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Abstract: One of the key applications of digital elevation models (DEMs) is cartographic relief pre-
sentation. DEMs are widely used in mapping, most commonly in the form of contours, hypsometric
tints, and hill shading. Recent advancements in the coverage, quality, and resolution of global DEMs
facilitate the overall improvement of the detail and reliability of terrain-related research. At the
same time, geographic problem solving is conducted in a wide variety of scales, and the data used
for mapping should have the corresponding level of detail. Specifically, at small scales, intensive
generalization is needed, which is also true for elevation data. With the widespread accessibility
of detailed DEMs, this principle is often violated, and the data are used for mapping at scales far
smaller than what is appropriate. Small-scale relief shading obtained from fine-resolution DEMs is
excessively detailed and brings an unclear representation of the Earth’s surface instead of empha-
sizing what is important at the scale of visualization. Existing coarse-resolution global DEMs do
not resolve the issue, since they accumulate the maximum possible information in every pixel, and
therefore also require reduction in detail to obtain a high-quality cartographic image. It is clear that
guidelines and effective principles for DEM generalization at small scales are needed. Numerous
algorithms have been developed for the generalization of elevation data represented either in gridded,
contoured, or pointwise form. However, the answer to the most important question—When should
we stop surface simplification?—remains unclear. Primitive error-based measures such as vertical
distance are not effective for cartography, since they do not account for the landform structure of the
surface perceived by the map reader. The current paper approached the problem by elaborating the
granularity—a newly developed property of DEMs, which characterizes the typical size of a landform
represented on the DEM surface. A methodology of estimating the granularity through a landform
width measure was conceptualized and implemented as software. Using the developed program
tools, the optimal granularity was statistically learned from DEMs reconstructed for multiple frag-
ments of manually drawn 1:200,000, 1:500,000, and 1:1,000,000 topographic maps covering different
relief types. It was shown that the relative granularity should be 5–6 mm at the mapping scale to
achieve the clearness of relief presentation typical for manually drawn maps. We then demonstrate
how the granularity measure can be used effectively as a constraint during DEM generalization.
Experimental results on a combination of contours, hypsometric tints, and hill shading indicated
clearly that the optimal level of detail in small-scale cartographic relief presentation can be achieved
by DEM generalization constrained by granularity in combination with fine DEM resolution, which
facilitates high-quality rendering.

Keywords: digital elevation models; cartographic relief presentation; generalization; level of detail;
granularity

1. Introduction

Digital elevation models (DEMs) are widely used in modern cartography and GI-
Science. Aside from the computation of useful topographic variables, DEMs are often
just visualized—to represent relief on a map. Since maps are created in a wide range of
scales, appropriate generalization of DEMs is needed, otherwise relief presentation will be
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crowded with excessive details. Resolution and coverage of elevation data have increased
dramatically over the last few decades. Current global DEMs such as the MERIT DEM [1]
and the NASADEM [2] provide global or semi-global coverage of the land with a resolution
of 30–90 m. Less extensive airborne LIDAR or optically derived DEMs may have resolu-
tions from the first meters up to the first centimeters [3]. Since finer resolution is often
considered to be an indicator of higher DEM quality, it is not uncommon to see small-scale
maps produced from such detailed sources without generalization. However, the lack of
generalization decreases the map readability and damages the visual impression.

The understanding of what is large, middle, or small scale differs between the stan-
dards adopted by national mapping agencies, academic institutions, and application areas.
In this paper, the classification by Imhof [4], which was developed specifically for car-
tographic relief presentation, was followed. According to Imhof’s observations, scales
smaller than 1:100,000 are characterized by the unavoidable necessity of generalization.
The simplification of the surface represented by contour lines extends more or less over
the whole map image and not only in particular places. Such scales are considered to be
small. Therefore, in the current study, DEM applications for mapping at scales 1:200,000
and smaller were of interest.

Since each map scale corresponds to a specific level of detail (LoD), it can be de-
composed into several components. Ruas and Bianchin [5] conceptualized the LoD of a
spatial database as a combination of conceptual schema of the data, semantic resolution,
geometric resolution, geometric precision, and granularity. While schema, resolution, and
precision reflect the potential capacity of a database to represent the real world, the last
LoD component—a granularity—defines the actual size of spatial features and elements
of their shape (such as bends), which will be shown on a map. In the case of relief, such
features are landforms—hills, valleys, etc., and their subordinate elements.

Relief generalization has been a well-elaborated topic since the times of traditional manual
cartography. Useful recommendations can be found in specialized monographs [4,6] and official
guidelines for topographic map creation published by national mapping agencies [7,8].
While such publications are quite comprehensive in describing the qualitative principles of
surface simplification, they are somewhat stingy in terms of the numerical description of
the desired relief granularity. For example, the linear size of surface discontinuities such
as cliffs, gullies, or faults to be shown on a Russian topographic map of 1:200,000 scale
must be at least 3–10 mm depending on the type of feature [7]. A recommended minimum
size of colored area symbols is 4 mm2 according to Swiss Society of Cartography [8]. Still,
recommendations on the minimum or typical landform size are hard to find, and usu-
ally, this size is said to be capable of reflecting the “surface features typical at mapping
scale” [6].

It seems, however, that DEM granularity must be comparable to the general rec-
ommendations for representing the smallest objects, which are about the first millime-
ters in linear dimensions on a map. Moreover, perceiving the objects from a computer
screen is usually harder than from a printed medium; therefore, this threshold can be
deliberately enlarged.

This paper presents the computational approach that formalizes the determination
of DEM granularity and its suitability for mapping at a certain scale. In the first stage,
the computation of the granularity is elaborated through a new measure called landform
width. In the next stage, the optimal granularity is statistically learned using DEMs
reconstructed from topographic maps covering different terrain conditions. Experimental
work was then conducted to achieve the optimal detail of cartographic relief presentation
at the specified scale by DEM generalization constrained by granularity. The resistance of
landform width measure to DEM upsampling was assessed in the final experiment.

