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Abstract: The low-rank and sparse decomposition model has been favored by the majority of
hyperspectral image anomaly detection personnel, especially the robust principal component analy-
sis(RPCA) model, over recent years. However, in the RPCA model, `0 operator minimization is an
NP-hard problem, which is applicable in both low-rank and sparse items. A general approach is to
relax the `0 operator to `1-norm in the traditional RPCA model, so as to approximately transform it to
the convex optimization field. However, the solution obtained by convex optimization approximation
often brings the problem of excessive punishment and inaccuracy. On this basis, we propose a
non-convex regularized approximation model based on low-rank and sparse matrix decomposition
(LRSNCR), which is closer to the original problem than RPCA. The WNNM and Capped `2,1-norm are
used to replace the low-rank item and sparse item of the matrix, respectively. Based on the proposed
model, an effective optimization algorithm is then given. Finally, the experimental results on four
real hyperspectral image datasets show that the proposed LRSNCR has better detection performance.

Keywords: anomaly detection; RPCA; capped `2,1-norm; non-convex regularized

1. Introduction

The Hyperspectral sensing image (HSI) integrates spectrum and spatial information
and is a kind of three-dimensional image data [1–3]. Compared with single-band images,
hyperspectral images contain richer spectral information. Hyperspectral anomaly detection
is an important research direction in hyperspectral image processing. It is currently widely
used in reconnaissance and environmental monitoring [4–6]. The purpose of hyperspectral
anomaly detection (HAD) is to extract the target information (anomaly information) from
the background from the influence [7]. Different from traditional target detection, no prior
information of the target is required [8,9]. Assuming that the main objects in the image
scene are background information, the probability of anomaly objects appearing in the
whole image is often very low [10–12].

In 1990, the linear RX method was proposed by Reed [13] et al., it is a pioneering
algorithm for hyperspectral anomaly detection [14]. This algorithm divides the HSI into
a background information part and binary classification problem to be detected, which
solves the problem of anomaly detection. On this basis, many classic anomaly detection
algorithms have been proposed, such as the Local RX(LRX) [15] algorithm, which uses a
local sliding window to estimate the reference background, the weighted RX (WRX) [16]
method, which aims to reduce the influence of anomalies on the covariance matrix when
estimating background statistical data, and the Kernel RX (KRX) [17], which maps the
original space to a high-dimensional feature space by using nonlinear kernel functions, so
it is easier to distinguish anomalies from background pixels in this feature space. However,
attributing to randomness and complexity of background, the established background
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model is not easy to describe the complex background, resulting in a high false alarm
detection rate of RX algorithm [18].

Due to its complete theoretical knowledge and operability, the method derived from
low-rank sparse matrix decomposition (LRaSMD) [19–21] has attracted increasing attention
in the field of HSIs anomaly detection.

LSMAD (the LRaSMD-based Mahalanobis Distance Method) greatly utilizes LRaSMD
for hyperspectral anomaly detection, the Godec [22] method is used to separate background
and sparse components, and Mahalanobis distance is used to measure similarity [23].
Assuming that the background data is located in Low-Rank and Sparse Representation
(LRASR) [24] in multiple low-rank subspaces, a background dictionary training method is
proposed to separate outlier pixels through the trained background dictionary.

The LSDM-MoG (low rank and sparse decomposition model via mixture of Gaus-
sian) method proposes to fit the sparse components in the image through a mixture of
Gaussian distribution so as to obtain more accurate detection results [21]. At the same
time, considering the three-dimensional data characteristics of hyperspectral images, some
researchers proposed to use third-order tensors to characterize hyperspectral images, and
good detection results have also been achieved [25].

