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Abstract: This paper presents a new deep visual-inertial odometry and depth estimation framework
for improving the accuracy of depth estimation and ego-motion from image sequences and inertial
measurement unit (IMU) raw data. The proposed framework predicts ego-motion and depth with
absolute scale in a self-supervised manner. We first capture dense features and solve the pose by
deep visual odometry (DVO), and then combine the pose estimation pipeline with deep inertial
odometry (DIO) by the extended Kalman filter (EKF) method to produce the sparse depth and pose
with absolute scale. We then join deep visual-inertial odometry (DeepVIO) with depth estimation by
using sparse depth and the pose from DeepVIO pipeline to align the scale of the depth prediction
with the triangulated point cloud and reduce image reconstruction error. Specifically, we use the
strengths of learning-based visual-inertial odometry (VIO) and depth estimation to build an end-to-
end self-supervised learning architecture. We evaluated the new framework on the KITTI datasets and
compared it to the previous techniques. We show that our approach improves results for ego-motion
estimation and achieves comparable results for depth estimation, especially in the detail area.

Keywords: self-supervised; autonomous driving; depth estimation; visual-inertial odometry

1. Introduction

Dense depth estimation from an RGB image is the fundamental issue for 3D scene
reconstruction that is useful for computer vision applications, such as automatic driving [1],
simultaneous localization and mapping (SLAM) [2], and 3D scene understanding [3].
With rapid development of in depth estimation (from monocular), many supervised and
unsupervised learning methods have been proposed. Instead of traditional supervised
methods depending on expensively collected ground truth, unsupervised learning from
stereo images or monocular videos is a more universal solution [4,5]. However, due to the
lack of perfect ground truth and geometric constraints, unsupervised depth estimation
methods that suffer from inherent scale ambiguity and poor performance, perform well
in some scenarios, such as occlusion, non-textured regions, dynamic motion objects, and
indoor environment.

To overcome the lack of geometric constraints in unsupervised depth estimation train-
ing, recent works have used sparse LiDAR data [6–8] to guide depth estimation in the
process of image feature extraction and improve the quality of supervised depth map gen-
eration. These methods lead to the dependence on sparse LiDAR data, which are relatively
expensive. A recent trend in depth estimation methods involves traditional SLAM [9],
which could provide an accurate sparse point cloud, learning to predict monocular depth
and odometry in a self-supervised manner [10,11].

To integrate visual odometry (VO) or the SLAM system into depth estimation, the
authors of [10,12,13] presented a neural network to correct classical VO estimators in a self-
supervised manner and enhance geometric constraints. Self-supervised depth estimation,
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using the pose and depth between two adjacent frames, establishes a depth reprojection
error and image reconstruction error [14–17]. In a monocular depth self-supervised esti-
mation, the depth value estimated by the depth estimation network (DepthNet) and the
pose between adjacent images have a decisive influence on the depth estimation result.
However, the depth estimation network and the pose estimation network (PoseNet) can
only estimate the relative results without the correction of the geometry constraint. As the
relative pose estimation is inherently ambiguously scaled, the pose prediction network [18]
significantly degrades when applied to challenging scenarios.

Motivated by these observations, we present a new deep visual-inertial odometry
(DeepVIO) based ego-motion and depth prediction system that combines the strengths
of learning-based VIO and geometrical depth estimation [16,19,20]. It uses DeepVIO
geometrical constraints [21], where they are available, to achieve accurate odometry fusing
with raw inertial measurement unit (IMU) data and sparse point clouds. To get a sparse
point depth, we selected the associated feature points, which extracted and matched
between the two adjacent frames, and then solved the triangulation equation to achieve
the feature point depth, such as in Figure 1 [22]. Technically, this was implemented using
learning-based feature detectors and an IMU raw fusion module, so that it learnt to refine
the scale of depth and improve 3D geometric constraints. In addition, the learning process
of DeepVIO was supervised in a self-supervised manner during depth estimation, where
the depth and DeepVIO could benefit from each other.

The overview of our method is shown in Figure 2; different from other self-supervised
depth estimation methods, our method generates a dense depth with the depth value
in the 3D structure corresponding to each pixel in the 2D image and accurate pose with
DeepVIO, which combines deep visual odometry (DVO) with deep inertial odometry (DIO).
In order to improve the pose estimation between adjacent image frames, we introduce
the key-point method based on the deep learning visual process, which uses a neural
network to complete the pose estimation method of feature point extraction and matching
in traditional SLAM, and can be easily combined with an IMU network. First, we used the
deep keypoint-based [23,24] feature extraction and matching method, such as in Figure 1c,d,
and then obtained the relative pose from input sequence frames by the traditional two-view
geometry triangulation method [24]. Second, we used the fusion module to integrate the
DVO and DIO and output a relative pose with an absolute scale [21]. Finally, we obtained
the sparse depth map, in which the depth value corresponded with keypoints by matching
the depth feature points, using the two-view triangulation module to solve the depth of the
feature points with the camera pose [25]. We refined the scale of the prediction depth and
constraint depth network regression by the sparse depth in the training and testing stages.
In summary, the main contributions of our work are as follows.