The rest of the paper consists of several sections. In Section 2, an overview of the
related research is presented. Sections 3 an 4 uncover the developed methodology and
its implementation. The results of the experimental work are presented in Section 5.
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The discussion on the limitations of the developed approach comprises Section 6. Finally,
the Conclusion summarizes the most important findings of the research.

2. Related Research

The quality of digital elevation models is a frequently discussed topic in scientific re-
search. Understanding the quality, as well as possible quality measures and their preferred
values are not universal and depend on the user’s task [9]. Small-scale mapping based on
DEMs is a specific task that puts the appropriate generalization in front of other quality
aspects [4]. At the same time, surveys indicate that users typically express unwillingness
to devote much time to evaluate the impact that DEM quality might have on their appli-
cations [10]. These conditions imply that various DEM quality assessment methods are
needed, and these methods should be automated as much as possible.

Accuracy is one of the most frequently discussed quality aspect of DEMs [11–13]. Specifically,
the differences in accuracy depending on the ruggedness of relief have been revealed [14,15],
so that segmentation into morphologically homogeneous zones is sensible in the prediction of
the expected DEM accuracy. However, as Mesa-Mingorance and Ariza-López [13] noted, such
segmentation is usually just a stratification (flat, mountainous areas, etc.), which means that
individual landforms are not extracted. According to Polidori and El Hage [9], accuracy is
essential to the two sides of DEM quality: elevation quality (absolute or relative accuracy) and
shape and topological quality (related to the accuracy of DEM derivatives such as slope, aspect,
curvature, etc.). The same authors explained DEM resolution as the ability of the DEM to
discriminate objects, while the term “mesh size” has different meaning and can be irrelevant
to the actual DEM resolution. A small mesh size is a necessary condition to guarantee a
high resolution [9]. Though the authors claimed that resolution is often used improperly
(also interchangeably with mesh size), the problem is that both terms represent the ability,
but not the actual size of the landforms represented in the DEM, which is probably one
of the reasons why they are difficult to differentiate. Guth et al. [16] discussed this in a
more technical way by defining the resolution as the “horizontal dimensions of the smallest
feature detectable by the sensor and modified after the gridding procedure, generally given
in meters”. However, this sensor-oriented definition of resolution is too specific for DEMs
obtained from non-sensor sources (such as topographic maps) or processed with filtering
and other generalization procedures.

While numerical measures of DEM accuracy are essential in error propagation during
terrain analysis, they are much less informative in the assessment of DEM suitability for the
creation of maps. The reason is that these measures cannot handle the quality of landform
representation on a map, i.e., describe the morphology and size of terrain features being rep-
resented. The smaller the scale, the less important is the accuracy and the more important
is the morphological plausibility of relief representation [4]. Podobnikar [17] advocated the
use of visual analytics in the assessment of DEM quality. He suggested multiple techniques
based on the visualization of the results of spatial analytical and statistical operations,
as well as non-spatial visualizations, which facilitate understanding of imperfections that
exist in the DEM. In particular, he offered an examination of characteristic points, lines, and
areas and searching for their false patterns. It seems that if such characteristic elements are
the most distinctive features of the relief surface, then properties based on their distribu-
tion can lead us to DEM quality measures that characterize the suitability of the DEM for
mapping purposes.

The detection of characteristic surface features is a well-elaborated topic in geomor-
phometry and hydrological DEM analysis. Peucker and Douglas [18] described so-called
surface-specific points as those that furnish more information about the surface than just the
coordinates. Traditionally, points located at peaks, pits, passes, ridges, drainage points
(ravines), and breaks are considered to be specific. Such points can be identified based on
relationships between elevations in a moving 3× 3 window [18,19]. A subset of such points
located along drainage and watershed lines can also be identified using flow direction
analysis [20,21]. At a glimpse, the density of surface-specific points is a potential proxy
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to estimate the average size of landforms (the more points, the smaller the landforms).
However, such a measure is not reliable, since a given point density can be induced either
by landforms of a similar size or by the same number of landforms that differ in size sig-
nificantly. Therefore, knowing the area covered by each landform or its linear dimensions
is essential.

Numerous methods for the subdivision of the surface into morphologically or hy-
drologically sounding areal elements have been suggested. These can be based on the
classification of surface derivatives [22–24], segmentation [25,26], flow direction [20,21],
or focal analysis [27]. The downside of all these methods is that each must be parameter-
ized, which means that the size of the derived landform elements such as hills, slopes,
valleys, saddles, watersheds, or drainage lines depends on initial parameter values such as
maximum curvature, lookup distance, or minimum flow accumulation. Moreover, only
segmentation and watershed delineation are truly object oriented, while other methods
just classify pixels to one of the destination types. These ambiguities characterize currently
existing approaches to the delineation of areal elements as insufficiently reliable to estimate
the size of the landforms represented in the DEM surface.

We may look at the problem from the side of cartographic generalization, which aims
at deriving a relief representation of optimal granularity. Many algorithms for automated
DEM generalization (actually, surface simplification) have been developed to date [28].
The earliest experiments date back to the 1970s when filtering was first applied to smooth
the surface and thus remove small features [29]. Filtering is controlled by moving the
window size and the number of iterations, but does not account for the existence of
landforms; hence, it is suitable only for subtle reductions in detail. Later, Weibel [30]
introduced a structural approach in which the simplified DEM is reconstructed using
structural lines such as streams and ridgelines. Surface-specific points are used in the
algorithm by Zakšek and Podobnikar [31] to reconstruct the raster DEM, while a similar
morphological approach can be applied for the simplification of triangulated models [32,33].

