining five papers analyzing the urban expansion and urban environmental
changes [13–17], Liu et al. [13] used time-series Landsat imagery to map and quantify the
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spatiotemporal dynamics of urban expansion from 1990 to 2020 in Xiaonan District in
Hubei Province, China. The built-up area and urban land are extracted in the RS images
using different classification methods. It is found that the urban expansion first decreased
and then increased in the last 30 years, and the development of the secondary industry is
the main driving force. Shen et al. [14] compared the spatiotemporal patterns of Surface
Urban Heat Island in Wuhan and Nanchang city in China, by fusing the data from Landsat,
MODIS, and AVHRR. Opposite spatiotemporal patterns are found between the two cities
during 1984 and 2018, even though both of them are widely considered as the hottest
cities and called “Stove cities”. Nanchang presents higher and more fluctuating surface
urban heat island intensity (SUHII) than Wuhan under different definitions of SUHII.
Wang et al. [15] utilized 9-year datasets of cloud-to-ground (CG) lightning, aerosol optical
depth (AOD), convective available potential energy (CAPE), and surface relative humidity
(SRH) from ground-based observation and model reanalysis to analyze over three air-
polluted regions of China. It is concluded that the CG lighting density is found to be higher
under conditions with high sulfate and total AOD during the whole seasonal cycles over all
the study regions. A slight decrease of CG lightning is found under most high dust AOD
conditions. Xue et al. [16] used a series of RS images to explore how a typical resource-based
mining city, Datong, has expanded and evolved over the last two decades (2000–2018),
with a reflection on the role of urban planning and development policies in driving the city
spatial transformation. The results indicate that the area of urban construction land has
increased by 132.6% during the study period. Wang et al. [17] estimated and analyzed the
nighttime PM2.5 concentration based on LJ1-01 images, taking the Pearl River Delta urban
agglomeration of China as an example. Based on radiative transfer theory, a correlation
model of the nighttime light radiance and ground PM2.5 concentration is established. The
results indicate that the R2 value between the model-estimated and measured values is 0.82
in the PRD region, and the model attains a high estimation accuracy.

In summary, this SI provides an enhanced understanding of applications of RS imagery
for urban areas. New methodologies are presented for extracting the building information,
modeling urban attributes and population, and detecting the urban flooding using remote
sensing imageries [1–4,10,12]. Novel models for RS classification, target and change detec-
tion are also included, which can significantly support further urban applications [5–9].
Different analyses on urban expansion, urban heat islands, air pollution, and lightning
can advance our understanding of the interactions between urban development and the
regional environment [13–17]. Almost all of these researches use the satellite RS imageries
from optical, thermal, or SAR sensors. It indicates that satellite RS is still the mainstream,
and we should further excavate the potential of data from drones and airborne platforms.
Among the 12 papers which proposed new methods, 10 used machine learning networks.
It indicates the new opportunities brought by the development of machine learning tech-
nology, and it would be a promising trend to employ these new technologies and RS data
to monitor the cities in which we living.
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