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Abstract: Thanks to the emergence of cloud-computing platforms and the ability of machine learn-
ing methods to solve prediction problems efficiently, this work presents a workflow to automate
spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits in-
cluded leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically
active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing
photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algo-
rithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy
radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named
to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quan-
tification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument
(OLCI) sensor. Following good to high theoretical validation results with normalized root mean
square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach
over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and
FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the
time window 2016–2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS)
estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all
three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal
patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged
temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided
by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products.
Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated
good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow
of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of
fundamental vegetation traits, accessible to the whole research community.

Keywords: vegetation traits; Sentinel-3; TOA radiance; OLCI; Gaussian process regression; machine
learning; hybrid method; time series; Google Earth Engine

1. Introduction

Accurate monitoring of terrestrial photosynthetic capacity is crucial for understanding
ecological processes and modelling the responses of vegetated ecosystems to diverse envi-
ronmental changes [1,2]. Numerous optical sensors are currently available on spaceborne
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platforms to collect data of the global land surface. In this respect, the European Space
Agency (ESA) launched the Copernicus program including the Ocean and Land Colour
Instrument (OLCI) aboard Sentinel-3 (S3), which followed the Medium Resolution Imaging
Spectrometer on the ESA’s ENVISAT platform, for measuring land (and ocean) radiances
at high accuracy for diverse environmental monitoring applications [2,3]. Among multiple
instruments foreseen to collect data over global terrestrial landscapes in the near future, the
ESA “FLuorescence EXplorer” (FLEX) mission is planned to be launched in 2024. FLEX will
specifically dedicate to vegetation fluorescence measurements and will partner with the
operational Sentinel-3C in a tandem mission [4]. ESA already initiated preparatory studies
to develop the ground processing prototype, which eventually will process both incoming
FLEX and S3 data streams into a suite of level-1 and level-2 (L2) products accessible for the
community [5].

As part of the S3-FLEX L2 processing chain, essential biochemical and biophysical
variables will be derived from either FLEX or S3 data streams, or from a combination of both,
such as: (1) leaf chlorophyll content (LCC), (2) leaf area index (LAI), (3) fraction of absorbed
photosynthetically active radiation (FAPAR), and (4) fractional vegetation cover (FVC) [6,7].
These four vegetation traits not only serve to interpret the recorded fluorescence signal
towards estimates of photosynthetic activity, but are also fundamental for mapping and
monitoring vegetation dynamics over large areas in space and time [7]. The spectra covered
by the OLCI (and FLEX) sensors along the visible and near infrared regions is sensitive to
vegetation structure and biochemistry, and therefore for modelling of the four traits [8].
Since LCC is directly involved in the synthesis of biochemical energy, it serves as potential
indicator of photosynthetic capacity [9]. LAI corresponds to half the total intercepting area
of leaves per unit ground surface area [10]. This variable is strongly related to canopy
photosynthesis and evapotranspiration [11] having a key role in the exchange of energy
and water between biosphere and atmosphere. Different definitions of LAI are presented in
the literature, ranging from effective plant area index [12], which includes the area from all
plant organs and assumes random distributions of leaves, to green LAI (GAI, [13]). GAI is
probably the most relevant variable to describe the radiation transfer in vegetated canopies
and is also frequently used in remote sensing vegetation studies [14]. Though referring
mainly to the green plant elements, for sake of simplicity, we use the term LAI throughout
this study. Green FAPAR refers to the amount of incoming solar radiation absorbed by
live vegetation in the spectral range from 400–700 nm, divided by the total amount of
radiation absorbed at the surface [15,16]. One should differentiate between instantaneous
values measured during the satellite transit time, and daily averaged values [17]. FAPAR is
an important variable commonly used in the modelling of primary productivity [11] and
provides an observational constraint on the terrestrial biosphere for simulating vegetation-
atmosphere carbon fluxes [16,18]. Moreover, it has proven to be a reliable tool for regional
crop yield forecasting when analysing FAPAR time series [19]. FVC corresponds to the
fraction of green vegetation as seen from nadir, and is a key biophysical variable reflecting
the spatial extent of the photosynthetic leaf area [20,21]. The variable is useful for various
agricultural disciplines, ranging from irrigation (e.g., [22]) to yield estimations (e.g., [23]).

Regarding the retrieval of these variables from satellite data streams, most traditional
methods relied on parametric regression approaches. These methods assume an explicit
relationship between spectral observations (or vegetation indices) and in-field measured
variables [24–26]. Parametric regression approaches require only low computational re-
sources. However, they may underexploit available spectral information, such as from
S3, as often only two or three bands are implemented. In addition, these few bands can
be prone to noise which further limits the genericity and transferability of the established
models [27,28]. To overcome drawbacks of empirical approaches, physically based meth-
ods have been developed, denominating the implementation of radiative transfer models
(RTMs) and their radiometric inversion using cost functions [29–31]. However, these
methods are computationally expensive when applied on a per-pixel basis, limiting their
applicability for processing large scenes at the continental scale. Data-driven nonpara-
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metric nonlinear approaches, such as machine learning regression algorithms (MLRAs),
can be a fast and efficient alternative, as shown for S3 data by Verrelst et al. [32]. MLRAs
provide adaptive and robust relationships between the variables of interest and spectral
signals without knowledge of the underlying data distribution [28]. When it comes to
efficient processing of both hyperspectral FLEX and superspectral S3 data into vegetation
properties, the so-called hybrid models were evaluated as most promising to achieve fast
and consistent retrievals [6]. Hybrid models blend the physical foundation from RTMs with
the flexibility of a MLRA [33]. A discussion on its strengths and weaknesses as opposed to
other retrieval strategies in operational settings is provided by Verrelst et al. [28,34]. The
pursued strategy of hybrid models, for instance applied to processing of FLEX and S3 data
streams, is based upon the generation of a training data set using the leaf-canopy RTM
SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) [35]. In this way, a
diversity of vegetation states can be simulated, reflecting actual conditions of the specific
location and beyond. The simulated data sets are then used to train Gaussian process
regression (GPR) [36] algorithms to build efficient variable retrieval models. While the
RTM explores the underlying physical causalities, the MLRA with its universal prediction
capability identifies the most relevant (spectral) inputs for inference of a specific output.
Hence, hybrid approaches ideally combine the two different paradigms of physical and
empirical assumptions, enabling a symbiotic relationship between them [37]. Being a
probabilistic MLRA, GPR should be preferred as key retrieval algorithm over others, such
as artificial neural networks (ANN), due to its ability to provide associated uncertainty
estimates along with the predictions [38].

Presently, the entire S3 OLCI radiance data (L1B) and reflectance data (L2A) stream
became readily available to the community, e.g., through the Copernicus Hub [39]. Along
with it, operationally derived vegetation products are offered by the Copernicus Global
Land Service (CGLS), such as the OLCI terrestrial chlorophyll index (OTCI, [24]), indicating
canopy chlorophyll content, and the OLCI global vegetation index (OGVI [40]), currently
renamed to GI-FAPAR. The S3 OLCI green instantaneous FAPAR product was recently
evaluated by Gobron et al. [41]. The algorithm uses a physically based approach simulating
reflectance of different land covers, which allowed to compute green FAPAR from top-
of-atmosphere (TOA). However, most of these vegetation products have been developed
independently of each other and may therefore lack physical consistency. In addition,
although quality flags are provided, the products miss associated uncertainty estimates.

With the ambition to provide key vegetation products in a physically consistent and
efficient way, De Grave et al. [6] developed hybrid models for LCC, LAI, FAPAR and
FVC exploring OLCI surface reflectance and FLEX sensor data synergies. A prototype
version of the hybrid retrieval models was recently validated and applied to single S3-OLCI
tiles [42]. Hybrid models process single images relatively quickly. However, when it comes
to processing at a continental scale, computationally efficient solutions have to be sought.
Moreover, essential preprocessing steps, such as selecting and preparing S3 tiles from the
Copernicus data hub, add up to computation time. In addition, imposed restriction to the
data hub can be a substantial bottleneck even for fully automated processes. Consequently,
to achieve dynamic processing of a vast amount of S3 data, there is the need to migrate
towards cloud-computing platforms. Specifically, the Google Earth Engine (GEE) emerged
as an appealing high-level processing platform allowing cloud-based computations at
planetary scale for satellite data [43]. Multiple studies have been conducted using GEE for
diverse applications (e.g., [44–46]), but only few investigated the potential of GPR models
into the GEE environment [47].