Drainage-constraining DEM generalization methods put specific focus on the preserva-
tion of selected streams, usually via constrained triangulation [33–35]. Similar raster-based
algorithms by Jordan [36] and Ai and Li [37] generalize the surface by filling the small
watersheds. There are also methods that combine drainage-based and a filtering approach,
providing a good balance between landform removal and surface smoothing [38–40]. Fur-
thermore, Raposo [41] showed that a variable-sized filter can be used to generalize the
surface effectively based on the local entropy measure. Contour-based methods of surface
simplification are particularly difficult to implement, because they require reconstruction
of topological relations between contours [42–44].

Despite the abundance of existing DEM generalization methods, there are surprisingly
no investigations that show how the granularity of generalized DEM can be assessed
for mapping at a certain scale. At the same time, each DEM generalization algorithm is
controlled by its own set of parameters such as the number of smoothing iterations, or a
curvature threshold to select ridgelines, or the length of a shortest stream to preserve.
The optimal parameter value is usually selected through a trial-and-error approach until
the DEM reaches the appropriate level of detail, which is assessed visually. This process
cannot be automated unless an effective measure of DEM granularity is developed. In the
following section, the newly developed approach that solves this problem is presented.

3. Methodology
3.1. Rationale

The developed method aims at producing a robust method for the assessment of DEM
granularity that satisfies the following requirements:

1. Parameter free: The method must be able to estimate DEM granularity without
any parameters;
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2. Height responsive: The computation of DEM granularity must account not only for
the horizontal dimensions of landforms, but also for their heights. Higher landforms
must have a higher impact on the granularity value;

3. Upsampling resistant: Granularity changes should be insignificant when the DEM is
upsampled (pixel size is made smaller).

The first requirement aims at making the method fully automatic. The second require-
ment increases the impact of the most prominent terrain features on the granularity value.
The third requirement ensures that going to a smaller pixel size by resampling does not
alter the granularity, since no landforms are added or removed. A similar requirement for
DEM downsampling is not sensible, since transition to the coarser resolution will inevitably
destroy small terrain features.

3.2. Landform width Measure

While it is possible to derive the boundaries of landforms using segmentation or some
other object-based image analysis technique, such methods require learning or parame-
terization, which will make the approach less universal. Since the goal was actually not
to derive the exact boundaries, but rather to estimate the size of a landform at each DEM
pixel, the mediated measure called landform width was developed. It is defined in the
following way:

The landform width at each location is the diameter of the largest circle that
covers the location and is inscribed in a landform boundary.

A circle-based approach was previously introduced by Samsonov et al. [45] to esti-
mate the width of the space between elevation contours and to reveal wide areas where
supplementary contours are needed. The application of this approach in the estimation of
the landform width is illustrated in Figure 1. In our explanations, the original term “region”
used to define the space between contours is replaced with the term “landform”. Having
this, landform width W(p) at point p located inside landform li is defined as the diameter
of the largest circle c that contains p and is entirely located within li:

W(p) = max
p∈c⊆li

d(c),

where d is the diameter of a circle. This largest circle c = Ĉ is called a dominant circle for the
point p, and the center of this circle (named p′) is called a dominant circle-reachable neighbor
of point p. Figure 1a illustrates the circle-based definition of the landform width. For the
clarity of illustration, it shows only a limited number of example points p and p′ and the
corresponding dominant circles.

Figure 1. Circle-based landform width computation (adopted from [45]): (a) Circle-based definition of
the landform width (brighter circles represent larger width). Points p’ are dominant circle-reachable
neighbors of example points p. Their circles A, B, C, and D are drawn in white. (b) A scalar field
with the distance to the nearest point along the landform boundary. (c) Propagation of the doubled
distance to the circle neighborhood of the corresponding size (brighter pixels represent larger circle
diameters). Pixel size is 2.5 m.
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The continuous field of landform widths is computed by a raster-based approach.
First, for each DEM cell, the Euclidean distance to the closest point on a landform boundary
is calculated and stored (Figure 1b). Next, an output raster field with the same spatial
resolution and coverage is allocated and initialized with zero values. Now, the doubled
value of each cell of the distance raster is propagated to the output cells that are covered
by the circle neighborhood of the corresponding size (Figure 1c). The resulting value is
determined by the following rule: if a pixel is empty or has a value smaller than the doubled
value of the distance raster, then its value is replaced with the doubled value of the distance
raster; otherwise, it remains unchanged. This is illustrated in Figure 1c, where pixels of
the lower left part of circle C are overridden by circle B, which has a larger radius [45].
To speed up the computations, a priority queue was organized where the cells with larger
Euclidean distances are processed first.

Having elaborated the method of landform width computation, the next step is to
formalize the extraction of the boundaries that would subdivide the DEM into landforms.
Since the calculation of the Euclidean distance seeks the closest point along the landform
boundary, it is possible not to search for linear boundaries, but approximate them with
a limited number of surface-specific points, which are supposed to be located along the
boundaries. The drainage points can be used for this purpose, since they are located along
the boundaries of positive landforms and are distinctive surface-specific points. Ridges and
other types of surface-specific locations can be quite fuzzy if the terrain is not rugged
and therefore are unreliable in the approximation of the landform boundaries.

Drainage lines are traditionally extracted by thresholding the flow accumulation
(catchment area) raster derived from the D8 flow direction model [46]. However, the hy-
drological approach is not suitable for our purposes, since the first requirement for the
granularity computation method is violated: a value of minimum flow accumulation is
needed as a parameter. Hopefully, a connected network of drainage lines is not needed
for our purposes, and it is sufficient to have just a set of points located along the drainage
lines. This relaxation opens the possibility to use a purely morphometric approach to
extract the drainage pixels from a DEM. In particular, a computational scheme based on
a 2× 2 moving window devised by Band [19] was found to be suitable. In this method,
the window is centered by its northwest cell, and the pixel having the largest elevation is
marked. After the whole raster is processed with such a window, all the unmarked pixels
represent the drainage pixels.