Robust Principal Component Analysis (RPCA) [26] was proposed in 2009 to better
solve the problem that background information is easily affected by noise and gross errors in
traditional principal component analysis. At present, scholars in the field of hyperspectral
image anomaly detection have carried out extensive research on the RPCA model. The
original RPCA-RX [27] algorithm treats hyperspectral remote sensing image data as a
two-dimensional matrix A and uses matrix decomposition to decompose it as a low-rank
item L and a sparse item S, the former of which is background and the latter is a non-zero
element that contains the anomaly information of the image. Finally, the classic RX detector
is then applied to the sparse item. The following are robust PCA optimization problems:

min rank(L) + λ||S||0
s.t. A = L + S

(1)

where rank(L) is the rank of L, ‖S‖0 is the `0 operator of matrix S, which represents the
number of elements in S that are not zero, and λ represents a positive trade-off parameter,
due to the goal in (1). The function is non-convex and non-continuous, and solving the `0
operator in Equation (1) is NP-hard. It is the most common and traditional method to relax
the `0 operator to the `1-norm in most academic research.

Although `1-norm is widely studied and applied in sparse learning, it may not be
optimal in most sparse items because slack approximation of the `0 operator to `1-norm
often leads to over-penalization. Later, some scholars proposed many non-convex regular-
izers to solve this problem in order to better approximate the `0 operator, such as Smoothly
Clipped Absolute Deviation (SCAD) [28], Minimax Concave Penalty (MCP) [29], `p-norm
(0 < p < 1) [30], Log-Sum Penalty (LSP) [31], Laplace [32], and Capped `1 penalty [33].
They are defined and visualized in Table 1 and Figure 1. These penalty functions have a
common feature: they are all non-convex and monotonically unreducing on (0, +∞). Thus,
their gradients are non-negative and monotonically decreasing.

The low-rank is an extension of matrix singular value sparsity. Recently, some scholars
have done a lot of work on low-rank approximation methods used in predictions tasks and
have made outstanding contributions to complex fluid dynamics problems combined with
deep learning methods [34,35]. However direct rank minimization is likewise NP-hard
and difficult to solve. The principal method is to apply the nuclear norm [36,37]. The rank
function is approximated by this problem normally by minimizing the estimated matrix
nuclear norm, that is, by minimizing the matrix rank convex relaxation [38].
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Table 1. Popular nonconvex surrogate functions of `0 operator.

Penalty Formula g(θ) ≥ 0, ω >0 Gradient

SCAD



ωθ , θ ≤ ω

− θ2 + 2σωθ −ω2

2(σ− 1)
, ω < θ ≤ σω

ω2(σ + 1)
2

, θ > σω


ω , θ ≤ ω

σω− θ

ω− 1
, ω < θ ≤ σω

0 , θ > σω

MCP


ωθ − θ2

2σ
, θ < σω

1
2

σω2 , θ ≥ σω

ω− θ

σ
, θ < σω

0 , θ ≥ σω

`p ωθp , 0 < p < 1
{
+ ∞ , θ = 0

ωpθp−1 , θ > 0

LSP ω
log(σ+1) log(σθ + 1) σω

(σθ+1) log(σ+1)

Laplace ω
(

1− exp
(
− θ

σ

))
ω
σ exp

(
− θ

r

)
Capped `1

{
ωθ , θ < σ

ωσ , θ ≥ σ


ω , θ < σ

[0, ω] , θ = σ

0 , θ > σ

(a)

(b)

(c)

Figure 1. Visualizing the non-convex functions and their gradients of some commonly used `0. (λ = 1,
γ = 1.5): (a) SCAD and MCP. (b) `p (p = 0.5 and ∇g(0) = ∞) and LSP. (c) Laplace and Capped `1

(∇gλ(γ) = [0, λ]).