Recently, a general adaptation of GPR formulation to a parallel processing framework
and its integration in GEE was proposed. For this purpose, Pipia et al. [47] reviewed
the standard GPR regression formulation to achieve a factorization suitable for parallel
computing. However, when it comes to processing of S3 scenes, currently only TOA L1B
data is provided by the GEE platform. This implies that modeling approaches need to
be upscaled from top-of-canopy (TOC) reflectance to TOA radiance data, thereby taking
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atmospheric effects into account. Nonetheless, this challenge also opens opportunities
towards interactive on the fly processing of the four fundamental vegetation traits over
wide areas, e.g., at the continental scale. The feasibility of using TOA data from the
Sentinel-2 multispectral instrument for mapping of crop traits was recently demonstrated
by Estévez et al. [48] and Estévez et al. [49].

Altogether, the main objective of this work was to develop a workflow for the op-
erational retrieval of four essential vegetation traits (LCC, LAI, FAPAR and FVC) from
Sentinel-3 top-of-atmosphere data directly in the Google Earth Engine environment. To
achieve this, we optimized the training of GPR models to run in GEE while reaching
acceptable accuracy. A threefold evaluation strategy was pursued to assess the quality
of the obtained vegetation traits: (1) temporally, using time series reference products, (2)
spatially, in form of variable reference maps, and (3) directly, using interpolated in situ data
for a variety of land cover types.

2. Materials and Methods

To enable running GPR models in the GEE platform, the implemented workflow
started with training and tuning, while the models were built accounting for a diversity of
conditions in space and time. The pursued strategy to obtain a “chain of confidence” for
generating series of vegetation traits from OLCI L1B data at 300-m resolution included five
main processing steps:

1. upscaling of TOC-RTM simulations to TOA radiance;
2. training retrieval algorithms for establishing trait specific S3-TOA-GPR-1.0 models;
3. running the S3-TOA-GPR-1.0 models in GEE at European continental scale;
4. generating of time series profiles;
5. evaluating model estimates and associated uncertainty for different variables and

sites.

Figure 1 summarizes the proposed workflow and the following subsections describe
all steps in detail. We start with the used RTM and the training data set generation
(Section 2.1). Subsequently, the mathematical background of the GPR models is given
(Section 2.2), followed by the vegetation traits mapping and time series analysis (Section 2.3).
The specification of the TOA S3-OLCI imagery, provided by the GEE platform and the
dedicated regions are detailed in Section 2.4. Finally, Section 2.5 introduces the validation
data sets and corresponding processing strategies.

2.1. Radiative Transfer Modeling and Training Data Set Generation

For the purpose of our study we employed the RTM SCOPE (v1.7) [35], being a vertical
(1D) integrated radiative transfer and energy balance model. To generate TOC reflectance,
SCOPE requires, among others, the definition of leaf, canopy, soil and geometry variables
and their respective ranges (e.g., LCC, LAI, soil moisture).

FAPAR was calculated as the ratio between the downward direct and diffuse photo-
synthetically active radiation (PAR, 400–700 nm) and upward fluxes of PAR, as calculated
in SCOPE [35]. FVC is obtained empirically from the gap fraction (P) at nadir, by the
expression defined in De Grave et al. [6] as follows in Equation (1):

P = exp(−kxLAI) (1)

where k is the extinction coefficient. Given this relation, we can obtain FVC in Equation (2)
as:

FVC = 1− P (2)

The input variable values, ranges and distributions are summarized in Table 1. The
Gaussian distribution was used for those variables with expected mean and standard
deviations naturally occurring, meanwhile uniform was used for those variables to be
predicted. Also, geometrical variables were defined as uniform [50]. In order to provide
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variability of conditions across latitudes and seasonality, we considered sun zenith angle
values between 20◦ and 40◦ and observation zenith angles between −10◦ and 10◦. The
resulting data set in the size of 1000 samples covered a wide variability of vegetation states,
as also applied in previous works [51,52].

Figure 1. Retrieval workflow for derivation of LCC, LAI, FAPAR and FVC, and S3-TOA-GPR-1.0
model implementation in GEE for mapping, time series generation as well as validation strategies.

Table 1. Biochemical leaf and canopy structure variables used for SCOPE simulations. See [6] for
details about default values.

Variable Distribution Min Max Mean SD

Leaf structure & biochemistry

N (Leaf structure parameter [-]) Gaussian 1 2.7 1.5 0.5
LCC (Chlorophyl a,b content, µg/cm2) Uniform 0 95.6 - -

Cxc (Carotenoid content, µg/cm2) Gaussian 0 20 10 10
Cdm (Dry matter content, g/cm2) Gaussian 0.002 0.02 0.005 0.003

Cw (Leaf water content, cm) Gaussian 0.005 0.035 0.012 0.006

Canopy structure

LAI (Leaf Area Index, m2/m2) Uniform 0 7.0 - -
LIDF (Leaf Inclination, rad) Uniform −1 1.0 - -

Soil

SMC (Soil Moisture Content, %) Gaussian 5 55 25 12.5
BSM Brightness Gaussian 0 0.9 0.5 0.25

BSM Lat (◦) Gaussian 20 40 25 12.5
BSM Long (◦) Gaussian 45 65 50 10

Geometry

SZA (Sun Zenith Angle, ◦) Uniform 20 40 - -
OZA (Observation Zenith Angle, ◦) Uniform −10 10 - -
RAA (Relative Azimuth Angle, ◦) Constant 180 180 - -
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Based on the reference TOC OLCI models presented by De Grave et al. [6], we pre-
pared an alternative version specifically adapted to process TOA radiance data. To do
so, upscaling with an atmospheric RTM was required. We chose the atmospheric RTM
Second Simulation of a Satellite Signal in the Solar Spectrum-vector (6SV) [53] to create
a spectral database of atmospheric transfer functions, which were coupled with the es-
tablished SCOPE training data set. The coupling process was largely automated with the
so-called Atmospheric Lookup table Generator (ALG) software [54] and the TOC2TOA
toolbox [33] included in the scientific Automated Radiative Transfer Models Operator
(ARTMO, Verrelst et al. [55]) software framework, assuming that the land surface is Lam-
bertian, according to the formulation of Guanter et al. [56]. The basic parametrization
used for 6SV (v2.1) in this work is detailed in Table 2. The variable ranges of the atmo-
spheric models were chosen according to prior studies [48,49] and should reflect generic
and globally valid ranges [54]. The SCOPE simulated training data set was then mixed with
additional 1000 samples of spectra extracted from real S3 scenes. The spectra were selected
from different points dispersed over Europe and for different seasons, including bare soil
and vegetated areas on different proportions as observed from external products, such as
from the Moderate Resolution Imaging Spectroradiometer (MODIS)—MCD15A3H [57].
The inclusion of these external spectra was required to provide a realistic training data set,
reflecting the actual spectral conditions of the satellite scenes and thus to guarantee high
mapping quality for heterogeneous land surfaces. The final training data set was composed
of a total number of 2000 samples.

Table 2. Range of 6SV input variables used for the simulations of the atmospheric transfer functions.

Model Variables Units Range

Atmospheric variables: 6SV
O3 Column concentration [amt-cm] 0.25–0.35

Columnar Water Vapor [g·cm−2] 0.4–4.5
Aerosol Optical Thickness unitless 0.05–0.5

Angstrom coefficient unitless 0.05–2
Henyey-Greenstein asymmetry factor unitless 0.6–1

Finally, we trained the GPR algorithms based on a randomly selected data set at the
size of 250 different combinations of variables and corresponding TOA radiance, using the
ARTMO’s MLRA toolbox [58]. Note that the memory restriction in GEE do only allow the
implementation of GPR models with a feasible size. Additionally, as a GPR model scales
cubically with the size of the training data set [36], it bears the consequence that the sample
size has to be sufficiently small. The obtained retrieval models for LCC, LAI, FAPAR and
FVC were then subsequently validated against the leftover simulations (N = 1750) using the
goodness-of-fit metrics coefficients of determination (R2), root mean squared error (RMSE)
and the normalized RMSE (NRMSE). The final models, named as “S3-TOA-GPR-1.0”, were
then imported in GEE as described in the next sections.