An example of landform width estimation based on drainage pixels is presented in
Figure 2a. Drainage pixels are colored in blue. Red dots are the sample locations selected
manually to illustrate the circle-based approach. Black circles are the dominant circles
calculated for the sample locations. It can be seen that each dominant circle is not necessarily
centered at the covered location. While the methodology of the derivation of drainage
pixels misses some minor ravines and the resulting set of pixels is not connected, it can
be clearly seen that it provides a fairly dense set of characteristic points to approximate
the boundaries of positive landforms. The resulting landform width surface is shown
in Figure 2b. Supplementary surfaces represented in Figures 2c,d are explained in the
following paragraph dedicated to the granularity calculation.

3.3. Granularity Calculation

After the landform width is estimated at each pixel of the DEM, it should be aggregated
to obtain one numerical value that characterizes the granularity of the DEM. While it
is possible to evaluate granularity just by calculating the mean or median value of the
landform width, the resulting value can be biased if the DEM covers morphologically
different areas or if the DEM is noisy.
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Figure 2. Preliminary steps of granularity calculation: (a) sample locations and their dominant
circles inscribed in a set of drainage pixels; (b) landform width; (c) relative elevation—a difference
between the elevation and base surface reconstructed from the triangulation of the drainage pixels;
(d) landform height.
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A typical example of the first situation is the case of mapping the mountain foothills: a
highly rugged terrain with a dense pattern of small landforms in one part of a map adjoins
a flat area where a few landforms can be recognized. A simple average over the area will
bias the granularity towards a larger landform width, reducing its potential to consider
small landforms. In contrast, noisy DEMs usually contain many small but insignificant
artificial “landforms”, which will bias the granularity towards a smaller landform width.

One can note that in both cases, the landforms that bias the resulting granularity have
small vertical dimensions. Therefore, if removal of such a bias is desirable, the granularity
G must be calculated as a weighted mean of the landform width, where landform height H
is used as a weight at each pixel p:

G =
∑p W(p)H(p)

∑p H(p)
.

The calculation of H requires the base surface of a “zero” level Z0 from which the
height of a landform can be estimated in the vertical direction up to the real surface elevation
Z. Since in our case the landforms are positive, such a surface can be reconstructed from the
elevations of drainage pixels. The interpolation method for this purpose should be local,
i.e., using only the elevations of drainage pixels that limit the current landform. TIN-based
interpolation satisfies this property and therefore was applied in the current paper.

The difference Z(q)− Z0(q) is the relative elevation of point q above the base level of
a landform. This variable is shown in Figure 2c. The resulting value of landform height can
be estimated by finding the maximum difference between the elevation and base surface
inside each dominant circle:

H(p) = max
q∈Ĉ3p

[
Z(q)− Z0(q)

]
This value is propagated to all pixels that are covered by the dominant circle, which

reflects their equally important contribution to forming a landform. The resulting landform
height surface is represented in Figure 2d. Using such a surface as a weight in averaging
the landform width allows satisfying the second requirement of the granularity method:
responsiveness to the landform height. Both the height and width variables are calculated
at the same time to reduce the need for duplicated propagation.

The general workflow of granularity calculation, which summarizes the developed
method, is represented in Figure 3.

Since the quality of cartographic representation is usually assessed in map image units
(mm, cm, or in), it is convenient to differentiate between absolute granularity, which is
expressed in DEM coordinate system units, and relative granularity, which is expressed in
map image units. For example, if the DEM has an absolute granularity of 1500 m, then its
relative granularities in 1:200,000 and 1:500,000 scales will be 7.5 mm and 3 mm respectively.
For the sake of brevity, we use the term “granularity” for the absolute granularity, while
the relative granularity is indicated explicitly in the rest of the paper.

3.4. Resistance to Upsampling

Resolution and granularity are inherently dependent properties of detail. In particular,
resolution sets the lower bound of the possible granularity: one pixel is the smallest space
available to represent the landform. DEM downsampling (increasing the pixel size) will
inevitably affect the granularity, since it is a destructive operation, which coarsens the
representation of landforms. The opposite upsampling (decreasing the pixel size) process is
non-destructive, but may introduce new subtle details in the surface caused by interpolation.
From the perspective of the DEM user, it is undesirable if the granularity estimation method
is sensible for these subtle changes. Since it is hardly possible to obtain exactly the same
granularity after upsampling, we need to define how exactly the change is measured
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and what value of change is a significance threshold. For this purposes, we used the change
ratio C:

Cv =
|v0 − v1|

min(v0, v1)
× 100%,

where v0 and v1 are the values of the variable v before and after transformation. The in-
fluence of upsampling on granularity was considered to be insignificant if the value of Cv
for granularity is at least an order of magnitude (10 times) smaller then the value of Cv for
raster resolution. For example, if the pixel size of a DEM is reduced from R0 = 100 m to
R1 = 50 m (CR = 100%) and the DEM granularity is G0 = 500 m, then its resulting value
G1 must be in the 455–550 m range for CG ≤ 10%. This property can be investigated easily
by upsampling the DEM and comparing the change ratios for resolution and granularity.

DEM

Drainage pixels

Euclidean 

distance

Base surface

Landform 

Width

Circle-based 

propagation

Triangulation

Surface-Specific 

Points

Euclidean DistanceMinus

Relative Elevation

Landform 

Height

Weighted average

Granularity

INPUT

OUTPUT

Figure 3. General workflow of DEM granularity calculation.

4. Implementation and Data Processing
4.1. Implementation

The developed method was implemented as a free and open-source raster-space
processing plugin for QGIS 3.x (https://github.com/tsamsonov/raster-space, accessed 22
February 2022). The computationally intensive part of the processing dedicated to landform
width estimation was programmed in the C++ language and linked as compiled Python
module. The remaining steps of granularity assessment were completed in the Python
language, using the QGIS, GDAL, SAGA, and Whitebox Python bindings. In particular,
the extraction of surface-specific points was achieved by the corresponding SAGA function.

