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Abstract: Semantic segmentation of remote sensing imagery (RSI) has obtained great success with
the development of deep convolutional neural networks (DCNNs). However, most of the existing
algorithms focus on designing end-to-end DCNNs, but neglecting to consider the difficulty of
segmentation in imbalance categories, especially for minority categories in RSI, which limits the
performance of RSI semantic segmentation. In this paper, a novel edge guided context aggregation
network (EGCAN) is proposed for the semantic segmentation of RSI. The Unet is employed as
backbone. Meanwhile, an edge guided context aggregation branch and minority categories extraction
branch are designed for a comprehensive enhancement of semantic modeling. Specifically, the edge
guided context aggregation branch is proposed to promote entire semantic comprehension of RSI
and further emphasize the representation of edge information, which consists of three modules:
edge extraction module (EEM), dual expectation maximization attention module (DEMA), and edge
guided module (EGM). EEM is created primarily for accurate edge tracking. According to that,
DEMA aggregates global contextual features with different scales and the edge features along spatial
and channel dimensions. Subsequently, EGM cascades the aggregated features into the decoder
process to capture long-range dependencies and further emphasize the error-prone pixels in the edge
region to acquire better semantic labels. Besides this, the exploited minority categories extraction
branch is presented to acquire rich multi-scale contextual information through an elaborate hybrid
spatial pyramid pooling module (HSPP) to distinguish categories taking a small percentage and
background. On the Tianzhi Cup dataset, the proposed algorithm EGCAN achieved an overall
accuracy of 84.1% and an average cross-merge ratio of 68.1%, with an accuracy improvement of
0.4% and 1.3% respectively compared to the classical Deeplabv3+ model. Extensive experimental
results on the dataset released in ISPRS Vaihingen and Potsdam benchmarks also demonstrate the
effectiveness of the proposed EGCAN over other state-of-the-art approaches.

Keywords: remote sensing imagery; semantic segmentation; deep learning; context aggregation

1. Introduction

Semantic segmentation is a typical computer vision problem that processes raw data
such as RGB images, to be specific, converting them into masks with different highlighted
regions of interest where each pixel of the image is assigned as a unique category label. In
recent years, semantic segmentation has become one of the key issues in remote sensing
imagery parsing for its widespread applications, including road extraction [1,2], urban
planning [3,4], object detection [5,6], and change detection [7], to name a few.

Traditional segmentation methods mainly applied handcrafted features to assign pixel-
wise category labels, ranging from classic approaches such as logistic regression [8], distance
measures [9] and clustering [10], to more superior models based on machine learning such
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as the support vector machine (SVM) [11], random forest (RF) [12], conditional random
fields (CRFs) [13], and multi layer perceptron (MLP) [14]. Nevertheless, due to the restricted
dependency extraction and expressive ability of the above mentioned models based on
handcrafted descriptors, these methods failed to achieve considerable performance in
challenging cases.

For the past few years, DCNNs have been successful in natural image semantic seg-
mentation and achieved excellent performance [15]. The CNN-based methods formulate
the trainable tasks as an end-to-end paradigm and contain the powerful feature represen-
tation. One solution concentrates on designing an encoder–decoder architecture [16–19],
which can keep more detailed information and obtain clearer object edges by gradually fus-
ing low-level and high-level semantic features. Another solution is to exploit the elaborate
contextual information. For instance, different-scale dilated convolutional layers or pooling
functions are appended to the top of the network to incorporate multi-scale contexts and
features in certain works [20–22]. There are several studies [23–25] to aggregate richer
context information to invent large-size kernels or explore a context encoding module.

To enhance the discriminant ability of feature representations, the attention mechanism
was introduced into semantic segmentation [26,27]. The attention mechanism models the
internal process of biological observation, a mechanism that aligns internal experience and
external sensation to increase the fineness of observation in some salient areas [28,29]. It is
also well known that attention plays a vital role in human perception [30,31]. Attention
not only tells where to focus, but also improves the representation of meaningful areas.
With the help of the powerful semantic feature expression ability brought by the attention
mechanism, the accuracy of semantic segmentation has been further improved [32,33].