This relaxes Problem (1) into the following problem:
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min ||L||∗ + λ||S||1
s.t. A = L + S

(2)

The nuclear norm of a matrix L is defined as the sum of its singular values, i.e.,
||L||∗ = ∑i σi(L), where σi is the i-th singular value of A. Significant attention has been
being given to the nuclear norm minimization (NNM) method due to its rapid development
in both matrix decomposition and matrix recovery [39]. However, even NNMs have a few
disadvantages. In this method, all singular values are treated equally and shrink at the
same threshold. Clearly, this NNM method, as well as its corresponding soft-thresholding
solvers, are inflexible. Therefore, instead of the rank norm, we used the weighted nu-
clear norm (WNN), called weighted nuclear norm minimization (WNNM), which is more
flexible than NNM. The WNN of a matrix L is represented by ||L||w,∗ = ∑i wiσi(L) and
w = [w1, w2, . . . , wn]

T . The representation capability of the original nuclear norm was
enhanced by the weight vector.

In addition, we also found that WNNM, IRNN (iteratively reweighted nuclear norm),
and LSP had the same display effect in the matrix recovery, decomposition, image denoising,
etc. The relevant proof can be found in [40,41]. LSP usually performs better than other
nonconvex surrogates. However, LSP still needs to be scaled iteratively, and WNNM can
get the optimal solution directly.

As can be seen from Figure 2a, there is a very large difference in each singular values
of the low-rank item, which often dramatically decreases at an exponential level, e.g.,
103∼10−1. However, the non-zero value of the sparse item of the hyperspectral image
indicates anomalies, which tend to be smaller, e.g., 0.6∼0.05, as shown in Figure 2b. The
predecessors mainly used the same low-rank or sparse non-convex regularization. In
light of the characters of the priors above in the hyperspectral image, two different types
of regularization for low-rank and sparse were proposed, respectively. Specifically, we
replaced the nuclear norm with a weighted nuclear norm for a low-rank item. We then
replaced the `1-norm with Capped `2,1-norm for a sparse item. This is due to the weighted
nuclear norm being equal to the sum of the logarithm of a singular, which is more suitable
for the situation when the singulars change dramatically. Similarly, the Capped `2,1-norm
is more suitable for the situation when the variables become smaller. We also added group-
sparseness to our model to incorporate the sparsity into the pixel rather than the spectral
intensity of the pixel.
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Figure 2. (a) Singular values of a low-rank item and (b) sparse item in hyperspectral images.

The three main contributions of the proposed HSI anomaly detection method are listed
as follows.

(1) The rank function of a low-rank item is replaced by a weighted nuclear norm;
(2) The Capped `2,1-norm is used to replace the `0 operator of the sparse item;
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(3) The proposed method adopts improved RPCA models to detect anomalies, anomalies
are modeled by the sparse component, and background is modeled by the low-rank
component. The experimental results on four real HSI datasets show that the proposed
LRSNCR method has better detection performance than other methods and can better
separate the background and anomalies.

2. Methodology

In this section, LRSNCR is proposed from HAD in the article and its optimization
algorithm is introduced in detail. Firstly, the HSI cube data was rearranged as an input
to LRSNCR. Secondly, the anomaly was separated from the background by getting the
utmost out of the idea of matrix factorization to solve the problem of constrained convex
optimization. Meanwhile, the weighted nuclear norm and Capped `2,1-norm were used
to replace the rank function in a low-rank item and the `0 operator in a sparse item,
respectively. Thirdly, the sparse and low-rank components were modeled and solved
separately. The proposed LRSNCR architecture is shown in Figure 3.

Figure 3. Flowchart of anomaly detection based on LRSNCR.

Reformulating (1) leads to the following LRSNCR model:

min ‖L‖w,∗ + λ‖S‖ ∧
`2,1

s.t. A = L + S
(3)

In general, if only Equation (3) is transformed into a convex problem, there are a
lot of methods that can be used to solve it. Here, we only introduce an augmented
Lagrangian multiplier algorithm, namely Alternating Direction Method of Multipliers
(ADMMs [42,43]).