2.2. Gaussian Process Regression Approach

We followed the regression methodology described in Rasmussen and Williams [36]
to build our S3-TOA-GPR-1.0 retrieval models. Henceforth, we provide the mathematical
definitions to assess the internal consistency of such models together with the predictions,
for the direct implementation into GEE. In short, GPR approximates the relationship
between input samples x ∈ RD and output observations y ∈ R as y = f (x) + ε, being ε an
additive Gaussian noise with zero mean and variance σ2

n , and f (x) a Gaussian distributed
random vector with zero-mean and Covariance matrix K(x, x). It is worth recalling that the
Covariance matrix accounts for the similarity between pairs of input samples xi and xj using
a kernel function k(xi, xj) for sample distance quantification. Among the multiple kernel
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functions available, the Asymmetric Square Exponential function has been demonstrated
to be efficient for vegetation modelling from Earth observation data [59], being defined as:

k(xi, xj) = σ2
s exp

(
− 1

2

D

∑
b=1

[xi(b)− xj(b)
σb

]2)
, (3)

where σ2
s > 0 is the output variance while σb is related to the relevance of dimension (or

band) b in the prediction process: the higher σb, the lower informative content of b. Being
θ = {σ2

s , σ1, .., σD, σ2
n}, the probability of the observations given the model’s hyperparame-

ters p(y|x, θ) is given by the marginal likelihood over the function values f [36], so that its
maximization provides directly the optimum value of θ to be used for K(x, x) estimation.
This procedure is usually referred to as GPR training [36,47]. Afterwards, the prediction of
y for a new input vector x∗ is obtained along with its uncertainty as:

f (x∗) = kT
∗ (K + σ2

n IN)
−1y

σ2
f (x∗) = c∗ − kT

∗ (K + σ2
n IN)

−1k∗
(4)

where N is the number of training samples, k∗ = [k(x∗, x1), . . . , k(x∗, xN)]
T contains the

similarity between x∗ and the training input information, y = [y1, .., yN ]
T is the training

output, and c∗ = k(x∗, x∗) + σ2
n .

An alternative factorization of Equation (4), which has been used for our prediction,
is summarized next. First, we train the model for hyperparameter optimization and
calculate K.

Then, we obtain the low-triangular matrix L from the expression K + σ2
n IN using the

Cholesky factorization and calculate the vector α as :

α = LT \ (L \ y) (5)

where the symbol \ denotes the linear equation system solver operator. The vector α is
formed by a set of weight coefficients assigned to each of the training samples, and depends
on both L and the training observations y. The final estimation of the modeled output is
calculated by means of Equation (5) as:

f (x∗) = kT
? α. (6)

Finally, defining v = L \ k? we calculate the uncertainties of our model as [36]

σ2
f (x∗) = k(x?, x?)− vTv (7)

where k(x?, x?) indicates the kernel function calculated at the new input x?.
In practical terms, to implement these expressions in the GEE environment, the follow-

ing steps were introduced by Pipia et al. [47]: (1) expanding the formulation of standard
GPR, (2) aggregating all terms independent of pixel’s spectral information that can be
precalculated to avoid repeating cumbersome operations for each pixel, (3) manipulating
data using image datatype format before moving to array data type, (4) implementing
GPR into a matrix algebra formulation, and (5) converting the results back to image format
adding coordinates information, mandatory for mapping purposes. In the present work,
we extended the algorithm in order to provide the uncertainties (σ) through Equation ( 7)

To fit our GPR models, we generated a collection of TOA radiance spectra (x vectors)
together with the corresponding vegetation properties samples (y).

2.3. Generation of Vegetation Traits Maps and Time Series

The mathematical algorithm described in Section 2.2 was implemented in GEE by
filtering the S3-OLCI scenes intersecting our study areas for selected date ranges. We gen-
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erated composed monthly averaged maps by applying our method on monthly averaged
radiances as described in Equation (8):

f (x) ∼ GP(m(x), k(x, x′)) (8)

being x the mean of radiances for our interest interval of time, defined by pixel.
We tested the similarity of these results with respect to those calculated as means

over single scenes, see Equation (9). We evaluated over 100 points differences between
results calculated from both radiances means vs. single scenes averages and we obtained a
deviation mean of 5.68%. The differences on found results can be explained by the nonlinear
nature of GPR models. We chose the radiances mean approximation due its advantages on
performance, as the algorithm is implemented in only one step against the multiple steps
needed in the other case. Furthermore, by this approach, we use directly stable means as
inputs, avoiding biases due to anomalous conditions found on specific dates.

f (x) =
n

∑ f (xn)/n (9)

Regarding the input data preprocessing, we applied “Bitwise” operation in order to
filter out bright pixels as a preliminary cloud pixel classification, and also mask inland water
pixels. We used the provided quality flag band for the OLCI L1B product to accomplish
this action.

With the purpose of exploring the temporal behaviour of the vegetation traits, we
generated spatially averaged time series for a collection of S3-OLCI scenes (April 2016–
November 2020). Then we filled temporal gaps by applying the GPR algorithm to the time
dimension in GEE. This approach provides smoothness for the analysis of functions over
time and enables comparison among different sources of data by reconstructing unavailable
values. To mitigate the most important limitations of GPR time series gap-filling caused
by high memory/computation time requirements and repetitive processes, we pursued
the approach by Belda et al. [60]. This study demonstrated that reliable gap-filling can
be achieved by making use of precalculated hyperparameters (parameter’s length scale,
variance and noise level) which tremendously accelerates the training stage of the GPR
algorithm (90 times faster than the standard GPR estimations).

For all tested vegetation variables (LCC, LAI, FAPAR and FVC), the performance
of using these global hyperparameters for time series generation over any crop type
was only degraded between 2% and 7% compared to using the conventional GPR per-
pixel optimization. On that basis, we assumed the validity of trait dependent global
hyperparameters also to study the diverse vegetation types included in our Copernicus
land cover (CLC) test areas (see Section 2.4). We applied the same approach to interpolate
uncertainties over time, obtaining data series with deviations in respect to the expected
prediction boundaries. To avoid memory problems when applying the algorithm to the
entire S3-OLCI data collection, we divided the process into multiple steps by iterating over
monthly data ranges.

2.4. Satellite Data & Demonstration Case Studies

The optical input data used for processing into vegetation traits comes from the L1B
Earth Observation Full Resolution (EFR) product, measuring radiances from OLCI onboard
Sentinel-3A (S3A) and Sentinel-3B (S3B). S3-OLCI provides measurements over 21 bands
ranging from 400 to 1020 nm with band widths between 7.5 and 40 nm [61] and a spatial
resolution of 300 m.

The temporal frequency of the images intersecting the study areas varied between two
days when only S3A was in orbit to one day for observation after the launch of S3B on 25
April 2018. The collection of images used for this work ranged from 20 April 2016 until
20 November 2020. Since after this date anomalous values for the bands 1 and 10 were
encountered, we decided to exclude these dates from our analysis.
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To demonstrate the spatiotemporal mapping capability of the S3-TOA-GPR-1.0 re-
trieval models in GEE, we applied them to the TOA S3-OLCI catalogue over diverse areas
in Europe. Monthly averaged maps were generated over all the EU countries and territories
of the British Isles. Time series were produced for homogeneous agricultural and forest
land covers (Figure 2) according to the CLC classification of the Copernicus program [62],
including non-irrigated arable land (NIAL), rice fields (RF), pastures (P) and broad leaf
forest (BF1). The extension of the targeted surfaces varies from a minimum of 22,793 ha in
the case of pastures to a maximum of 891,098 ha for non-irrigated arable lands. The sites
were selected based on the following criteria: (1) extension: to evaluate the capabilities of
the models to provide meaningful spatial information at large scale; (2) availability of data:
the sites should secure sufficient data availability, hence avoiding locations in northern
latitudes with a relatively high percentage of cloudy days; and (3) geographical diversity:
the locations have to be geographically dispersed covering different ecosystems across
Europe. To identify the locations fulfilling these requirements, we explored the Corine land
cover vector database (version 2020).

Figure 2. CLC areas used for time series analysis. For more comprehensive insights, RGB captures
were taken from Sentinel-2 scenes with GSD of 20 m, at different dates. Counterclockwise: rice field,
broad-leaved forest, pasture land and non-irrigated arable land.