4.2. Data Processing
4.2.1. Generation of Reference DEMs

For the current study, we used a multiresolution topographic database with 3 levels
of detail, created from Russian topographic maps of 1:200,000, 1:500,000, and 1:1,000,000
mapping scales (referred to interchangeably as 200, 500, and 1000 LoDs). These maps
were compiled in 2008–2010 by The Federal Service for State Registrations, Cadaster and
Cartography (Rosreestr) using the generalization of larger-scale maps. Each LoD contains
a set of layers representing relief, hydrography, vegetation, transportation, settlements,
and other standard elements of topographic maps. In particular, relief is represented by

https://github.com/tsamsonov/raster-space
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contour lines with specific intervals summarized in Table 1. Since these contour lines are
generalized manually by mapmakers to achieve the balanced level of detail, they were used
to reconstruct reference digital elevation models suitable for analysis with the developed
method and then to learn the optimal granularity. For this, 36 fragments centered on
Russian settlements located in different terrain conditions (108 fragments in total) were
extracted. Each fragment was clipped by a 100 km× 100 km rectangle and then projected
into the Lambert azimuthal equal-area projection with the corresponding center. The map of
sample fragments’ locations is represented in Figure 4.

Figure 4. Locations of sample fragments.

Table 1. Contour intervals, m.

Scale Plains Mountains

1:200,000 20 40
1:500,000 50 100

1:1,000,000 50, 100 100, 200

Raster DEMs were reconstructed from the extracted contour lines using the ap-
proach developed by Koshel [47]. Since the DEMs were created as data sources for
constructing the graphical surface representation, they must have fine resolution, which
is capable of representing abrupt changes in the terrain surface such as sharp ridges.
Specifically, for printed maps that are worked with from a typical distance of 30 cm,
the standard graphical quality of 0.1 mm must be ensured [48] (which, for example,
means using a DEM of 50 m resolution is required for mapping at the 1:500,000 scale).
For maps on computer screens, which are viewed from 2–3-times greater distances, a pro-
portionally coarser resolution can be applied. Hence, the DEM resolution was set to be
0.25 mm at the mapping scale, and pixel sizes for 200, 500, and 1000 LoDs were set to
50 m (2000× 2000 px), 125 m (800× 800 px), and 250 m (400× 400 px) correspondingly.

4.2.2. Experiments

Each reference DEM was processed by granularity estimation, which took 47 s, 7 s,
and 3 s on average for the DEMs of 200, 500, and 1000 LoDs. Cartographic representations
of the resulting reference DEMs for 1000 LoD, as well as calculated landform width rasters
are shown in Appendix A, Figures A1–A12. A classical combination of contours, hypsomet-
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ric tints, and hill shading was applied in the DEM visualization. The contour interval was
selected the same as on the corresponding topographic maps (Table 1), while hypsometric
tints and hill shading were similar for all fragments.

The granularities of the created DEMs were statistically analyzed to reveal the optimal
relief representation granularity for a small-scale mapping. In particular, the median
values and interquartile ranges of granularity were calculated for each LoD, which allowed
summarizing the values into the recommended range. The obtained values were also
interpreted in the context of Töpfer’s radical law [49] to quantify the intensity of landform
selection through scale changes.

To assess the effectiveness of granularity as an essential level of detail component, the
following experiment was conducted. Two fragments of NASADEM [2] having the same
spatial extent as the Bodaybo and the Groznyy fragments were extracted. The resolution of
extracts was 1′′, which corresponds to≈16.5 m for the Bodaybo fragment and≈23 m for the
Groznyy fragment. Each fragment was reprojected by warping into the Lambert azimuthal
equal-area projection with the corresponding center and metric resolution. Reprojected
DEMs were then generalized using a combination of structural simplification [40] and
feature-preserving smoothing [50] until the granularity of the generalized surface became
approximately equal (±5%) to the granularity of the reference DEM created from the
topographic map. The simplification was used to reduce the density of the landforms,
while smoothing was performed to reduce the noise and smooth discontinuities resulting
from the TIN-based interpolation of structural lines. The resolution of the generalized
DEMs was set to be 50 m, 125 m, and 250 m, correspondingly. For comparison, the source
NASADEM fragments were simply resampled (without generalization) using the cubic
interpolation to the same resolution R = 50 m, 125 m, 250 m and separately to the same
granularity G as the reference manually generalized DEMs. Resampled models were
compared to the generalized ones to check if the resolution or granularity can be used
alone to achieve the desired level of detail and to assess the necessity and positive effects of
generalization for that purpose.

Finally, the generalized Bodaybo and Groznyy NASADEM extracts were used to assess
the sensitivity of the current granularity implementation to DEM upsampling. For this,
generalized DEMs for each LoD were upsampled 2 and 4 times using bicubic interpolation,
and the granularities of resulting DEMs were compared to the granularities of the non-
altered DEMs with the initial resolution. To ensure that the changes were not dependent on
the terrain type, a similar experiment was performed for all reference DEM fragments of
the 1000 LoD.

5. Results
5.1. Optimal Granularity

To aggregate the granularity data obtained from the reference DEMs, we calculated the
summary statistics for each LoD. The distribution of the granularity values can be assessed
from Figure 5. In particular, the global median granularity value (indicated by the thick
vertical segment in each boxplot) was 1265 m, 2714 m, and 4510 m for the 200, 500, and
1000 LoDs, respectively. This corresponds to the relative granularity of 6.75 mm, 5.43 mm,
and 4.51 mm.

Since our experiment was aimed at finding the optimal DEM granularity, we proceeded
with finding the value that is the most representative for all analyzed LoDs. For this purpose,
we used the median value of the relative granularity and its interquartile range (Q1–Q3),
which is 5.38 (4.5–6.9) mm for all 108 DEM fragments. Seeing that the 5–6 mm interval
intersects with the interquartile ranges of all LoDs, we derived the following empirical rule
of thumb:

The optimal relative granularity of the digital elevation model for small-scale
mapping is 5–6 mm.