We propose a new self-supervised depth and odometry estimation framework that
combines DepthNet with DeepVIO to supervise each other:

• Based on the SuperPoint [23] dense feature point extraction method, we added the
sparse depth pose with absolute scale to the depth estimation geometric constraints;

• The DeepVIO pipeline joint keypoint is based on DVO with DIO and uses the EKF
module to update the relative pose;

• We tested our framework on the KITTI dataset, showing that our approach produces
more accurate absolute depth maps than contemporaneous methods. Our model also
demonstrates stronger generalization capabilities and robustness across datasets.
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Figure 1. Depth and pose estimation results from KITTI; (a,b) show the input image to the network
selected from KITTI; (c,d) show the feature dense match using the DVO pipeline; (e) shows the
sparse depth map solved by the DeepVIO; (f) shows dense depth map from DepthNet, which is
refined by the sparse depth map with the absolution scale; (g) shows the DeepVIO odometry result
on sequence 09.
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Figure 2. Overview of the system. At time t and t + 1, the system inputs two image pairs and IMU
data, and outputs pose and optimized depth Ds from original dept D f .The bottom DeepVIO pipeline
extracts and matches dense feature points and solves the original pose by the geometric method.
The fusion module combines the DVO and DIO pose with the EKF method. The sparse depth is
generated by feature matching points and the pose of DeepVIO. The top depth estimation pipeline
joins the sparse depth and pose, supervises the depth and pose, to produce a dense image with
absolute scale.

2. Related Work

In this section, we provide an overview of current methods for self-supervised depth
estimation and techniques for learning-based feature extraction and match.

2.1. Self-Supervised Monocular Depth Prediction

Depth estimation from a monocular image is significant for scene understanding in
computer vision. Supervised learning-based methods for depth prediction rely upon the
availability of ground-truth depth [26–28], while the effort to collect large amounts of
labeled images is high. In the self-supervised depth estimation method, the photometric
errors originate from static stereo warping with the rectified baseline or two adjacent
frame temporal warping. Based on that theory, a lot of research in the field of supervised
depth estimation has been conducted to overcome the need for ground truth data [29], self-
supervised learning methods [30], minimizing photometric reprojection errors, and using
the binary mask to filter dynamic objects in videos [30,31]. However, these methods lack
geometric constraints and scale ambiguity in the learning process. Recently, a combination
with geometric constraint depth estimation methods have been proposed [10,11,32–34].
For example, the average depth varies greatly between adjacent frames when there are
limited image pixel movement ranges, relative estimated poses, and inconsistent reference
frames between the poses [15]. Since visual odometry based on monocular image sequences
could only estimate the relative poses, constraining monocular depth estimation will result
in inconsistent depth map scales. We introduce an IMU with an absolute scale to form VIO,
which essentially eliminates the problem of inconsistency in depth scales between adjacent
frames. Thus, our work combines the advantages of the visual odometry method based
on deep keypoints and raw IMU data, and essentially disentangles the scale and enhances
geometry construction.

2.2. Learning-Based Feature Extraction and Matching

Traditional feature detectors and descriptors have been used on classical SLAM sys-
tems. Based on classical handcraft feature detectors and feature extractor-like features from
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an accelerated segment test (FAST) [35], oriented fast and rotated brief (ORB) [36], and
scale-invariant feature transform (SIFT) [37], these methods attempt to dedicate to dimen-
sionality reduction and utilize various approaches to map high-dimensional descriptors
to low-dimensional spaces. However, they lose a great amount of information on the raw
image. With deep learning “booming”, some researchers have attempted to use higher-
level features obtained through deep learning models to build-up deep feature extractors.
CNN-based descriptors, such as MatchNet [38], which consists of a featured network for
extracting feature representation, significantly improves feature descriptor results.

However, most deep learning methods rely heavily on data used for training and
cannot fit well into unknown environments. Instead of using human supervision to define
interest points in real images [39], SuperPoint [23] proposes a fully-convolutional neural
network architecture for interest point detection and descriptions using a self-supervised
pipeline. Our work adopts the deep feature descriptor detector, feature extractor, and VIO
pipeline as our foundation to improve the pose and depth estimation result.