2.5. Validation Data Sets and Strategies

To evaluate retrieval and mapping performance of the S3-TOA-GPR-1.0 models, we
compared our estimates over the spatial and temporal domains against analogous products.
Additionally, a direct validation with data coming from in situ campaigns was performed.
Table 3 provides an overview of the three explored data sets with employed algorithms
and validation strategies.

The first data set comes from the NASA Earth Observing System Data and Information
System (EOSDIS), the so-called MODIS collection MCD15A3H [57]. The retrieval algorithm
is based on the empirical relationship between surface reflectances at 648 nm (red) and
858 nm (infrared) and LAI and FAPAR. The algorithm uses a lookup table (LUT), generated
using a three-dimensional (3D) radiative transfer equation [63]. The MODIS MCD15A3H
data were directly processed in GEE, as it takes part of the catalog in the cloud. We used
the collection of LAI and FAPAR every 4 days, and computed the average of pixels inside
the CLCs per date, allowing to generate time series representative of the whole areas.
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Table 3. Overview of the three data sets used for direct and indirect validation of vegetation traits
models, including spatial and temporal resolutions, dimensions, sensors, source algorithms, strategy
of presented validation and targeted variable. NDVI: Normalized Difference Vegetation Index.

Validation Source
Spatial

Resolution
of Source

Temporal
Resolution
of Source

Validation
Dimension Sensor Source Algorithm Validation

Strategy Target Variables

MCD15A3H - MODIS 500 m 4 days spatiotemporal MODIS
empirical relationship

with NDVI. RTM based
LUTs

time series
differences LAI, FAPAR

CGLS Vegetation V1.1 300 m
composition

maps: 10 days,
1 month, season range

spatiotemporal PROBA-V/OLCI ANN percentual
differences LAI, FAPAR, FVC

VALERI high resolution
biophysical maps 20 m

time range of
ground

measurements:
i.g., 1 day, 2 days

space SPOT-HRVIR m

empirical transfer
function between ground
measurements and high
resolution spectral data

scatter plots LAI, FAPAR, FVC

The second data set was provided by the Copernicus Global Land Service (CGLS)
products collection [64]. It includes composition maps gap filled over different time
windows (10 days, one month and other periods) of LAI, FAPAR and FVC at a spatial
resolution of 300 m. The CGLS data sets were downloaded from the official website: https:
//land.copernicus.eu/global/themes/vegetation (accessed on 7 June 2021). The estimation
of the variables was achieved in a two step process as described by Fuster et al. [64]. In a
first step, PROBA-V and OLCI TOA data were converted to TOC reflectances using the
Simplified Method for the Atmospheric Correction (SMAC, [65]). Next, daily estimates of
LAI, FAPAR and FVC were obtained from these TOC reflectances using pre-calibrated ANN
retrieval models. In a second step, smoothing techniques and gap-filling were applied
to provide stable maps over different time windows. To perform the comparison, we
computed difference maps against the three biophysical variables (LAI, FAPAR and FVC)
delivered by CGLS and the corresponding S3-TOA-GPR-1.0 retrieval models. LCC was
not included in this analysis as no comparable product was found in the available catalog
on the CGLS site, and neither in GEE. The time windows used for the composition maps
ranged from 4 March to 19 November 2019. Hence, the comparison was performed over
the widest possible time period in this year.

Third, we explored the Validation of Land European Remote Sensing Instruments
(VALERI) database (http://w3.avignon.inra.fr/valeri), accessed on 29 September 2021.
VALERI is a vast in situ data collection over different campaigns and countries, providing
processed maps of interpolated variables for direct validation of grid products [66–68]. The
interpolation maps were produced using an empirical transfer function between spectral
data of high spatial resolution, such as the SPOT (Satellite Pour l’Observation de la Terre)
HRVIR (High-Resolution Visible and Infrared) instrument, and corresponding in situ
ground measurements, as detailed by Baret et al. [66]. The VALERI campaigns covered
crops, diverse forest types (boreal, deciduous, pine and Mediterranean), grasslands as well
as mixed categories. Ideally, S3-OLCI images should be used to validate our products
against VALERI in situ data. However, as these campaigns took place before the S3 launch in
2016, we used data from the Landsat ETM (Enhanced Thematic Mapper) mission to process
vegetation products for comparison with the VALERI data set. The Landsat data were
spectrally resampled to simulate the OLCI spectral bands by using a linear interpolation
method. Subsequently, a filter convolution was applied to fit the spectral signal according
to the relative spectral response (RSR) of the OLCI bands. Hereby it was only possible to
reconstruct 18 out of the 21 bands of OLCI, as the first three bands are beyond the limits of
Landsat ETM. These tree bands are located in the blue visible wavelength region and thus
highly affected by aerosol effects. Nonetheless, as this spectral region plays a minor role for
optical vegetation properties, the exclusion of these bands does not reduce significantly the
performance of our models.

https://land.copernicus.eu/global/themes/vegetation
https://land.copernicus.eu/global/themes/vegetation
http://w3.avignon.inra.fr/valeri
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Considering that only 18 bands of OLCI could be resampled from Landsat ETM,
a substitute S3-TOA-GPR-1.0 model for LAI, FAPAR and FVC based on 18 bands was
developed for the comparison. In addition, we only selected those pixels labeled with
the highest quality flag. The pixels were then spatially resampled to correspond to the
S3-OLCI images scale with ground sampling distance (GSD) of 300 m. A similar validation
method is reported by Camacho et al. [69]. Table A1 gives an additional overview of the
used VALERI campaigns details.

Note that for all validation cases, FAPAR estimates corresponded to the instantaneous
values acquired at the time of the satellite overpass. This value can be considered as
reasonable approximation of the daily integrated value [17].

3. Results
3.1. Theoretical Performances of the S3-TOA-GPR-1.0 Retrieval Models

The theoretical performances of the S3-TOA-GPR-1.0 retrieval models were evaluated
over a subset of the simulated SCOPE-6SV database (75% of full data pool). The results
are illustrated in Figure 3, and suggest consistency for all variables with R2 ranging from
0.60 (for LAI) to 0.99 (for FAPAR). In addition, relative error measures indicate a very high
retrieval accuracy with NRMSE of 19.32% for LAI and NRMSE of 6.68% for FVC. In the
case of LAI, the well-known saturation effect occurred [70] for values larger than 4 m2/m2.
The effect was explained with the nonlinear relation between LAI and reflectance for larger
LAI values, when the signal becomes less sensitive to canopy structure effects [71]. The
other three variables provided higher consistency over their corresponding values ranges,
and in case of LCC and FAPAR, we can observe a linear relationship. However, residuals
of all four variables are not homoscedastic or normally distributed. In particular for LCC,
the larger spread of residuals at higher values suggests heteroscedasticity. This may limit
the prediction capacity of the models, depending on the observed variable ranges.

The obtained results provided sufficient confidence for the subsequent implementation
of the models in GEE. Hence, the S3-TOA-GPR-1.0 models were applied to the S3-OLCI
L1B catalogue over Europe to generate maps of vegetation products from TOA radiance
data at the continental scale. We generated both daily maps from daily OLCI images and
also monthly averaged maps.

Figure 3. Theoretical validation of trait specific S3-TOA-GPR-1.0 retrieval models: LCC (a), LAI (b),
FAPAR (c), and FVC (d) using the simulated SCOPE-6SV database (1750 samples).

3.2. Spatial Analysis

To demonstrate the mapping capability of our established S3-TOA-GPR-1.0 retrieval
models, all four traits were spatially estimated for the whole of Europe (Figure 4), and for
a specific part of the Iberian Peninsula (Figure 5). Figure 4 shows the monthly averaged
maps from July 2018 for the different variables, obtained by applying S3-TOA-GPR-1.0
retrieval models to monthly averaged radiance data as explained in Section 2.3. The spatial
distribution of LAI fits into the ranges defined by the global synthesis of Asner et al. [72],
for different climates [73], ranging between 2 and 6 m2/m2 for temperate evergreen broad-
leaved forests, 1–2 m2/m2 for boreal deciduous broad-leaved and evergreen needleleaf
forests, as well as 0.5–2 m2/m2 for pastures and shrublands. Crops present a wide variety
depending on the cultivation type and hence are hardly distinguishable at the actual spatial
scale of 300 m. The other three vegetation traits present a similar spatial pattern, being
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correlated between each other. In the case of LCC, ranges of 30–80, 20–30 and 0–20 µg/cm2

are found over the same regions. FAPAR and FVC shift into similar general 0–1 scale, and
also highlights the same spatial distribution.