Based on the success of CNNs in processing natural image semantic segmentation, they
have been widely explored for semantic segmentation of RSI [34,35]. In general, compared
with natural images, remote sensing images are featured by complex data attributes, and
various types of ground objects are diverse and easy to mix. Due to diverse topological
shapes and variable scales, the semantic segmentation of RSI encounters barricades to some
extent. Although the existing DCNN models perform well, semantic labeling on RSI is still
challenging and difficult. Several solutions like multi attention network [36], adaptive tree
CNN [37], and multi-source data fusion [38] for semantic segmentation of RSI are proposed
in several research works. However, most of the current algorithms focus on learning a
complicated mapping through an end-to-end DCNN, neglecting to consider and analyze
the segmentation of the categories taking a small percentage of pixels in RSI, limiting the
performance of RSI semantic segmentation. For example, road elements in RSI usually
account for a relatively low proportion and the scale of road distribution is variable, making
it difficult to effectively extract road features through exploiting CNNs and resulting in low
road segmentation accuracy. Meanwhile, most of the current algorithms show a similar
problem in modeling contextual information. To solve this issue, many researches have
been conducted to analyze contextual dependencies, and the existing solutions are generally
classified into two types. One approach is to utilize a pyramid module that integrates
multi-scales feature information just like atrous spatial pyramid pooling (ASPP) in Deeplab.
Another approach is to express long-interdependence from a channel or spatial aspect, such
as the Non Local module. However, these current methods lack specific prior along the
edge areas to aggregate contextual information.

In this paper, a novel edge guided context aggregation network (EGCAN) is proposed
for semantic segmentation of RSI to address the aforementioned issues. The Unet is
adopted as backbone network to generate a dense prediction containing features of all object
categories. Meanwhile, an edge guided context aggregation branch and minority categories
extraction branch are presented in the proposed framework EGCAN according to their
roles respectively. Specifically, the edge guided context aggregation branch contains three
modules: edge extraction module (EEM), dual expectation maximization attention module
(DEMA), and edge guided module (EGM). EEM estimates the binary edge information
of remote sensing images, then the edge information and the global semantic features
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with different scales extracted from encoder part of the backbone are incorporated and
fed into DEMA for sufficient context aggregation. Based on that, the edge area attention
map generated by DEMA is fed back to EGM embedding in the different parts of decoder
process to emphasize those error-prone pixels in the edge regions. Thus, the edge guided
context aggregation branch can keep global semantic comprehension and enhances the
representation of the edge features along the spatial and channel dimensions. Meanwhile,
the minority categories extraction branch contains a hybrid spatial pyramid pooling module
(HSPP), which is presented to acquire rich multi-scale contextual information to distinguish
categories which take a small percentage and background; thus, a better segmentation result
is achieved on the minority categories. Extensive experiments on the dataset released in the
TianZhi Cup Artificial Intelligence Challenge, ISPRS Vaihingen, and Potsdam benchmarks
demonstrate that the proposed algorithm can effectively improve the accuracy of semantic
segmentation of RSI.

The main contributions of this paper are summarized as follows:

1. A novel architecture named edge guided context aggregation network (EGCAN) is
proposed for RSI semantic segmentation. The advantage of the proposed network
is that the edge information is employed as a priori knowledge to guide remote
sensing image segmentation. The edge information is beneficial for effectively distin-
guishing background and different categories, especially the categories occupying a
small percentage.

2. A novel edge guided context aggregation branch is invented containing three modules,
edge extraction module (EEM), dual expectation maximization attention module
(DEMA) and edge guided module (EGM) to promote the accuracy of edge predictions,
which enhances edge feature interdependencies and representation ability of the
network along the spatial and channel directions.

3. A hybrid spatial pyramid pooling (HSPP) module is investigated in minority cate-
gories segmentation branch, which is comprised of different-scale dilated convolutions
and pooling operations to capture rich multi-scale contextual information for improv-
ing the proposed model’s discriminative capability of minority categories.

4. Extensive experimental results on the dataset released in the TianZhi Cup Artificial
Intelligence Challenge, ISPRS Vaihingen, and Potsdam benchmarks demonstrate the
superiority of the proposed EGCAN over other state-of-the-art approaches.

2. Related Work

Semantic segmentation is a fundamental and challenging task in the field of computer
vision involving a deep semantic understanding of various types of images. In this section,
methods regarding semantic segmentation of nature scenes and remote sensing images
and attention mechanism relevant to our proposed method are reviewed.

2.1. Semantic Segmentation

As an extension of classic CNN, the fully convolutional neural network (FCN) that
can learn the mapping relationship between pixels without extracting region suggestions
aims to make classic CNN accept images of any size as input. Long et al. [15] built the
first FCN in semantic segmentation. Utilizing the powerful representation learning ability
of CNNs, FCN greatly surpassed the traditional methods based on hand-crafted features.
Subsequently, several model variants were proposed to boost contextual extraction. For
example, PSPNet [21] designed a pyramid pooling module (PPM) to exploit the global
context information and produced a superior pixel-level prediction result. DeeplabV2 [20]
aggregated contextual information via an astrous spatial pyramid pooling (ASPP) module
constituted of parallel dilated convolutions with different dilated rates. Deeplabv3 [22]
extended ASPP with image-level feature to further obtain more contexts. Meanwhile, to
reduce computational complexity, FastFCN [39] further introduced the joint pyramid up
sampling (JPU) module as a substitute for extended convolution.
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Typically, the encoder–decoder networks, such as convolutional networks for biomedi-
cal image segmentation (Unet) [17], encoder–decoder with atrous separable convolution for
semantic image segmentation (DeepLabv3+) [40], a deep convolutional encoder–decoder
architecture for image segmentation (SegNet) [18], and semantic prediction guidance for
scene parsing (SPGNet) [41], established skip-connection, explicitly connecting encoder
layers with decoder layers to gradually recover the spatial information, thus improv-
ing the models’ accuracies and addressed the problem of vanishing gradients. Similarly,
Yu et al. [42] preserved rich spatial information and obtained a larger receiving field by
proposing spatial and context paths, which solved the high computational cost associated
with high-resolution feature maps in the U-shaped architecture.