For the optimization problem (3), the augmented Lagrangian function is first constructed:

L(L, S, Y, µ) = ‖L‖w,∗ + λ‖S‖ ∧
`2,1

+ < Y, A− L− S > +
µ

2
‖A− L− S‖2

F (4)

where Y is the Lagrangian multiplier, it is the weight of the sparse error term in the cost
function, and also is the given parameter, and µ is a positive scaler. ‖•‖F is the Frobenius
norm of the matrix when Y = Yk, µ = µk.

Fixed L,Y, update S:

Sj
(k+1) = arg min

Sj

L(L(k+1), Sj, Y(k), µ(k)) (5)

The original problem can then be recast into two sub-problems: q1 and q2. This is
equivalent to decomposing a non-convex set into two convex sets to solve. The global
minimum point is obtained by comparing the local minimum in two convex sets [40].
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q1 = arg min
Sj

1
2
(Sj − uj)

2 +
λ

µ
θ s.t.

∣∣Sj
∣∣ ≥ θ (6)

q2 = arg min
Sj

1
2
(Sj − uj)

2 +
λ

µ

∣∣Sj
∣∣ s.t.

∣∣Sj
∣∣ < θ (7)

The solutions of q1 and q2 are e1 and e1, respectively, which are the the local mini-
mum points.

e1 = sign(uj)max(θ,
∣∣uj
∣∣) (8)

e2 = sign(uj)min(θ, max(0,
∣∣uj
∣∣− λ/µ )) (9)

The global minimum point is determined by Equation (10).

Capped `2,1 : S(k+1)
j =

{
e1 if q1(e1) ≤ q1(e2)

e2 otherwise
(10)

where, uj =

√
n
∑
j

[
(A− L(k) + Y(k)

µ(k) )(i, j)
]2

and θ is a parameter to be set. For each element

of uj, sign(uj) is the sign function.
Fixed S, Y, update L:

L(k+1) = arg min
L

L(L, S(k+1), Y(k), µ(k))

= arg
L

min ‖L‖w,∗+ < Y(k), A− L− S(k) > +
µ

2

∥∥∥A− L− S(k)
∥∥∥2

F

= U[∑
i

wiσi(L)]VT

(11)

where ∑
i

wiσi(L) is the WNN of matrix L. These include: wi, the weight (zero or positive

number), defined for σi(L) and σi(L), which is the i-th singular value of matrix L.
In [44], let A =U ∑ VT be the Singular Value Decomposition (SVD) of the observation

data A, where ∑ =

(
diag(σ1(A), σ2(A), . . . σn(A))

0

)
. If C ≥ 0, then ε is a small constant

satisfying ε < min
{√

C, C
σi(A)

}
, the reweighting formula wi = C

σi(L)+ε
, with the initial

estimation L0 = A, and the optimization problem
{

minL‖A− L‖2
F + ‖L‖w,∗

}
(WNNM) has

the closed-form solution in a low-rank item, which is
∧
L = U

∧
∑ VT .

Where,
˜

∑ =

(
diag(σ1(L∗), σ2(L∗), . . . σn(L∗))

0

)
and

σi(L∗) =

{
0 C1 < 0

C1+
√

C2
2 C2 ≥ 0

(12)

C1 = σi(L)− ε (13)

C2 = (σi(L) + ε)2 − 4C (14)

Fixed L, S, update Y:

Y(k+1) = Y(k) + µ(k)(A− L(k+1) − S(k+1)) (15)
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update µ:
µ(k+1) = ρµ(k) (16)

where µ is a positive scaler so that the objective function is only perturbed slightly. Since
the LRSNCR model is non-convex for general weight conditions, we used an unbounded
µk to guarantee the convergence of the proposed method. We did not want the iterations to
be stopped very quickly in case µk increased too fast, which would be bad for our model.
Therefore, in our proposed method, a small value of ρ was used to constrain the problem
of excessive growth of µk.