Figure 4. Monthly composite maps (July 2018) of vegetation traits produced by S3-TOA-GPR-1.0
models over Europe: LCC (top-left), LAI (top-right), FAPAR (bottom-left), and FVC (bottom-right).

Figure 5 shows examples of daily estimation maps and associated uncertainties, ob-
tained for a S3 capture on 20 June 2019 over a part of Spain and Portugal (red square in
Figure 2). Values of FVC and FAPAR range between 0 and 1 for areas shifting from dry
to temperate climates respectively [73], with a corresponding uncertainty (1σ) generally
lower than 0.15 provided by Equation (7) (see middle row of Figure 5). LCC and LAI
estimates span between 0–70 µg/cm2 and 0–6 m2/m2, respectively, with maximum σ
reaching around 35 µg/cm2 and 3 m2/m2. The maps in the bottom row of Figure 5 reflect
the percentage deviation relative to the estimations, highlighting the areas with higher and
lower reliable values. In this example, we detect the dark pixels in the South and center-top
with maximum uncertainties for all the variables. Overall, the highest relative uncertainties
are found associated to lower estimates, suggesting that the scarce or non-vegetated areas
prevents our model from working in optimal conditions. Also, we find that FAPAR and
FVC outperforms LCC and LAI models with generalized lower percentage deviations.
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Figure 5. Retrieved daily maps, associated absolute uncertainty (σ) and relative uncertainty (CV) on
20 June 2019 over Iberian Peninsula (subset zoom-in indicated in Figure 2).

3.3. Temporal Analysis

The temporal evolution of the four variables spatially averaged over the different
classes of analyzed land covers is shown in Figure 6. We can assess the robustness of the
models from the value of uncertainty (σ) associated to estimations (represented as grey
shadows and green lines respectively). The σ account for deviations in estimations between
both the prior and last predictor function states of our algorithm, informing about the
accuracy of our model when facing real data. The graphs of LCC, LAI, FAPAR and FVC
vary together in function of the land cover, with maximums of LCC close to 50, 70, 40,
and 50 µg/cm2 for non-irrigated arable land, rice fields, pastures and broad-leaved forests,
respectively. LAI reached values around 2, 3.5, 3 and 4 m2/m2 in the same order. FAPAR
and FVC fluctuated similarly with maximum values up to 0.75, 0.90, 0.70, 0.96 (FAPAR),
and 0.65, 0.95, 0.80 and 0.99 (FVC). In general, we observe a strong seasonality from the
time series graphs, with peaks during spring and summer, and lowest values in winter.
The best fits between estimates and σ were found for FVC. LCC also presented good results
over rice fields. For the other combinations of land use classes and variables we observed
more diverging σ values, especially for LAI.

Our estimates captured the phenology associated to each land cover. Non-irrigated
arable land and pastures, being more dependent on rainfall, reach biomass maturity
during spring on this regions, according to the national phenological calendar for different
crops [74]. Maximum vegetative peaks around May are observed for non-irrigated arable
land and pastures. Rice fields usually fully grow during July and August on the analyzed
sites. Broad-leaved forests presented maximum values of biomass over longer periods
(during spring and summer). The temporal profiles also reflected larger σ for periods with
lower vegetation values, e.g., LCC and LAI over non-irrigated arable land and rice fields
presented larger shadows on non-vegetative periods, suggesting again that these models
(especially LAI) face difficulties dealing with scarce vegetation or bare soils.
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Figure 6. Time series of vegetation traits (LCC, LAI, FAPAR, FVC) over different land covers produced
by the S3-TOA-GPR-1.0 models. The grey shaded colors present the uncertainty (σ) of the estimates
(green). Original resolution of 300 m was used for spatial average calculations.

3.4. Comparison and Validation Strategies
3.4.1. Temporal Comparison against MODIS—MCD15A3H Products

Temporal profiles generated by the S3-TOA-GPR-1.0 models are compared against the
climatology of MODIS MCD15A3H LAI and FAPAR data, using the same time window of
the retrieved S3-TOA-GPR-1.0 vegetation products (2016–2020). Evaluation on the different
land covers are shown in Figure 7. Both products show similar seasonal patterns with
different variability depending on the land cover type. Statistics summary of all variables
and sites are listed in Table 4.
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Figure 7. GPR method versus MODIS MCD15A3H product for LAI and FAPAR (rows) time series
over following land covers: non-irrigated arable land, rice fields, pastures, and broad-leaved forests
(columns). Original resolution of 300 m was used for spatial average calculations.

Closest agreement between both products were found on rice fields for LAI, and on
broad-leaved forests for FAPAR, with minimum percentage differences between
MCD15A3H and S3 TOA-GPR time series averages (∆X in last column of Table 4) of
6.59% (LAI) and 7.27% (FAPAR). Conversely, the maximum differences were found for
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FAPAR over rice fields with ∆X of 33.27%. These differences are also observed in Figure 7,
with absolute differences of FAPAR up to 0.25 during spring caused by a pronounced peak
of the S3-TOA-GPR-1.0 estimates. For LAI, larges dissimilarities emerged on pastures, with
∆X of 27.7%, and absolute differences up to 1.5 m2/m2 on the early summer of 2018. In
the case of LCC and FVC, MODIS reference products were not available and therefore
the OLCI results are summarized in Table 4. Maximum values of 4.61 m2/m2 (LAI), 0.94
(FAPAR) and 0.97 (FVC) were found for broad-leaved forests, while the peak of 67 µg/cm2

(LCC) is found over rice fields. Both S3-TOA-GPR-1.0 and MCD15A3H-MODIS time series
profiles were produced by applying the time series gap-filling described in Section 2.3.

Table 4. Summary statistics over temporal window (April 2016–November 2020) for LAI, FAPAR,
LCC and FVC, refered to CLC areas. LAI and FAPAR of the S3-TOA-GPR-1.0 models are compared
against MODIS MCD15H products with percentage differences of time series means (∆X%).

MODIS LAI/FAPAR OLCI LAI/FAPAR

Variable/Site X SD MAX X SD MAX ∆X%

LAI/BF1 1.91 0.14 4.26 2.28 1.49 4.61 16.38
LAI/NIAL 0.52 0.41 1.89 0.71 0.73 3.01 26.14

LAI/RF 0.85 1.07 3.63 0.91 1.13 3.50 6.59
LAI/P 0.77 0.37 2.39 1.06 0.68 3.03 27.70

FAPAR/BF1 0.51 0.20 0.81 0.55 0.24 0.94 7.27
FAPAR/NIAL 0.26 0.12 0.60 0.35 0.13 0.74 24.65

FAPAR/RF 0.27 0.22 0.75 0.40 0.25 0.91 33.27
FAPAR/P 0.36 0.11 0.68 0.40 0.12 0.70 8.90

OLCI LCC OLCI FVC

Site X SD MAX X SD MAX

BF1 24.14 10.13 59.92 0.55 0.10 0.97
NIAL 10.44 10.15 34.63 0.22 0.10 0.81

RF 15.85 8.18 67.04 0.29 0.08 0.96
P 11.73 9.79 31.58 0.28 0.10 0.83

BF1: broad-leaved forest; NIAL: non-irrigated arable land; RF: rice fields; P: pastures.

3.4.2. Spatial Comparison against CGLS Products

Figure 8 shows the spatial intercomparison against reference products provided by
CGLS. The maps in Figure 8 show the spatial distribution of the differences. They suggest
that the CGLS products provide higher values for some scarcely vegetated areas in the
Iberian Peninsula in the case of LAI and FVC, and also in dense vegetated regions around
the Alps and parts of Italy and Carpathian Montane forests. On the Scandinavian Penin-
sula, we also remark that the S3-TOA-GPR-1.0 models provide lower values, especially for
FAPAR. Apart from those, our S3-TOA-GPR-1.0 models generally provide higher values.
Figure 8 also demonstrates maps of GPR uncertainties (σ) and RMSE of CGLS products.
Stronger uncertainties emerge in the same areas (Iberian Peninsula) where highest underes-
timation of our products occurred for LAI and FVC. In Scandinavia, we observe larger σ
than RMSE for LAI but the opposite for FVC. Also, in the Northeast of France we find a
prominent surface with curved-shape, corresponding to cereal crop lands according to [62],
with larger σ in all the three maps. In general, both RMSE and σ shift into similar ranges for
remaining areas, although it should be taken into consideration that the RMSE presented a
substantial percentage of missing pixels.
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Figure 8. Comparison maps between CGLS and S3-TOA-GPR-1.0 models for a monthly averaged
composed map between 4 March 2019 and 20 November 2019. In columns: maps of GPR-CGLS
percentage differences (left), uncertainty (σ) obtained by GPR (middle) and RMSE obtained by CGLS
(right). In rows: maps of LAI (top), FAPAR (middle) and FVC (bottom).