2.3. Deep Visual-Inertial Odometry Learning Methods

Traditional VIO fusion relies on manually crafted image processing pipelines, which
can be divided into loosely-coupled and tightly-coupled methods [40]. Recently, deep
learning methods [41] have been used to state estimation tasks, including VIO. Instead
of using human supervision to define interest points in real images, such as FAST [35],
SIFT [37], Daniel DeTone [42], designed SuperPoint, which operates on a full-sized image
and produces interest point detections accompanied by fixed-length descriptors in a single
forward pass.

For supervised learning VO methods, these approaches infer the camera pose by
learning directly from real image data, such as Flowdometry [43], cast the VO problem
as a regression problem by using FlowNet [44] to extract optical flow features and a fully
connected layer to predict camera translation and rotation, and DVO [13] and ESP-VO [45]
incorporate recurrent neural networks (RNNs), to implicitly model the sequential motion
dynamics of the image sequences. Han, L. et al. [13] presented a self-supervised deep
learning network for monocular VIO; Shamwell et al. [46] presented an unsupervised deep
neural network approach to the fusion of RGB-D imagery with inertial measurements for
absolute trajectory estimation. Inspired by this work, we incorporated raw IMU data into a
visual, odometry-based deep keypoint with a fusion model to regularize the camera pose
and alignment depth map.

3. Materials and Methods

We propose a framework to predict the dense depth and odometry with an absolute
scale only using the monocular images and IMU raw data. Figure 2 depicts an overview of
our system; we used DeepVIO to replace the PoseNet. The SuperPoint [23] network has two
sub networks—KeypointNet and MatchNet—to estimate VO. After that, the DVO and DIO
fusion module are used to estimate the odometry of the camera and sparse depth based on
the 3D points triangulated. Then DepthNet combines sparse depth and pose to output the
depth map with absolute scale. Specifically, we propose DeepVIO, self-supervised, by the
depth estimation process.

3.1. Self-Supervised Depth Estimation

The depth module is an encoder–decoder network, DepthNet; it takes a target image
and outputs depth values D̂T(p) for every pixel p in the image.The encoder of DepthNet
uses ResNet to extract the features of the input images with four scale layers, while the
skip connections fuse the encoder layer features with the decoder upsample convolution
network, and the decoder finally outputs a depth map corresponding to the pixels of
the input image. The pose module (PoseNet) uses ResNet [47] to extract image features,
and then the decoder adopts convolution layer regression, six parameters of [R, t]. PoseNet
take, as input, the concatenation of the target image It and two neighbor (source) images IS,
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S ∈ {t− 1, t + 1}. It outputs transformation matrices, T̂T→S represent the six degrees of
freedom (6DoF) relative poses between the images. Self-supervised learning is proceeded
by image reconstruction using the inverse warping technique. The inputs of the training
sample include the target frames IT at t and the source frames IS at the nearby frame
IS ∈ {It−1, It+1} [31]. The self-supervised training uses the source images IS to synthesize
the target image IT . When the depth, together with the pose, is provided, the source image
can synthesize a new view (target) by applying a projective warping from the source camera
point of view. The sampling is done by projecting the homogeneous coordinates of the
target pixel pt onto the source view ps [30]. Given the camera intrinsics K, the encoder–
decoder network DepthNet estimated depth of D̂T(p) and the pose module-predicted
transformation matrix T̂T→S, the projection is done by the equation:

xpS ∼ KT̂T→SD̂T(pt)K−1 pt. (1)

we adopt the popular combination of the least absolute deviation loss (L1 loss) and struc-
tural similarity index (SSIM) by [4] computing the photometric errors,

Lpe = ∑
S

∑
p
|IS(pt)− ÎS(pt)|. (2)

where ÎS(pt) is the intensity value of pt in the reconstructed image ÎS, p represents the pixel
in the image, and S represents the source image. We use the edge-aware depth smoothness
loss, which uses the image gradient to weigh the depth gradient [30]:

Lds = |∂xd∗t |e−|∂x IT | + |∂yd∗t |e−|∂y IT | (3)

3.2. Deep Visual Odometry Based on Keypoint

We chose SuperPoint [23] as our DVO network backbone instead of traditional feature
extractors, e.g., ORB [9,36], SIFT [37]. SuperPoint is a learning-based feature extraction
method that has a shared encoder with two decoders, similar to the traditional feature
extraction method SIFT, and has both feature point detection and description functions.
The encoder is based on VGG network architecture and consists of convolutional layers,
spatial downsampling via pooling, non-linear activation functions, and rectified linear unit
(ReLU). After the encoder, the architecture splits into two decoder “heads”, which learn task-
specific weights for interest point detection and interest point description. When the feature
points of two adjacent frames are obtained from KeypointNet, we associate the feature
points of the two frames through MatchNet. Taking advantage of geometric constraints of
3D structures from sequence frames, we join estimate depth and pose in a self-supervised
manner using photometric consistency, we get correspondences from matched deep features
by using a deep detector and descriptor and recover the camera pose via traditional
geometry methods. Specifically, the correspondences located in occluded or out-of-bounds
dynamics regions, are masked out to improve the accuracy of 2D–2D correspondences.