The LRSNCR is summarized in Algorithm 1 (https://github.com/yoyoath/LRSNCR,
accessed on 1 January 2022). Here, the orders of updating L and S can be changed.

Algorithm 1 LRSNCR

Input: A ∈ Rm×n; ε, µ, ρ, λ, θ, C > 0; kmax
Output: L, S

1: Initializiation: L0 = 0, S0 = 0, Y0 = 0, k = 0;
2: repeat
3: Fix other variables as the latest value, and
4: update variable S according to Equations (6)–(10);
5: Fix other variables as the latest value, and
6: update variable L according to Equations (11)–(14);
7: Update the Y according to Equation (15);
8: Update the µ according to Equation (16);
9: until L and S converges or k > kmax

3. Experimentation Results and Discussion

In this section, the availability of the LRSNCR model for HAD is expounded by
the analysis and discussion of the experimental results. The algorithms and processes
in this paper were implemented using MATLAB language in a PC that was powered by
Windows 10 and Core i7-1165 CPU @2.80 GHz by Intel with 16 GB RAM.

3.1. Hyperspectral Datasets

In the experiment, we used some real hyperspectral images to verify the effectiveness
of this method in anomaly detection.

(1) ABU(Airport-Beach-Urban)-Urban: The first dataset was from HSI in the ABU
dataset, which contained 13 different hyperspectral image scenes, of which Urban was
one [45]. These images of size 100 × 100 × 207 were collected on the Rexas Coast, had
a resolution of 17.2 m, and were extracted from the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) website. The anomaly object in this image is a cluster of buildings.
The pseudo-color image and ground-truth(GT) map of this dataset is displayed in Figure 4.

(2) ABU (Airport-Beach-Urban)-Beach: The second HSI dataset was the beach scenes
and consisted of 100 × 100 pixels with 180 bands, and like the source of the first dataset, it
was also obtained by (AVIRIS) sensor [46]. Anomalies consisted of man-made reefs in this
scene. The pseudo-color image and GT map of this dataset is displayed in Figure 5.

(3) SpecTIR: The third experimental data were derived from the SpecTIR hyperspectral
airborne Rochester experiment [47]. The detailed experimental information for this dataset
was 180 × 180 pixels, 120 bands, 5 nanometer spectral resolution, and 1 meter spatial
resolution. In this dataset, noise and useless bands were eliminated in advance where
anomalies were forged by artificial-colored textile materials. The pseudo-color image and
ground-truth map of this dataset is displayed in Figure 6.

(4) Sandiego: The fourth dataset, the San Diego scene, came from the same source as
the first two datasets, also provided by (AVIRIS) [48]. The dataset had a spatial resolution
of 3.5 and used a partial scene of the Sandiego airport in California (located in the US) in
the experiments. The original image contained a total of 224 bands, covering 3,702,510 nm.
In total, 189 bands were used in this article. Its space size was 100 × 100 pixels. The three

https://github.com/yoyoath/LRSNCR
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aircraft above the image were considered anomalies, occupying a total of 58 pixels. The
pseudo-color image and ground-truth map of this dataset is displayed in Figure 7. As
shown in Figure 7a, we selected three bands from 189 bands in the Sandiego dataset to
display as pseudo-color images. As shown in Figure 7b, the white pixel was the target or
anomaly information, the exception in this image was the aircraft, and the background was
a black pixel. It was used to compare with our test results.

(a) (b)

Figure 4. ABU-urban dataset and anomaly background response diagram. (a) Pseudo-color image.
(b) Ground-truth map.

(a) (b)

Figure 5. ABU-beach dataset and anomaly background response diagram. (a) Pseudo-color image.
(b) Ground-truth map.

(a) (b)

Figure 6. SpecTIR dataset and anomaly background response diagram. (a) Pseudo-color image.
(b) Ground-truth map.
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(a) (b)

Figure 7. Sandiego dataset and anomaly background response diagram. (a) Pseudo-color image.
(b) Ground-truth map.