3.4.3. Validation against VALERI Ground Data

Figure 9 demonstrates the goodness-of-fit obtained by the S3-TOA-GPR-1.0 mod-
els (trained with 18 bands) against interpolated ground measurements of the VALERI
campaign. The plots indicate a moderate correlation for all three variables, with highest
accuracy for FAPAR and FVC estimates (NRMSE of 15% and 28% respectively), and lowest
for LAI (NRMSE of 46%). The samples were colored according to different land cover
categories including crops, forests, grasslands and mixed types. For all three variables,
heteroscedastic behaviour of residuals can be observed and nonlinearity is present, showing
saturation of higher values. In the case of LAI, overestimation was observed in particular
for grasslands and crops, with estimated values between 1.8 and 3.3 m2/m2 corresponding
to measured values in a range between 0.3 and 0.95 m2/m2. The samples belonging to the
other land covers are more disperse along the 1:1-line. The FAPAR scatter plot shows that
the samples per class are more compactly distributed compared to LAI. It must be remarked
that the samples belonging to the Mediterranean forest class result in constant estimates
values around 0.7 for a range of measured values between 0.5 and 0.75. Conversely, the
estimations of deciduous forests present values between 0.5 and 0.8 while linked to constant
measured values around 0.9. The scatter plot of FVC shows a good fit along the 1:1-line,
highlighting in this case underestimations of the pine forest samples.
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Figure 9. Scatter plots of predicted vegetation traits LAI (a), FAPAR (b) and FVC (c) by OLCI GPR
models vs. interpolations based on ground measurements of the VALERI campaigns. The vertical
bars show the obtained estimated uncertainty (σ).

4. Discussion

GEE became a popular platform in facilitating research activities in the field of vegeta-
tion traits mapping and monitoring. At the same time, despite an increasing number of
studies exploring GPR models in the remote sensing domain [31,49,59,75–77], the integra-
tion of GPR in GEE to produce spatiotemporal information of vegetation still remained to
be explored. Therefore, in this study we presented a workflow for monitoring vegetation
traits at continental scale by taking advantage of the TOA S3-OLCI collection available in
the GEE cloud platform. Hereafter, we discuss the obtained results of our S3 TOA-GPR
models, in relation to the spatiotemporal consistency (Section 4.1), validation strategies
(Section 4.2), uncertainties and limitations of the used models (Section 4.3), and future
perspectives derived from our study (Section 4.4).

4.1. Spatiotemporal Consistency

Our workflow expands previous efforts to implement GPR retrieval models in GEE by
exploiting for the first time OLCI TOA data in a hybrid approach. In addition, our analysis
was extended to four essential vegetation traits and mapping was performed at a large
spatial scale. In general terms, the produced traits retrievals responded consistently in space
and time. Specifically, the generated monthly averaged maps (Figure 4) are comparable to
reference studies showing similar spatial patterns as the obtained by PROBA-V Collection
CGLS products [64]. At the spatial scale, the obtained trait maps at a European level
(Figure 4) revealed ecoregions with the four variables presenting values within expected
ranges. For instance, LAI values of different plant functional types were well simulated
by the S3-TOA-GPR-1.0 models, with outputs ranging from 0 to 6 m2/m2 as function of
the biome. Given the dependency between LAI, FAPAR and FVC [78], but also LCC, we
observe a similar spatial pattern for all variables across Europe (see Figure 4), with FAPAR
and FVC quantified over the full range of 0–1. The spatial behaviour of LCC was found
closely related to LAI with peaks mainly reached over denser vegetated regions.

For a closer inspection, when focusing on the four traits over the Iberian Peninsula
(Figure 5), we clearly identified permanent densely vegetated areas with maximum values
in the north (Cantabrian Mountains) or in the central-west mountainous regions. Also,
the maps coincidentally reflect the lower values at the south-east corresponding to bare
soils and crops, mainly vineyards and non-irrigated lands according to the CORINE Land
Cover Classification [62]. Our results were in agreement with those of Pipia et al. [47],
highlighting the same spatial behaviour for LAI from Sentinel-2 imagery. The authors also
applied GPR models for predictions at dates matching the time windows of our monthly
composition maps (see Figure 4b), using as inputs Sentinel-2 L2A data. In the same figure
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we also provide associated uncertainty information in absolute and relative terms, which
helps to evaluate robustness and fidelity of retrieval models [75]. Although the patterns are
spatially similar, LCC and LAI retrievals are subject to higher uncertainty than FAPAR and
FVC, which confirms the theoretical model results (see Figure 3). Thanks to this Bayesian
capability of GPR, we can apply the S3-TOA-GPR-1.0 models to different locations and
large heterogeneous scenes, and directly obtain feedback about the estimation quality
through the associated uncertainties. Although alternative retrieval strategies may perform
similarly in terms of accuracy and processing speed, they all lack this outstanding capability.
With uncertainty estimates, not only valuable additional information is obtained next to
validation relying on in situ data, it also can be used for masking out of uncertain areas,
e.g., at a given threshold [79,80].

The presented monthly averaged maps underline the utility of temporally-aggregated
data for analysis, independent of particular daily conditions, and without spatial gaps e.g.,
due to cloud cover. In this context, we tested monthly medians and averages and applied
both over S3-OLCI L1B radiance data per pixel. Both statistics are suitable for composing
maps and resulted in similar outputs for July 2018. Nevertheless, if outliers are present in
the time composition windows, the medians are the more suitable option to compensate
anomalous values.

In this work we chose to process the gap-filled images with a monthly interval for
sake of demonstration. Yet, the temporal aggregation can be just as well applied to other
time intervals for monitoring specific events. For instance, we can assess the impact of
extreme temperatures and droughts on vegetation by using FAPAR estimations on shorter
time scales [81]. Extreme weather events, increasing in frequency in the context of climate
change, can lead to degradation processes on fragile ecosystems, such as observed in the
cork oak forests in the Mediterranean basin [82]. Likewise, outbreaks of plagues on forest
trees or crops can be noticed on short time intervals [83,84]. Furthermore, efficiency of
croplands monitoring depends upon the availability of timely and accurate data, which
can be delivered by our methodology. Thus, real time information about crops or forest
status is crucial to commit adequate decisions and to ensure an optimal management of
environment and agricultural resources [85,86].

At the temporal scale, Figure 6 illustrates the expected seasonal cycles over the five
recorded years. The time series were obtained from spatially averaged points over time,
of both estimations and deviations (σ). With this strategy we aimed to demonstrate the
capabilities of this workflow to also capture the evolution of different vegetated surfaces
including the associated uncertainties. Such data streams can serve diverse applications, for
instance tracking the conservation state of landscapes comprehensively [87], quantifying
tree cover forest changes based on the analysis of time series trends per pixel [88], or
analyzing ecological vulnerability and phenological responses [89]. The temporal analysis
here addressed also reveals the utility in the context of cropland phenology studies, e.g.,
through the calculation of land surface phenology (LSP) metrics, such as start or end of
season [90–92].

4.2. Product Intercomparison with Validation Data Sets

One of the major bottlenecks in vegetation retrieval studies is probably the limited
availability of trustful validation data sets. For our study, direct in situ ground measure-
ments were missing, collected with the required sampling strategy to represent the coarse
300 m OLCI pixels. To circumvent this, we chose three different products for direct and
indirect evaluation of the S3-TOA-GPR-1.0 models. Note also that none of the reference
products included LCC, hence a comparison for this variable is lacking. In the follow-
ing, we comment our findings when comparing and validating our results against the
MODIS MCD15A3H, the CGLS products, and the data coming from the VALERI project,
respectively.

The temporal intercomparison analysis against the MODIS MCD15A3H collection
revealed a generally close agreement between both products. Largest deviations occurred
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on rice fields in spring, and over non-irrigated arable land in summer. These differences
were mainly reached during the dormant periods.