We refer to the image pair Ii and Ij as the input of feature extractions, the transforma-
tion matrix from Ii to Ij as Tij = [R, t], where R ∈ R3×3 is the rotation matrix and t ∈ R3×1

is the translation vector. The DVO network includes a shared encoder and detector and
descriptor heads as the detector and descriptor, respectively. It extracts features from input
images Ii, Ij ∈ RH×W×1, an output detector feature Hdet ∈ RH×W×1, and descriptor feature
Hdesc ∈ RH×W×D. Then Hdet applies non-maximum suppression to get sparse keypoints.
Moreover, the descriptor is sampled from Hdesc using bilinear interpolation, which filter
out redundant candidates by non-maximum suppression.

Deep Pose Estimation Decode

Typically, the traditional visual odometry pose[R, t] estimation method includes epipo-
lar geometry-based and PnP-based. When the 2D–2D pixel correspondences (pi, pj) be-
tween the image pair builds, we can use the epipolar geometry-based method to solve
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the fundamental matrix F via the simple normalized 8-point algorithm in random sample
consensus (RANSAC) loop [47]. The epipolar geometry solves F:

pT
j Fpi = 0, F = K−T[t]×RK−1 (4)

where the correspondences (pi, pj) are formed from SuperPoint, F is the fundamental
matrix, K is the camera intrinsics. However, in some cases, the fundamental matrix will
fail to solve. Perspective-n-Point (PnP) is used to solve camera pose given 3D–2D corre-
spondences when the camera motion is pure rotation or the camera translation, tinily. PnP
minimizes the reprojection error:

e = ∑
i
‖(RX1,i + t)− p(2, i)‖2 (5)

Epipolar and PnP methods need constant judgments, a switch in motion process,
and difficult-to-solve complex motions, which are not robust and are not accurate. There-
fore, we use the network to replace the geometric solution method and fuse the network
prediction with IMU poses in the training strategy.

The MatchNet outputs match N feature points. We feed the points [6× N] in which
the correspondences (pi, pj) are formed from SuperPoint detection, matching into the one-
dimensional CNN network, then process them through long short-term memory (LSTM)
layers with 128 and 256 cells and a fully connected (FC) layer. The output layer contains
two linear layers to produce the prediction of rotation and translation SE(3)dvo.

3.3. DeepVIO Fusion Module

As aforementioned, we can resolve the inherently scaled ambiguity, and DVO sig-
nificantly degrades in some scenarios by fusing DVO with IMU data. Different from the
previous learning-based method, which directly feeds the IMU and images into the net-
work to predict the pose or use the IMU as the L1 loss of the DVO output, we designed a
monocular DeepVIO that combined the DVO with DIO by using EKF to predict and update
the pose state. We first define the IMU model at time τ, the measured accelerometer values
am, gyroscope values wm, and the robot state Svø at time τ.

The accelerometer and gyroscope random noise na, nw, ḃaø = nba , ḃaø = nba , ḃwø =
nbw are assumed to mean Gaussian na ∼ N

(
0, σ2

a I
)
:

am = avτ i
vτ

+ Cvτrk grk + baτ + na

ωm = ωvτ i
vτ

+ bωτ + nω

(6)

where Cvørk is the robot states, grk is the gravity vector. Moreover, the robot states are defined:

Ċrkvτ = Crkvτ

[
ωvτ i

vτ

]∧
ṙvτrk

rk = Crkvτ vvτ i
vτ

v̇vτ i
vτ = avτ i

vτ −
[
ωvτ

vτ

]∧vvτ i
vτ

ḃωτ = nbω

ḃaτ = nba

(7)

We get the linearized system from (6) and (7). The system matrix is defined F, the
linearized error matrix G, and the noise n = [nT

w nT
bw

nT
a nT

ba
]. To solve the error states, δẋτ

is used to propagate error state covariances:

δẋτ = Fffixø + Gn (8)
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We apply Euler’s method transform continuous model (8) to discrete time. From time
tτ to tτ+1 δt = tτ+1 − tτ , the sate transition matrix Φτ,τ+1 use the order approximation:

Φτ,τ+1 = exp
(∫ tτ+1

tτ

F(s)dt)
)
≈ I + Føffit (9)

Then the IMU measurement propagates state covariance Q to the next step
state covariance:

Q = diag(σ2
w I, σ2

bw
, I, σ2

a I, σ2
ba

I) (10)

P̌τ+1 = Φτ,τ+1P̌τΦT
τ,τ+1 + GQGTffit (11)

3.3.1. DIO-Net Measurement Model

In this paper, we propose a DIO-Net deep inertial odometry network to replace
the inertial odometry data process, preintegration, and pose prediction. The DIO-Net
architecture is illustrated in Figure 3. To obtain the IMU data that have space features, we
associate CNN and LSTM in the deep inertial odometry. The model is comprised of two
CNNs to extract the deep feature firstly; two LSTM layers, preintegrated features, and two
linear layers produce the final odometry prediction. Furthermore, the IMU data enters
32 × 32 , 64 × 64, 128 × 128 CNNs for feature extraction, and then the features enter the
LSTM layers after ReLU, and finally FC outputs the six parameters of pose. In this process,
the CNN transforms the input feature to a 128-channel feature, then LSTM processes the
last layer feature and outputs 256 channels feature, the FC regresses the 3D rotation, and
the 3D translation presents as SE(3)dio.

Figure 3. Pose fusion module based on EKF. On the (left), the DVO-Net inputs the matching points
of the matching network, encodes the matching points through the LSTM network, and outputs
SE(3)dvo through the FC as the measurement value of EKF. On the (right), the DIO-Net inputs
the original IMU data and extracts the features through CNN, and then outputs SE(3)dio as the
initial value of EKF through the 128-channel LSTM network and the FC network. The EKF module
integrates DVO and DIO modules, and finally outputs the pose.
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3.3.2. DIO and DVO EKF Fusion Model

Our EKF model is robot-centric-based, and the EKF propagates its state based on the
kinematics theory, maintaining the system’s differentiability. It incorporates vision and
IMU relative measurements learned from deep networks in its update step, as well as
uncertainty. With new image and IMU data input, the result of DIO prediction is set to the
observations of EKF and the pose of DVO prediction is set to a robot-centric state. EKF fuses
the DVO and DVI results, performs the EKF operation to obtain the fused system state,
and finally moves the time stamp from k to k + 1, and repeats the above steps. We express

the DVO estimated pose SE(3)dvo as: z̃ =
[
φ̃T

rkvk+1
r̃vk+1rkT

rk wT
Œ wT

r

]T
The covariance

Rk can be represented as a diagonal matrix. The measurement residual εk+1 =
[
εT

θ εT
r
]T :[

εθ

εr

]
=

[
ln(exp(φ̃∨rkvk+

)CT
rkvk+1

)

r̃vk+1rk
rk − rvk+1rk

rk

]
(12)

where (·)∧ is skew symmetric operator.
In the training process, to make the network residual differentiable from the mea-

surement residual, we approximate the network output residual to εθ = φ̃rkvk+1 − φrkvk+1

by using Baker–Campbell–Hausdorff (BCH). The error states could find the DVO Jacobin
Hk+1 =

∂εk+1
∂δxk+1

, and the εθ and εr are represented as:

[
εθ

εr

][
φ̃rkvk+1 φ̂rkvk+1 + Jr(φrkvk+1)

−1δφrkvk+1

r̃vk+1rk
rk + r̂vk+1rk

rk − δrvk+1rk
rk

]
(13)

The final DVO Jacobin Hk+1 is shown in (14).

Hk+1 =

[
09×0 −J(−Œ̆rkvk+1) 0 09×0
09×0 0 −I 09×0

]
(14)

The EKF estimation update and error δx̂k+1 are shown in (12)(13)(14); the calculation
of the Kalman Gain:

Kk+1 = P̌k+1HT
k+1(Hk+1P̌k+1HT

k+1 + Rk+1)
−1 (15)

The calculation of the posterior state and covariance:

P̂k+1 = (I−Kk+1Hk+1)P̌k+1 (16)

The error δx̂k+1:
δx̂k+1 = Kk+1εk+1 (17)

where Hk+1 is the measurement Jacobian, Rk is corresponding covariances, εk+1 is the
measurement residual.