The observed decrease in relative granularity towards small scales indicated that
the relief representation on a map becomes denser after generalization and scale reduction.
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This tendency characterizes the intensity of landform selection and can be related to
Töpfer’s radical law of cartographic generalization. The law states that when the scale is
decreased two times, the number of objects generally decreases by

√
2 times [49]. Having

that the number of objects is inversely related to the area and the area of the circular
object is πr2, where r = W/2, we can calculate for a 200 → 500 (2.5-times) reduction:

22

π5.432 / 22

π6.752 =
(

6.75
5.43

)2
≈ 1.55 ≈

√
2.39 and similarly, for a 500→ 1000 (2-times) reduction:(

5.43
4.51

)2
≈ 1.45 ≈

√
2.10.

Figure 5. Distributions of the granularity for DEMs generated from three levels of detail of the
topographic maps: (a) absolute granularity; (b) relative granularity.

Our calculations show that the reduction in detail is non-linear: 200 → 500 is more
conservative (kept more features than expected), while 500→ 1000 is more selective (kept
less features than expected). Such a non-linearity in selection is quite natural for topo-
graphic maps, since each mapping scale serves best for solving the specific set of problems,
and therefore, the intensity of generalization varies between map scales to facilitate the
problem solving. The complete 200 → 1000 (5-times) LoD change is characterized by a(

6.75
4.51

)2
≈ 2.24 ≈

√
5.01-times reduction in the number of landforms, which fits perfectly

the expected
√

5 value.
This observation can be summarized in the following important result:

Landform selection intensity during relief generalization on topographic maps
follows Töpfer’s radical law.

5.2. DEM Generalization and Optimal Level of Detail

Granularity values for the manual (reference), generalized, and resampled DEMs
derived in the second experiment are presented in Table 2.

Table 2. DEM granularity.

Granularity, m

Fragment LoD Resolution Reference Generalization Resampling
to G

Resampling
to R

200 50 1595 1611 1606 1073

500 125 2282 2275 2278 1407Bodaybo

1000 250 3678 3780 3864 1750

200 50 1392 1436 1339 501

500 125 2992 2966 3109 927Groznyy

1000 250 4510 4448 4689 1662
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The Bodaybo fragment covers mountainous areas with a homogeneous terrain struc-
ture. The generalization of such a DEM is a straightforward process, since each landform
is characterized by a similar size and morphology. The comparison of the generalized
NASADEM extracts and the corresponding reference DEMs is represented in Figure 6.
Supplementary landform width rasters for the same DEMs are shown in Figure 7. We see
that the automated generalization is slightly smoother than manual, but the differences in
the overall level of detail of both DEMs are visually insignificant, which showed that the
granularity measure is effective as a constraint for DEM generalization. This conclusion
can be supplemented by analyzing the landform width rasters represented in Figure 7,
which also are characterized by a similar pattern of dominant circles. Figure 8 presents the
resampling of the Bodaybo NASADEM fragment to the same resolution R as the reference
DEMs. It is clear that in all cases, the amount of detail in resampled NASADEM is higher,
and the difference becomes more significant at coarser resolutions, which is asserted by
smaller granularity values in resampling to the R column of Table 2. Figure 9 presents the
resampling of NASADEM to the same granularity G as the reference DEMs. The resulting
raster resolutions are 200, 425, 850 m for the 200, 500, and 1000, LoDs respectively. In this
case, the size of the represented landforms is quite similar in the resampled and reference
DEMs, which means that the granularity performes its function effectively. However,
the graphical quality of the representation is low due to the excessively large pixel size.

The Groznyy fragment covers a heterogeneous combination of flat, foothill, and moun-
tainous terrain, which makes it quite difficult to generalize. In addition, the source NASA-
DEM fragment covering this area is noisy. The generalized NASADEM extracted for this
fragment can be compared to the reference manual DEMs in Figure 10. Supplementary
landform width rasters are represented in Figure 11. As expected, the generalized examples
contain a large number of small landforms in noisy areas. However, since these landforms
have a small height, their weight in the estimated granularity value is negligible. Hence,
the automatically generalized DEMs are only slightly smoother than the manual ones,
and the both have a visually similar level of detail. Figure 12 presents the resampling of
the Groznyy NASADEM extract to the same resolution R as the reference DEMs. Figure 13
shows the NASADEM resampled to the same granularity G as the reference DEMs. The
resulting raster resolutions were 225, 425, 575 m for the 200, 500, and 1000 LoDs, respec-
tively. One can note that for the 1000 LoD, the resolution (575 m) is significantly higher than
in the case of the Bodaybo fragment (850 m), which means that due to the morphological
properties of the terrain, downsampling changes the DEM granularity more intensively. Vi-
sual analysis of the results brings the same conclusions as in the Bodaybo case: resampling
to the same (high) resolution results in an excessive amount of detail, while resampling to
the same granularity limits the size of the represented landforms in an optimal way, but the
coarse DEM resolution is insufficient for high-quality relief presentation.

To supplement the visual comparisons of the differences in detail between the experi-
mental DEMs, a statistical assessment of landform width rasters was performed. Figure 14
shows the distributions of the landform width for the Bodaybo (a) and Groznyy (b) frag-
ments. The analysis of these figures reveals that the results constrained by granularity
(generalization and resampling to G) are considerably more similar to the manually gener-
alized reference DEM than resampling to the same resolution R. This is reflected not only
in central tendency of the landform width, but also in the shape of its distribution, which
can be assessed from the density and box plots. A significant number of large outliers can
be seen in the boxplots for both fragments. These outliers indicate a heterogeneous nature
of the terrain where the landforms are predominantly small, but a noticeable number of
large landforms are located in some places. The more complex Groznyy fragment exhibits
this property more brightly.
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Figure 6. Comparison of the reference DEM and the NASADEM extract generalized automatically to
the same granularity (Bodaybo fragment, elevation).
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Figure 7. Comparison of the reference DEM and the NASADEM extract generalized automatically to
the same granularity (Bodaybo fragment, landform width).