When contrasting our composition maps against the reference CGLS products we
obtained closer agreement for FAPAR and FVC than for LAI (Figure 8). This reflects the
higher theoretical retrieval results obtained for the two products (see Figure 3). Additionally,
the comparative maps highlighted differences depending on the land cover type, revealing
that the model’s performances are not spatially homogeneous. This point is also confirmed
by the analysis of uncertainty carried out at the scale of the Iberian Peninsula (Figure 5),
where we detected least consistent results when analyzing bare soils, with stronger relative
deviations with regards to estimation values.

Concerning the direct validation against the VALERI products, we observe a moderate
to good retrieval performance for the three variables LAI, FAPAR and FVC. A few aspects
may limit the informative value of this comparison study. First, a resampling strategy based
on interpolations was required to compare both products at the same spatial resolution,
i.e, from 20–30 m (SPOT/Landsat) to 300 m (S3). Second, OLCI L1B TOA radiance was
simulated using Landsat ETM data due to missing availability of S3 scenes before 2016. In
relation to this, the models were built using only 18 from 21 bands due to lack of spectral
information below 490 nm of Landsat ETM. Despite all, we decided to consider the VALERI
data set for validation as it presents a unique data base for testing our S3-TOA-GPR-1.0
retrieval models: VALERI encompassed a network of sites (and a methodology) to validate
medium spatial resolution satellite products over terrestrial surfaces [66]. For this purpose,
field data were taken over a variety of plant functional types from different geographical
areas, and in addition, upscaled products for validating satellite images were provided.
These two aspects render the VALERI data set ideal for the spatial context of our work.

4.3. Study Limitations and Challenges

Identified limitations and challenges are discussed next. (1) We first elaborate the
assumptions and parametrization of the used RTMs, i.e., SCOPE and 6SV, in order to
design the optimal training data set. Following, (2) uncertainties related to sub-pixel
spectral heterogeneity is commented. Further, (3) the impact of seasonality on our results
is analyzed, and finally, (4) the difficulties encountered when implementing the S3-TOA-
GPR-1.0 models in GEE are discussed.

4.3.1. Assumptions and Parametrization of SCOPE and 6SV

The S3-TOA-GPR-1.0 models were trained with simulated data coming from leaf-
canopy-atmosphere RTMs. We used the SCOPE model [93] to generate a canopy-level
data set, which was then upscaled to TOA with atmospheric transfer functions coming
from 6SV according to Verrelst et al. [33] and Estévez et al. [49]. Simulations of the SCOPE
model are based on 1D turbid medium assumptions of the canopy. Hence, the trained
models better approximate homogeneous vegetation stands, such as crops or grassland,
than heterogeneous, such as forests. Nonetheless, the influence of complex 3D canopy
structures becomes less evident at the spatial resolution of S3 with 300 m [94,95] compared
to higher spatial resolution products. Comparing our LAI and FAPAR retrievals with the
MODIS MCD15A3H products, which are inferred from a 3D RTM, we even found higher
consistency over (broad-leaved) forests than crops (i.e., non-irrigated arable land). These
results suggest that (regular) seasonality plays a more important role than the complexity
of the underlying model when comparing time series of MODIS MCD15A3H and S3-TOA-
GPR-1.0 models. Despite consistent results it is worth mentioning that limitations of the
1D simulations have been widely reported, for instance due to the light obstruction by
clumped foliage, tree crowns, branches, and shoots, not being quantified, leading to biased
LAI retrieval results [6,96]. It must also be remarked that the theoretical performance of the
established models revealed heteroscedasticity, which may limit the retrieval accuracy in
particular of higher variable values.
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Further, we assumed a Lambertian surface to upscale the TOC reflectance towards
TOA radiance [33,56]. In reality, vegetation canopies may not be optimal Lambertian
diffusers. Uncompensated atmospheric scattering caused by the Lambertian assumption
may systematically introduce uncertainty into the retrieval results [97]. On the other hand,
assuming a Lambertian approximation renders the computation more feasible by reducing
the required size of the simulated data sets used for training. Moreover, the Lambertian
approximation only introduces a small error for near nadir observations for situations
approaching the hot spot region [97–99].

Finally, among the main challenges in the context of vegetation traits mapping at
continental scale when relying on hybrid models is the design of a representative training
data set, which should cover a wide variability of different vegetation states. Besides RTM
simulations spreading over a vast number of parameter combinations, real measurements
were taken into account from the S3 scenes to provide a realistic training data set valid for
a variety of vegetated and non-vegetated states. The uncertainty estimates (σ) provided
by the S3-TOA-GPR-1.0 models can be used to directly assess the impact associated to the
selected training inputs: the kernel-based distance between the OLCI observations and the
training samples is reflected on the σ values [36].

4.3.2. Sub-Pixel Spectral Heterogeneity in Transitional Vegetation Areas

With a spatial resolution of 300 m for the nominal orbit, subpixel heterogeneity of one
OLCI pixel will be present for many landscapes. If the assumptions of the training data set
are not met by spectra coming from heterogeneous surfaces, the performance of the model
will decline. Although maps show consistent patterns, it is likely that heterogeneous sur-
faces are suboptimally estimated. According to De Grave et al. [6], a way to deal with pixel
heterogeneity is to train a model including synthetic mixed spectra composed of a linear
combination of pure vegetated spectra and pure bare soil spectra [100–102]. Additionally,
although we filtered out bright pixels using the quality flag, still low percentage of cloud
contamination within a pixel may be present, causing some noise. To deal with this topic,
we added external spectra coming from heterogeneous surfaces, as observed directly from
OLCI, assigning vegetation traits values coming from external sources (MODIS MCD153H
product). In future work, filtering pixels in function of their homogeneity appears as a solu-
tion for improving results. In this regard, observations at higher scale resolution, coming
from instruments such as Sentinel-2 or Landsat-8 ETM+ may contribute to homogeneity
estimations.

4.3.3. Time Series and Impact of Seasonality

Inspection of the temporal profiles obtained by LCC, LAI, FAPAR, and FVC reveal
performance differences depending on the date of the year. For instance, in the case of LAI
for rice fields (Figure 6) we can observe that between November and March the associated
uncertainty (σ) increases. A possible explanation for this is that the spectral response of
the land cover properties varies along the year (e.g., due to irrigation), with our model
responding differently to the diverse states. On the other hand, during winter the quantity
of cloudy days generally increases [103,104]. We applied gap-filling to the time series to
interpolate missing data, but the performance of this technique decreases in function of the
time-length of gaps due to missing data [27,105].

Another related aspect affecting estimations throughout the year is the role of varying
sun-target-sensor geometry in combination with latitude. Accordingly, the S3-TOA-GPR-
1.0 models were trained to cover a variety of theoretical conditions, for instance sun zenith
angles in a range of 20◦ to 40◦ were considered, as the values most commonly reached over
European latitudes most part of the year at the crossing time of S3. We used a sun position
calculator accessed at http://www.solartopo.com/solar-orbit on 1 May 2021 to determine
this range. The reason to constrain the solar geometry to this range was to find a balance
for the model to stay reasonably lightweight for the proper running in GEE. This implies

http://www.solartopo.com/solar-orbit
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that for ranges beyond the training limits, or for particular combinations (e.g., on winter
over northern latitudes), the model will respond less optimally.

4.3.4. GEE Processing

The GEE platform excels by its capacity to provide a parallel computation service
allowing to run tasks by using multiple CPUs connected in the cloud [43]. Nevertheless, a
limited quota of memory usage is established for public usage, restricting in particular the
operations on matrices of big size dimensions used in this work. This results in reduced
dimension data sets having to cover a broad variability in training data. We addressed these
limitations by ranging input variables over all possible combinations, reducing the data set
by a random function and then mixing with spectra taken from real scenes over different
locations and dates. To assess the performance of the trained model, we introduced the
uncertainty calculations in GEE as a novelty allowing to filter the outputs in function of
their intrinsic consistency.