Finally, the reference frame for all states is shifted forward from frame Srk to frame
Srk+1, and the robot pose transforms to the next EKF iteration after it is composed with the
DVO pose. The VIO fusion final output:

P̂k+1,rk+1
= Uk+1P̂k+1UT

k+1, Uk+1 =
∂δx̂k+1,rk+1

∂δx̂k+1
(18)

Using the output of the EKF fusion module, the DVO updates T̂vo = [R, t] ∈ SE(3)dvo
and regresses the network, with the rotation component R ∈ SO(3), and the translation
component t ∈ R3. The pose loss Lrt = |T̂dvo − Tdio| is defined for all pairs of relative pose
transformations; it contains the rotation loss Lrot and translation loss Ltrans:

Lrot = min(‖Rdvo − Rdio‖2)
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Ltrans = min(‖tdvo − tdio‖2) (19)

The pose total loss is defined:

Lrt = min([Lrot(Rdvo, Rdio) + cr]+

βrt[Ltrans(tdvo, tdio) + ct)])
(20)

3.4. Supervised with Sparse Depth from DeepVIO

In order to resolve the scale ambiguity problem and enhance the geometric constraints,
we fuse the self-supervised depth estimation process with the output of DeepVIO based
on the 3D geometry structure. Depending on the dense correspondences and the pose
from DeepVIO, we can directly recover the sparse depth map Ds with an absolution scale
through the two view triangulation module [42]. Then the sparse depth map Ds aligns the
scale of prediction depth Dp by using the scale factor ws = mean(Ds/Dp). Then, the refined
depth D f = wsDp is supervised by sparse depth Ds to minimize error. The depth loss Lsd
is defined with Ds:

Lsd = ∑
p
‖Ds − D f ‖ (21)

The total training loss is given by

Ltotal = Lpe + λdsLds + λrtLrt + λsdLsd (22)

where λds, λrt, λsd are the weight of edge-aware loss Lds, pose loss Lrt and sparse depth Lsd.

4. Results

In this section, we conduct several experiments to present the evaluation results of
depth and odometry estimation on the KITTI [48] and Oxford RobotCar dataset [49] dataset.
We support our analysis with some visualizations, to verify our design decisions.

4.1. Implementation Details

As shown in Figure 2, our framework includes three subnetworks—SuperPoint, Depth-
Net, and DeepVIO—implemented in PyTorch. There are around 20 M trainable parameters
and it takes 40 h to train the network on a GTX 2080Ti GPU. The input image resolution is
set to 640 × 192; the batch size is set to 4. Adam optimizer is used for minimizing the loss
function, with β1 = 0.9, β2 = 0.99, and the batch size is set to 4. The weights λds, λds in
the loss function are set to 0.55 and λds is set to 0.1. For DeepVIO, we use the pre-trained
SuperPoint network to extract and match the correspondences and then connect to DVO
for pose estimation. We set cr = 0.15, cr = 0.75 and βrt = 0.1. Firstly, we only train the
DeepVIO network with DIO supervising 25 epochs, then use the trained DeepVIO to train
depth estimation in an unsupervised manner via image reconstruction loss. After 25 epochs,
we then jointly train both networks for 10 epochs.

4.2. Datasets

To train, validate, and test our system, we validate our design on the original KITTI
dataset [50] and KITTI Odometry dataset. The original KITTI dataset consists of 389 pairs
of stereo images and depth maps, 39.2 km of visual ranging sequences, a Velodyne laser
scanner, and a GPS/IMU localization unit, sampled and synchronized at 10 Hz. The odom-
etry benchmark consists of 22 stereo sequences, saved in lossless png format. It provides 11
sequences (00–10) with ground truth trajectories for training and 11 to 21 sequences) with-
out ground truth for evaluation. For the original KITTI dataset, according to Eigen et al.,
we split 23,488 images from 32 scenes for training and 697 images from 29 scenes for
testing [50].

The Oxford RobotCar dataset [49] uses the Oxford RobotCar platform, an autonomous
Nissan LEAF, to traverse the route through the Oxford city centre twice a week on average
between May 2014 and December 2015. The dataset records over 1000 km of driving
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records, collecting nearly 20 million images from 6 cameras mounted on the vehicle, as well
as LiDAR, GPS, and INS ground truth. We use the Oxford RobotCar dataset to test the
robustness of our algorithm.

4.3. Depth Estimation

We adopted evaluations on the KITTI Raw and KITTI Odometry datasets. There were
four error metrics already used in previous works [4,6,50], namely absolute relative error
(Abs Rel), square relative error (Sq Rel), root mean square error (RMSE), and the root
mean square error in log space (RMSE log). Other accuracy metrics are the percentages of
pixels where the ratio (δ) between the estimated depth and ground truth depth is smaller
than 1.25, 1.252, and 1.253. We compare our method with several self-supervised depth
estimation SOT methods and summarize our results in Table 1. In addition,we illustrate
their performance qualitatively in Figure 4. In contrast to previous methods, our method
outperforms other competitors and shows improvements in most evaluation metrics. It
improves the baseline method by 8%. We show that our proposed DeepVIO architecture
can increase the geometric constraints of monocular depth and improve the accuracy of
monocular depth estimation. In Figure 4, we compare the supervised depth estimation
DORN [29], unsupervised depth estimation Monodepth2 [30] with end-to-end PoseNet
and unsupervised depth estimation TrainFlow [24], with PoseNet, based on optical flow,
respectively. The results show that our proposed DeepVIO method can improve the
accuracy of depth estimation and enhance the detail of depth estimation at the edge
of objects.