3.2. Evaluation Metrics and Parameter Tuning
3.2.1. Evaluation Metrics

We introduced the detection map, anomaly background separability map, ROC curve,
and AUC value to carry out a qualitative and quantitative analysis of LRSNCR [49]. The
anomaly background separability map and detection map can qualitatively evaluate the
proposed detection performance of LRSNCR.

The ROC curve is a quantitative HAD and evaluation technical index based on the
anomaly target reference information provided in the true value map marked by the
anomaly point position in the hyperspectral image, and the detection results obtained by
the HAD method were based on the detection value. In general, the false alarm rate (FAR)
was used as the abscissa and the probability of detection (PD) was used as the ordinate in
the ROC curve, respectively.

The definition of FAR and PD is:

FAR =
N f d

Na
(17)

PD =
Ncd
Nt

(18)

where N f d symbolizes the background pixel counts that are incorrectly judged as anomaly
pixel counts and Na symbolizes the total counts of pixels in HSI. Ncd represents the detected
anomaly pixel counts and Nt represents the total counts of anomaly target pixel in the HSI.

The AUC value is often used as an important performance assessment indicator to
estimate the algorithm performance under different parameters. Ideally, this value is 1. The
closer the value is to 1, the better the algorithm performance under this parameter. The
calculation formula of AUC is:

AUC =
∫ +∞

0
FROC(x)dx (19)

where FROC represents the ROC curve function.

3.2.2. Parameter Tuning

LRSNCR had some parameters to tune, including the weighted C in WNNM and
other parameters (ρ, λ, and θ). With AUC as the evaluation index, we tested the effect
of different parameters on the performance of LRSNCR on ABU-Urban, ABU-Beach, and
SpecTIR datasets.

In our proposed method, ρ was not a very large value, according to prior knowledge
and the previous chapter. Thus, we searched the best ρ, varying from 0.5 to 1.5 at intervals
of 0.05 in Figure 8. In all datasets, we found that the detection performance was very
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poor when ρ was between 0.5 and 1.05 (short of 1.05). When ρ reached 1.05, the AUC
value was higher and the detection performance was the best. Therefore, in all subsequent
experiments, the ρ of LRSNCR was set to a fixed value of 1.05.

Figure 8. Tuning ρ of the proposed LRSNCR.

We also dynamically adjusted the influence of different C, λ, and θ changes on AUC.
They were fixed on a scale of

{
10−4, 10−3, 10−2, 10−1, 100, 101, 102, 103, 104

}
, respectively.

Firstly, C and θ were tuned with other parameters fixed in Figure 9. Then λ and θ were
tuned with other parameters fixed in Figure 10. The parameters adjustment process in this
part was all carried out in the ABU-Urban dataset.

Aiming to further study the effect of these three parameters for AUC values, the
different effects of each parameter for AUC values were explored on three datasets, which
are shown in Figures 11–13. It was observed that the weighted C was more sensitive than
the λ and θ parameters according to AUC value. Therefore, in the following experiments,
in all datasets, λ was 1 and θ was 10, respectively, and the parameter C still needed to be
adjusted separately in each datasets to obtain a better good experimental results.

Figure 9. Tuning C and θ of the proposed LRSNCR in the ABU-urban dataset.
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Figure 10. Tuning λ and θ of the proposed LRSNCR in the ABU-urban dataset.

Figure 11. Tuning C of the proposed LRSNCR.

Figure 12. Tuning λ of the proposed LRSNCR.
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Figure 13. Tuning θ of the proposed LRSNCR.