It must also be remarked that when using the OLCI L1B collection through GEE
directly, a mismatch on values over specific locations relative to original data provided by
Copernicus Open Data Hub Services has been reported due to use of a different coordinate
system (i.e., tie points vs. geo-coordinates) [106]. In our case, these local mismatches are
not measurable when working at large scale. We kept the OLCI native spatial resolution
(300 m) for the traits mapping. Nevertheless, when processing time series over large areas
(e.g., Spain), eventually, lower resolutions will be applied for aggregation operations (e.g.,
spatial average) for reasons of performance and processing time. In our case, the missing
information masked into lower resolution images resulted into time series providing lower
values. This is explained as native resolution pixels are averaged through a pyramidal
aggregation process when changing the scale (e.g., continental), leading to smoothed
values [43].

4.4. Opportunities for Future Work

In the upcoming years, new generation satellites and cloud-based processing technolo-
gies will stimulate advances in quantifying fundamental vegetation traits. In this context,
the S3-FLEX mission will deliver complementary information of surface fluorescence, re-
flectance and temperature, allowing to monitor the photosynthetic activity of the actual
terrestrial vegetation across the globe at a spatial resolution of 300 m [4]. The establishment
and assessment of accurate models for spatiotemporal large scale mapping of vegetation
traits using these unprecedented data streams remained still open. Hereby, cloud-based
computing provides promising opportunities, avoiding complex processes for obtaining
the input data (e.g., data acquisition and managing databases) or processing supercomput-
ers [43]. Due to the memory restrictions of GEE, lightweight models have to be guaranteed
as the GPR algorithms tend to be exigent in terms of memory size. To circumvent this
limitation, active learning (AL) methods can be employed. AL methods select only most
relevant samples from a training data pool, enhancing efficiency of the algorithm training
process [107,108]. Alternatively, the implementation of other ML methods in the GEE
environment may open possibilities when working with large training data sets. A study of
global scale traits mapping using random forests in GEE is provided by Campos-Taberner
et al. [46]. While random forests can become an appealing alternative processing technique,
the provision of associated uncertainty estimates is still missing.

The workflow presented here can contribute to build multi-annual or even multi-
decadal time series of regional phenological information at a large spatial scale. The
inspection of time series profiles allows to study ecological changes over large areas, such
as drought, fires or land use changes [109,110]. In this respect, an approach to extend
the OLCI data catalogue back in time was proposed by Pipia et al. [111], based on the
use of multi-output Gaussian processes regression (MOGPR). This method relies on the
same mathematical principles described in this work, but then extending for predicting
multiple variable outputs from multiple independent input time series data streams. In
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practical terms, as demonstrated by Pipia et al. [111], this concept opens the opportunity
to reconstruct temporal patterns making use of data streams coming from other sensors,
including historical time series data. In our case, given that the currently covered years
of the OLCI catalogue is limited to study decadal processes, MOGPR can be used to
reconstruct OLCI-like data guided by MODIS data collection for at least two decades back
in time. Follow up research is foreseen to explore MOGPR models in the GEE platform.

Data streams of the fundamental vegetation traits can further be assimilated into mod-
els for estimating global gross primary productivity [112]. Recently, this was demonstrated
also with the contribution of fluorescence estimates [113], and is foreseen to be developed
within the S3-FLEX tandem mission concept. Consequently, the vegetation retrieval mod-
els presented here are expected to contribute to assimilation processing chains aiming to
quantify photosynthetic activity once FLEX is launched and starts transmitting data [114].
A key requirement regarding assimilation systems is the provision of uncertainties along
with the satellite derived products to propagate through the assimilation trajectory [115],
which our GPR models provide.

All in all, the unprecedented processing capabilities of the GEE environment will
increase our understanding regarding speed of vegetation change and dynamics across
diverse ecosystems [2]. Provision of vegetation traits maps in real time may support
related management decisions and hence will be valuable tools for decision makers. The
applicability of our work on a global scale relying on vegetation inputs can be wide,
e.g., carbon balance estimations [116,117], integration in multi-instrument analysis and
synergies [118] or assessment of photosynthetic activity in the context of the upcoming
FLEX mission [4,7].

5. Conclusions

Global vegetation monitoring by means of large scale satellite sensors is fundamental
for understanding multiple ecological processes and supporting carbon sink quantification.
In our study we presented a retrieval framework to generate monthly averaged maps and
spatially averaged time series of the four vegetation traits LCC, LAI, FAPAR and FVC
at a continental scale. To achieve this, we implemented pretrained GPR models in GEE,
named as S3-TOA-GPR-1.0, to enable the processing of the entire collection of S3 OLCI
top-of-atmosphere radiance (L1B) images provided over Europe. Overall mapping was
achieved in a good accuracy as validated against temporal (MODIS MCD15A3H), spatial
(CGLS) and interpolated in situ (VALERI) reference products. Theoretical validation and
comparison of our S3-TOA-GPR-1.0 models to the three reference products suggested a
better match for FAPAR and FVC than for LAI and LCC.

In summary, our proposed method offers the following main advantages:

• The atmospheric correction step is avoided due to direct processing of S3 TOA images,
optimizing also computational running time.

• GPR models provide uncertainties along with the predictions allowing to evaluate the
robustness, consistency and fidelity of retrieval models.

• Implementation of traits retrieval model into the GEE platform enables large scale
processing of multiple trait maps.

We conclude that the workflow presented here provides a pathway towards opera-
tional mapping of quantitative vegetation products at the continental or even global scale.
It is foreseen that the obtained estimates will further support the correct interpretation of
sun-induced fluorescence obtained from observations of the upcoming Earth Explorer 8
within the S3-FLEX tandem mission. This synergistic data interpretation may enhance our
understanding about ecological processes and increase the ability to face future challenges
in the context of global climate change.
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Appendix A

Table A1. Validation campaigns and products offered by the VALERI network.

Country Site Boundaries
Coordinates Land Cover Date of Ground

Data Collection Variables
Interpolated Biophysical

Map Spatial
Resolution (m)

SPOT Image for Interpolation
Transfer Function

Aquisition Date SZA

Belgium Sonian forest 50.78◦N–50.77◦N
4.38◦E–4.41◦E forest 2004/06/21–

2004/06/22 LAI, FAPAR, FVC 20 2004/07/28 34.58

England Chilbolton 51.19◦N–51.14◦N
1.47◦W–1.43◦W crops and forest 2006/06/14–

2006/06/17 LAI, FVC 10 2006/07/10 28.90

Estonia Jarvselja 58.31◦N–58.29◦N
27.24◦E–27.26◦E boreal forest 2007/07/18–

2007/07/19 LAI, FVC 20 2007/06/16 35.5

Estonia Jarvselja 58.31◦N–58.29◦N
27.23◦E–27.26◦E boreal forest 2002/06/24–

2002/06/30 LAI, FVC 20 2002/07/13 36.83

Estonia Jarvselja 58.31◦N–58.29◦N
27.23◦E–27.26◦E boreal forest 2005/06/28–

2005/07/01 LAI, FVC 20 2005/06/20 35.64

France Les Alpilles 43.82◦N–43.81◦N
4.70◦E–4.71◦E crops 2002/07/22–

2002/07/23 LAI, FAPAR, FVC 20 2002/07/20 49.04

Romania Fundulea 44.42◦N
26.56◦E crops 2003/05/24 LAI, FAPAR, FVC 10 2003/05/31 24.43

Spain Barrax 39.04◦N
2.21◦E cropland 2007/07/01 LAI, FAPAR, FVC 20 2003/07/03 22.11

https://github.com/psreyes/S3_TOA_GPR_1.git
www.cost.eu
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Table A1. Cont.

Country Site Boundaries
Coordinates Land Cover Date of Ground

Data Collection Variables
Interpolated Biophysical

Map Spatial
Resolution (m)

SPOT Image for Interpolation
Transfer Function

Aquisition Date SZA

Germany Gilching 48.10◦N–48.08◦N
11.30◦E–11.32◦E crops and forests 2002/07/17–

2002/07/19 LAI, FAPAR, FVC 20 2002/07/08 29.16

France Nezer 44.62◦N–44.56◦N
1.09◦W–1.04◦W pine forest 2002/04/23 LAI, FAPAR, FVC 20 2002/04/21 34.28

France Puechabon 43.74◦N–43.72◦N
3.63◦E–3.65◦E mediterranean forest 2001/06/11–

2001/06/15 LAI, FAPAR, FVC 20 2001/06/12 25.94

France Larzac 43.95◦N–43.94◦N
3.10◦E–3.12◦E grassland 2002/07/01–

2002/07/03 LAI, FAPAR, FVC 20 2002/07/12 27.39
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