Table 1. Quantitative comparison between our proposed system and state-of-the-art depth learning
methods for monocular depth estimation on the KITTI dataset. Bold font indicates best results.

Methods Error Accuracy, δ
AbsRel SqRel RMS RMSlog <1.25 <1.252 <1.253

Zhou et al. [51] 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Mahjourian et al. [52] 0.163 1.240 6.220 0.250 0.762 0.916 0.968

Geonet [53] 0.155 1.296 5.857 0.233 0.793 0.931 0.973
DDVO [54] 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [55] 0.150 1.124 5.507 0.223 0.806 0.933 0.973

CC [56] 0.140 1.070 5.326 0.217 0.826 0.941 0.975
EPC++ [57] 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth (-ref.) [58] 0.141 1.026 5.291 0.215 0.816 0.945 0.979
GLNet (-ref.) [59] 0.135 1.070 5.230 0.210 0.841 0.948 0.980

SC-SfMLearner [60] 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Gordon et al. [61] 0.128 0.959 5.230 0.212 0.845 0.947 0.976

Monodepth2 (w/o pretrain) [30] 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Monodepth2 [30] 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Ours 0.105 0.842 4.628 0.208 0.860 0.973 0.986

An ablation study is carried out for depth estimation performance of dynamic objects,
such as people or cars in the point cloud. We combine RGB and depth projection into
3D point clouds with camera intrinsic K, and compare it with the supervised method
DORN [29], and the unsupervised method, TrainFlow and Monodepth2. As shown in
Figure 5, compared with the supervised method DORN and the optical flow-based VO
supervised depth estimation method TrainFlow [24], we find that the fusion of sparse point
clouds and the absolute scale into the unsupervised depth estimation could significantly
improve the monocular depth estimation results in the dynamic environment.
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Figure 4. Qualitative results on the KITTI dataset. The depth result from left to right: DORN [29],
TrainFlow [24], Monodepth2 [30] and Ours.

Figure 5. The influence of dynamic objects on the depth map visualization. From top to bottom:
depth map, point clouds and partial point clouds generated by raw LiDAR, DORN, TrainFlow, and
by our approach.

4.4. Pose Estimation

We follow the previous works on KITTI Odometry criteria evaluating possible sub-
sequences of length (100, 200, . . . , 800) meters and report the average translational errors
terr(%) and rotational errors rerr(◦/100 m). It measures the difference between the points of
the ground truth and the predicted trajectory. Using timestamps to associate the ground
truth poses with the corresponding predicted poses, we compute the difference between
each pair of poses and output the mean and standard deviation.
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Table 2 reports the evaluation results of the DeepVIO output poses, and compares them
to the previous works, such as ORB-SLAM2 [36], Deep-VO-Feat [52], SFM-Learner [51], SC-
SfMLearner [60]. Both extensions improve the baseline and the attention module performs
well. When coupled with the self-supervised depth estimation, the DeepVIO performance
training—to have a consistent pose estimation—outperforms all of the state-of-the-art,
compared to classical SLAM libviso2 and learning-based techniques, Sc-SfMLearner and
SfMLearner [5,13,62]. Figures 6 and 7 show the trajectory in the XY-plane. In Figure 6, our
trajectory can start from the starting point and return to the origin, forming a closed loop,
such as the graph, proving that our pose estimation is relatively accurate. In Figures 6 and 7,
especially in contrast to the GT trajectories, our trajectories are able to follow the GT since
our approach of introducing absolute scales could preserve the reality scale of the pose.

Table 2. Visual odometry results in the KITTI Odometry dataset. The average translation and rotation
errors are reported. Bold font indicates best results.

Methods Seq.09 Seq.10
terr(%) rerr(◦/100 m) terr(%) rerr(◦/100 m)

VISO2 18.06 1.25 26.10 3.26
ORB-SLAM2 [9] 2.84 0.25 3.30 0.30

Deep-VO-Feat [52] 11.89 3.6 12.82 3.41
SC-SfMLearner [60] 7.64 2.19 10.74 4.58

SfMLearner [51] 11.32 4.07 15.25 4.06
Ours 2.41 0.31 2.19 0.41

Figure 6. Results of pose estimation: KITTI sequence 09 trajectory.
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Figure 7. Results of pose estimation: KITTI sequence 10 trajectory.