Remote Sens. 2022, 14, 1270 16 of 40

Figure 8. Comparison of the reference DEM and the NASADEM extract resampled to the same
resolution (Bodaybo fragment, elevation).
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Figure 9. Comparison of the reference DEM and the NASADEM extract resampled to the same
granularity (Bodaybo fragment, elevation).
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Figure 10. Comparison of the reference DEM and the NASADEM extract generalized automatically
to the same granularity (Groznyy fragment, elevation).
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Figure 11. Comparison of the reference DEM and the NASADEM extract generalized automatically
to the same granularity (Groznyy fragment, landform width).
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Figure 12. Comparison of the reference DEM and the NASADEM extract resampled to the same
resolution (Groznyy fragment, elevation).
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Figure 13. Comparison of the reference DEM and NASADEM extract resampled to the same granu-
larity (Groznyy fragment, elevation).
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Figure 14. Absolute landform width (weighted by height) for the Bodaybo (a) and Groznyy (b)
fragments. Distributions for the reference, generalized, resampled to the same granularity (G), and
resolution (R) DEMs are shown by different fill colors.

Statistical testing of the differences in the mean and variance between distributions
using the Student (Welch) and Fisher tests showed highly significant (p < 0.001) differences
in any combination of distributions, which was mainly due to the high power of the
statistic: the number of DEM pixels for the 200, 500, and 1000 LoDs was about 4,000,000,
600,000, and 150,000, respectively. Hence, the integral assessment of the differences in
distributions was performed using the Kolmogorov–Smirnov D statistic, the values of
which are represented in Table 3. The results are also highly significant (p < 0.001), which
means that the distributions differ from each other. However, now we see clearly that
DEM generalization outperformed resampling constrained by G in terms of the proximity
to the manual reference. In the worst case of the 200 LoD for the Groznyy fragment, the
generalized DEM is 0.3015/0.1820 ≈ 1.66-times closer to the reference DEM, while for the
best cases of the Bodaybo 200 and 500 fragments D < 0.0001 for the generalized DEM,
while resampling to G is larger than 0.01 in both cases. Resampling to R brought the worst
statistics overall, as expected.

The results obtained in this part of the experiment helped us formulate the following inference:

The optimal level of detail in small-scale cartographic relief presentation re-
quires a combination of DEM generalization constrained by granularity and
a fine resolution of the generalized DEM which facilitates the high quality of
visualization. DEM resampling alone is not effective for this purpose.
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Table 3. Kolmogorov–Smirnov D statistic for width distributions with manually generalized DEMs
as a source for the reference width distribution.

D

Fragment LoD Resampling to R Resampling to G Generalization

200 0.3493 0.0430 0.0000

500 0.4650 0.1377 0.0000Bodaybo

1000 0.7090 0.1654 0.0141

200 0.5263 0.3015 0.1820

500 0.7730 0.1638 0.0278Groznyy

1000 0.7455 0.1976 0.0565

5.3. DEM Upsampling and Resistance of Granularity

The DEM resolution change ratios for ×2 and ×4 upsamplings (on the example of the
200 LoD) are |50−25|

min(50, 25) × 100% = 100% and |50−12.5|
min(50, 12.5) × 100% = 300%, correspondingly.

Following the “order of magnitude smaller” rule established in Section 3.4, the granularity
change ratios are considered insignificant if they are smaller than 10% and 30%, respectively.

The granularities of the upsampled generalized Bodaybo and Groznyy NASADEM
extracts are presented in Table 4. The worst granularity change ratios for 2- and 4-times
upsampling are 7.85% and 14.43%, respectively, which are both insignificant according to
the considerations above.

Table 4. Resistance of granularity to DEM upsampling.

Bodaybo Groznyy

LoD Upsampling Resolution,
m

Granularity,
m Change, % Granularity,

m Change, %

200 ×4 12.50 1588 1.45 1390 3.31
200 ×2 25.00 1597 0.88 1408 1.99
200 ×1 50.00 1611 0.00 1436 0.00

500 ×4 31.25 2147 5.96 2693 10.14
500 ×2 62.50 2208 3.03 2750 7.85
500 ×1 125.00 2275 0.00 2966 0.00

1000 ×4 62.50 3611 4.68 3887 14.43
1000 ×2 125.00 3681 2.69 4144 7.34
1000 ×1 250.00 3780 0.00 4448 0.00

The distributions of the granularity change ratios of all 1000 LoD reference DEMs
for ×2 and ×4 upsampling are plotted in Figure 15. The median values and interquartile
ranges are 2.7 (1.7–4.4)% and 8.3 (6.4–11.4)%, correspondingly. This means that in general,
the granularity change ratio is insignificant, as in the previous experiment. However,
there are several outliers. For ×2 upsampling, such fragments are Bratsk (18.0% change),
Petropavlovsk-Kamchatskiy (36.2% change), and Vladivostok (34.6% change). For ×4
upsampling, these fragments are Bratsk (27.9% change), Petropavlovsk-Kamchatskiy (47.0%
change), Ukhta (30.0% change), and Vladivostok (53.2% change). Our observations show that
these changes occur when the DEM contains large portions of flat areas (plains, plateaus, or
water bodies). Over these areas, small variations in elevation due to resampling could be the
same order of magnitude as the variations existing in the source DEM. Hence, upsampling
may lead to the appearance of new surface-specific points that decrease the landform width
in these areas up to 2–3 times. Such sensitivity should be overcome by more robust future
implementations of surface-specific point extraction.
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Figure 15. Granularity change ratio due to upsampling.