3.3. Detection Performance and Discussion

We analyzed the detection performance in our proposed LRSNCR, which done using
two sets of comparative experiments. Firstly, the fixed low-rank term remained unchanged
using the WNNM method, and some mainstream penalty functions were selected to replace
the `0 operator in the sparse item, such as SCAD, MCP, and `2,1, and were called WNNM-
SCAD, WNNM-MCP, and WMMN-L2,1. In addition, the same method (WNNM or Capped
`2,1) was used to replace the rank function of the low-rank term and the `0 operator in
the sparse item, which was named WNNM-WNNM, Capped L2,1-Capped L2,1. Using
SpecTIR dataset as an example, we evaluated their detection capabilities based on ROC
and AUC.

Figures 14a and 15a show that the ROC curve of the LRSNCR algorithm almost
wrapped the curves of other methods, indicating that the performance of the LRSNCR
algorithm on the ROC curve far exceeded the other methods. In Figures 14b and 15b, AUC
values of the proposed LRSNCR were also relatively high. Therefore, whether for the
low-rank item using the Capped `2,1-norm or the sparse item using other penalty functions
(or WNNM), the LRSNCR had the better detection performance.
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Figure 14. Visualizing ROC curves and AUC values in the SpecTIR dataset. (a) ROC curves.
(b) AUC values.
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Figure 15. Visualizing ROC curves and AUC values in the SpecTIR dataset. (a) ROC curves.
(b) AUC values.

Secondly, to further analyze the detection of performance based on the proposed
LRSNCR, we contrasted the detection performance between some classical hyperspectral
image anomaly detection methods, such as GRXD [13], LRXD [15], and LRaSMD-based
methods, such as LRASR [24], LSMAD [23], and RPCA-RX [27].

Figures 16–19 illustrate the detection diagrams by the different methods on each
datasets. The higher the value in the graph, the brighter the pixel, which means the greater
the chance of being an anomaly pixel. As shown in Figure 16, our proposed method could
detect most of the anomalies in the dataset and could better suppress the background. Other
methods can only detect some anomaly, and LRXD has the worst detection performance.
In Figures 17 and 18, although all methods could detect anomalies, it was obvious that only
our method had the lowest FAR. In Figure 19, only our proposed method could fully detect
the three aircraft located in the top right-hand corner, while others could not. Therefore, it
can be concluded that the proposed LRSNCR is superior to other methods, with a better
capability of separating background from anomaly.

Figure 16. Detection maps by ABU-urban dataset.
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Figure 17. Detection maps by ABU-beach dataset.

Figure 18. Detection maps by SpecTIR dataset.

Figure 19. Detection maps by Sandiego dataset.

Figures 20–23 illustrate the ROC curves and Separability map obtained by different
methods for each dataset. Figures 20a–23a stand for ROC curves and Figures 20b–23b
represent box-plots for each real hypserspectral dataset.
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As shown in Figure 20a, the PD of LRSNCR was bigger than others in the beginning.
After continuing, LRSNCR still had a high probability detection and low FAR. The curves
produced by GRXD, LSMAD, and RPCA-RX were intertwined and mediocre, while LRXD
and LRASR tended to be closer to the bottom right and performed less well. As shown
in Figure 21a, the curve produced by LRSNCR demonstrated a higher PD and a lower
FAR than the other detection methods. LRSNCR had a FAR of approximately 0.001 while
achieving a 100% probability of detection. Therefore, it was more convincing than others.
In Figure 22a, the curve of LRSNCR had a significant trend, wrapping the other curves,
and the rest of the curves were intertwined, except for the LRSNCR. In addition, after
FAR = 0.008, the LRSNCR had a larger PD. In comparison with others, LRSNCR was at an
obvious advantage. As shown in Figure 23a, the curves of GRXD, LRXD, LRASR, LSMAD,
and RPCA-RX were also intertwined, which meant that the effect of LSMAD was better but
not as good as that of LRSNCR. These curves were always below that produced by LRSNCR.
Almost all of the ROC curves of the LRSNCR method can wrap around those of other
methods, with a higher detection rate but a lower FAR. This shows that the performance of
LRSNCR method on ROC curve is much better than that of other methods.
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Figure 20. ROC curves and separability map acquired through the ABU-urban dataset. (a) ROC
curves. (b) Box-plot.
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Figure 21. ROC curves and separability map acquire through the ABU-beach dataset. (a) ROC curves.
(b) Box-plot.
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Figure 22. ROC curves and Separability map acquire through the SpecTIR dataset. (a) ROC curves.
(b) Box-plot.
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Figure 23. ROC curves and separability map acquire through the Sandiego dataset. (a) ROC curves.
(b) Box-plot.