4.5. Ablation Study

We also performed ablation experiments to examine the effectiveness of our contribu-
tions. The first ablation study was carried out by comparing the depth value error between
the predicted depth and ground truth. Random snippets of images were taken from the
KITTI dataset , testing the images through the framework. Then we selected the points
with the larger error between the predicted value and ground truth value. Experimental
results are shown in Figure 8. It can be observed that, in the weak texture region, or far
away areas, the predicted depth from our framework obtained the absolute scale with
DeepVIO, improving generalization ability.

Figure 8. The maximum depth error visulization. The (top) mapmask the points which the error
between GT depth andpredicted depth is more than 1m. The (bottom) is the predicteddepth map.

In addition, we used the Oxford RobotCar dataset, which, including video image
sequences and IMU data to test the adaptability of our method. In the RobotCar dataset
experiment, we compare it with TrainFlow [24] and Monodepth2 [30]. The results in
Figure 9 show that our method is more applicable to other datasets than other methods.
This proves our method can adapt to different environments, since we added DeepVIO in
the depth estimation.
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Figure 9. The depth estimation results on Oxford RobotCar [49] dataset.

5. Discussion

The proposed, new, self-supervised depth and pose estimation framework combines
DepthNet with DeepVIO to supervise each other. To our knowledge, it is the first such
attempt in this domain. The proposed model shows good depth estimation and pose results
compared to other reference methods. These experiments also demonstrate the applicability
of the EKF fusion is valid at pose estimation and absolute scale. In self-supervised depth
estimation, we make full use of the pose and sparse depth produced by Force DeepVIO,
where the pose is used to synthesize the target image to minimize the reprojection error,
and the sparse depth is used to correct the dense depth output by DepthNet. In depth
estimation result evaluations, 3D point clouds synthesized with estimated depths, and
camera parameters could "value" the depth and pose accuracy. In particular, in autonomous
driving scenarios, where the camera on the car is moving and there are moving objects
in the scene, depth estimation is challenging. As shown in Figure 10, in the point cloud
restoration experiment, our method reconstructs the point cloud of the detailed parts of
the scene, such as cars and utility poles. Compared with other methods, our method can
restore the geometry of the objects better.

Despite the overall promising results, our network framework contains many sub-
networks: DepthNet, SuperNet, DIO, and DVO. In the process of joint network training,
it is necessary to train partial networks and then freeze their parameters to train other
networks, which is prone to failure. In the experiments, we first pre-train DeepVIO, use the
network parameters provided by SuperNet, train DIO and DVO, and finally train jointly
with DepthNet. Therefore, it is necessary to consider how to simplify the network structure
and reduce the number of sub-networks in future work. Furthermore, in self-supervised
depth estimation, the method of normalizing the dense depth estimated by DepthNet,
with the mean of the sparse depths, over-relies on the number of sparse depth values. If
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few feature points are extracted and matched, the effect of the depth scale supervision
is degraded.

Figure 10. Depth estimation result point cloud visualization on the KITTI dataset.

How to improve the geometric constraints of self-supervised depth estimation has al-
ways been an important issue in the field. Recently, some researchers used sparse LiDAR to
complement the depth map estimated by the depth estimation network to increase geomet-
ric constraints. The fusion of sparse LiDAR points and IMU raw data can directly calculate
the pose, which can reduce the feature extraction and matching process of deep learning.
This not only reduced the number of sub-networks and computing resources, but also
increases the geometric constraints and the pose of the true scale, and could solve complex
network problems. In addition, depth estimation also needs to consider some special
scenarios, such as dark, foggy, rainy, and snowy weather. These scenes are very challenging
scenes, and some recent studies have focused on these problems, such as Wang, K et al. [63]
research on depth estimation in night environments. With the widespread application
of depth estimation, new research needs to consider special scenarios to make depth
estimation more general.

6. Conclusions

We propose a new depth and odometry estimation framework that integrates Deep-
VIO with depth estimation in a self-supervised learning-based method. We combined the
strengths of learning-based VIO and depth estimation to build an end-to-end learning
architecture. The deep keypoint-based visual odometry module captures dense correspon-
dences by using the SuperPoint feature detector and descriptor and solves the pose and
sparse depth through the two-view triangulation geometry method. The DVO joins the
DIO by EKF and predicts and updates the pose state. Finally, the sparse depth and pose are
used to refine prediction depth and enhance geometry reconstruction. The experiments
show that our presented model outperforms all other state-of-the-art depth estimation
methods on the KITTI dataset, and shows excellent generalization ability on the Oxford
RobotCar dataset.

Future work includes the depth completion method for guiding depth estimation
with the sparse depth from DeepVIO to bring further improvements. Finally, exploring
the benefits of the improved depth prediction for 3D reconstruction is another interesting
research direction [35,44].
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