6. Discussion

The proposed approach to DEM granularity estimation bears some important proper-
ties, which must be taken into account for its practical application. Some of these properties
follow from the methodological design and implementation of the method, while others
were inferred from the experimental results obtained in the current research. The most
important ones can be summarized as follows.

• Granularity was developed and evaluated as a property of the DEM for mapping
purposes. Hence, it helps to ensure that cartographic relief presentation has the desired
level of detail. While granularity can be potentially valuable for DEM analysis, such an
application is out of the scope of the current paper and requires a separate investigation;

• Granularity is not equivalent to the level of detail and must be used in conjunction
with other LoD properties to characterize the DEM comprehensively. The precision,
accuracy, and vertical resolution of the elevation data also affect the LoD of the DEM.
However, it is the horizontal DEM resolution that is the crucially important granularity
counterpart in LoD estimation for small-scale mapping purposes. In particular, if the
horizontal resolution is too coarse, the resulting image will not be sharp enough to
achieve the desired image quality. The influence of other enlisted properties on the
overall LoD of the DEM is more important for analytical and large-/middle-scale
mapping purposes and should be investigated in a specially dedicated research work;

• Granularity characterizes the typical size of landforms represented on the DEM sur-
face, but says nothing about their morphology. At the same time, different DEM
generalization methods result in surfaces that tend to be smooth or crude, which may
distort the initial character of the landforms. Gaussian filtering and structural-TIN-
based simplification are examples of such contrasting approaches. To evaluate how
realistic the landform representation is after generalization, advanced morphological
techniques must be applied in addition to the estimation of granularity;

• The proposed approach to calculate the DEM granularity is based on the landform
width measure, which is defined in terms of the distance between surface-specific
points. Currently, only drainage pixels are used for this purpose. However, any type
of surface-specific point can be incorporated in the calculation of the landform width.
In particular, if some objective algorithm for delineating landform boundaries will be
developed, the resulting lines or polygons can be used instead of the surface-specific
points in the granularity assessment without any need to change the methodology;

• Drainage pixels that are extracted from the surface can be quite sporadic and acci-
dental at places. In this case, some additional filtering (e.g., removing of the single
outlier pixels) can improve the quality of landform width assessment and reduce its
susceptibility to noise. Currently, no such processing has been applied to demonstrate
the effectiveness of the developed method in the wild. We also revealed that for
DEMs representing the flat relief, the simple morphometric approach to drainage pixel
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extraction can be sensible for DEM upsampling. Therefore, its robustness must be
improved in future investigations;

• Evaluations of typical DEM granularity are based in this paper on reference DEMs
reconstructed from manually drawn topographic maps with a horizontal resolution of
0.25 mm at the mapping scale. It is possible to achieve the same granularity with a
much coarser resolution. However, our experiments showed convincingly that the
optimal level of detail for high-quality small-scale cartographic relief presentation
requires a fine resolution of the DEM in addition to a reasonable DEM granularity.

Following these considerations should facilitate more meaningful use and improve-
ment of the developed method.

7. Conclusions

Granularity characterizes the typical size of the landforms represented on the DEM
surface. The elaboration of this concept was motivated by the fact that the existing DEM
quality measures such as resolution and accuracy are not capable of characterizing the
detail of the DEM for mapping purposes. Consequently, up to date, it has been problematic
to answer if the DEM is generalized properly to fit the scale of visualization.

The computation of granularity was implemented through a simple, but effective
proxy measure called the landform width, which is based on circles inscribed in a set of
surface-specific points. The fact that the landform width does not require the delineation of
exact landform boundaries (which are quite disputable) makes it easy to implement and
use. It was also shown that the whole process of granularity estimation can be performed
without any parameters, which is a very convenient property from the practical point
of view.

Experimental work conducted on multiple examples of reference DEMs reconstructed
from manually generalized topographic maps allowed the derivation of the rule of thumb
for selecting the optimal relative granularity for small-scale mapping, which is approxi-
mately 5–6 mm at the scale of visualization. Since this is a median value, the complexity of
the terrain may require the adjustment of this property. Another important practical output
of the conducted research is the experimental evidence that the landform selection during
relief generalization follows the Töpfer’s radical law.

Two case studies covering homogeneous and heterogeneous terrains showed that
granularity works effectively as a constraining measure for DEM generalization, while
resampling alone is not sufficient for that purpose. In both cases, the combination of the
resolution and granularity constraints resulted in a similar level of detail of manually and
automatically generalized DEMs. A classical combination of contours, hypsometric tints,
and hill shading was used as a relief presentation method throughout the study.

In future investigations, it would be desirable to perform a user study to additionally
assess the robustness of granularity as a measure characterizing the DEM’s level of detail
for mapping purposes. The analytical applications of granularity in terrain analysis and
geomorphometry are also potentially valuable directions of future research.
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Appendix A

Figure A1. DEM Fragments 1–3 (1:1,000,000 scale LoD).
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Figure A2. DEM Fragments 4–6 (1:1,000,000 scale LoD).
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Figure A3. DEM Fragments 7–9 (1:1,000,000 scale LoD).
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Figure A4. DEM Fragments 10–12 (1:1,000,000 scale LoD).
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Figure A5. DEM Fragments 13–15 (1:1,000,000 scale LoD).
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Figure A6. DEM Fragments 16–18 (1:1,000,000 scale LoD).
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Figure A7. DEM Fragments 19–21 (1:1,000,000 scale LoD).
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Figure A8. DEM Fragments 22–24 (1:1,000,000 scale LoD).
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Figure A9. DEM Fragments 25–27 (1:1,000,000 scale LoD).
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Figure A10. DEM Fragments 28–30 (1:1,000,000 scale LoD).



Remote Sens. 2022, 14, 1270 36 of 40

Figure A11. DEM Fragments 31–33 (1:1,000,000 scale LoD).
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Figure A12. DEM Fragments 34–36 (1:1,000,000 scale LoD).
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