In the box-plot, after first processing the data regarding anomaly and background,
two rectangles of the separability graph were obtained, in which red rectangle indicated
the anomaly and the blue rectangle indicated the background. The separability between
the anomaly and the background was determined by the distance between the red and
blue rectangles. The larger distance between red and blue rectangles of LRSNCR than that
of other comparison methods, as shown in Figure 20b, indicates that LRSNCR can better
separate anomalies from the background and is more convincing. The box-plot shown
in Figures 21b–23b, also indicates that the proposed LRSNCR can easily identify desired
anomalies from background.

Table 2 lists the objective index AUC values obtained by anomaly detection of each
data set by different methods. The AUC for the proposed LRSNCR on the four datasets
were 0.9991, 0.9999, 0.9995, and 0.9903, respectively. Furthermore, the second largest AUC
values on the four datasets were 0.9957, 0.9998, 0.9976, and 0.9778, which were not higher
than our method. In each hyperspectral data set, the execution time of proposed method
was 49.83561, 22.08689, 27.86498, and 19.45832, respectively. Table 3 provides the execution
time of various detection methods. We proposed LRSNCR to be in the middle and lower
level in execution time and did not have much advantage in computing time, because our
method requires iterative optimization.
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Table 2. The contrast in AUC from six anomaly detection methods.

Methods GRXD LRXD LRASR LSMAD RPCA-RX Proposed

ABU-Urban 0.9946 0.5713 0.8385 0.9843 0.9957 0.9991
ABU-Beach 0.9998 0.9736 0.9990 0.9995 0.9995 0.9999

SpecTIR 0.9914 0.9976 0.9685 0.9972 0.9971 0.9995
Sandiego 0.8886 0.8892 0.9200 0.9778 0.9165 0.9903

Table 3. The running time (unit:s) of different methods using four experimental datasets.

Methods GRXD LRXD LRASR LSMAD RPCA-RX Proposed

ABU-Urban 0.06351 69.55086 71.08300 24.96805 12.74864 49.83561
ABU-Beach 0.05629 39.46180 33.64385 9.85913 3.24897 22.08689

SpecTIR 0.10012 94.28799 89.25651 20.59356 4.78673 27.86498
Sandiego 0.15725 39.23523 32.22894 10.89012 3.41575 19.45832

4. Conclusions

In this article, an improved RPCA with non-convex regularized was proposed for
HAD through the research and improvement of the RPCA problem. The rank norm
and the `0 operator were replaced with the WNNM and non-convex Capped `2,1-norm.
Experiments with four hyperspectral datasets demonstrated that, by using the LRSNCR
method, discrimination between anomalies and background was enhanced. Compared
with classical GRXD, LRXD and LRASR and LSMAD and RPCA-RX detectors in four real
hyperspectral datasets, it was still better than others in terms of detection effectiveness and
stability by the proposed LRSNCR.

The proposed method, based on low-rank and sparse joint non-convex regularization,
was different from many improvements based on low-rank or sparse terms. Experimental
results also show that our method achieved good results but still has some limitations.
When dealing with large-scale hyperspectral image data, the iterative optimization speed
of the algorithm may be less dominant, so reducing the running time or speeding up
the convergence speed is an important aspect worth considering. In recent years, tensor-
based and deep learning-based methods have been widely used in hyperspectral anomaly
detection. In the future, we will consider low-rank approximation and deep learning or
methods combined with tensors.
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