2.2. Attention Mechanism

The attention mechanism intended to elevate the effectiveness of certain models is
widely applied to machine translation, image classification, semantic segmentation, etc.
The attention-based networks and their variants have been proposed to tackle the chal-
lenge in semantic segmentation [43,44]. Inspired by the outstanding performance of the
attention mechanism in machine translation originally proposed by Bahdanau et al. [43],
a Squeeze-and-Excitation Network (SENet) was proposed by Hu et al. [44], introducing
global average pooling to aggregate the feature maps. Then, the feature maps were simpli-
fied into a single channel descriptor, thus highlighting the most distinguishing features.
Inspired by the self-attention mechanism, to explore the long-range dependency encour-
aged by attention-based networks utilizing Non Local module in semantic segmentation,
the Double Attention Networks (AA2-Net) [45], Dual Attention Network (DANet) [27],
Point-wise Spatial Attention Network (PSANet), Object Context Network (OCNet) [46],
and Co-occurrent Feature Network (CFNet) [47] were proposed. Later on, Li et al. [48]
further enhanced the attention mechanism’s efficiency by combining self-attention and EM
algorithm [49].

2.3. RSI Semantic Segmentation

The development of remote sensing technology has made it easy to obtain a large num-
ber of high-quality remote sensing images. Meanwhile, encouraged by the progress made
by deep learning (DL) applied in natural image processing, there indicates a promising
prospect for a variety of DL based methods to be applied in RSI, thus improving under-
standing of the context. To address the different orientations of the RSI, Marcos et al. [50]
developed a Rotation Equivariant Vector Field Network (RotEqNet) encoding rotation
equivariance. Furthermore, Liu et al. [51] proposed that multiscale contexts captured by
CNN encoder could be aggregated to improve the labeling coherence and low-level features
from CNN’s shallow layers for helping refine the objects. Both adaptive hierarchies and
a deep neural network are used in a unified deep learning structure in the structure of
TreeUNet. Likewise, a similar unified deep learning structure that combines decision trees
and CNNs has been proposed in the work of ANT [52]. Liu et al. [51] proposed a novel
end-to-end self-cascaded network (ScasNet) that promoted the labeling coherence with
sequential global-to-local contexts aggregation, especially for confusing artificial objects.
Superpixel-enhanced Deep Neural Forest (SDNF) [53] was proposed to tackle difficulties
in distinguishing ground object categories due to the complexity of ground objects’ spec-
trum. Furthermore, semantic segmentation and semantically informed edge detection were
combined to clarify class boundaries in the work of Marmanis et al. [54].

3. The Proposed Method
3.1. Overview

As shown in Figure 1, the proposed edge guided context aggregation network (EGCAN)
consists primarily of three parts according to the effects of each part: the mainstream Unet,
which combines encoder parts {E1, E2, E3, E4} and decode parts {D1, D2, D3, D4}; the edge
guided context aggregation branch, which contains edge extraction module (EEM), dual
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expectation maximization attention module (DEMA), and edge guided module (EGM);
and the minority categories extraction branch. In view of the edge guided context aggrega-
tion branch, firstly, the EEM is employed to obtain the edge feature map. Then, the edge
information I1 derived from the segmentation result of canny with morphological dilation
operation and the various semantic information {I2, I3, I4} with different scales which were
generated from four stages of the backbone Resnet101 [55], are combined together. After
that, the proposed DEMA is utilized to aggregate the context of edge feature map. The
result of DEMA is fed into the decoder parts noted as EGM, to verify the region of the
object edges and relearn them in a gradual manner. For the minority categories extraction
branch, the hybrid spatial pyramid pooling (HSPP) is exploited to obtain multi-scale spatial
information through adjusting scale and rate parameters. Following that, the same decoder
part of the mainstream except the edge guided module is shared to get the minority cat-
egories feature map. Lastly, the features of the mainstream and the minority categories
extraction branch were fused by an ensemble way to obtain a better segmentation result.

Figure 1. Network architecture of the proposed edge guided context aggregation network (EGCAN).
EGCAN contains three parts: the mainstream, the edge guided context aggregation branch, and the
minority categories extraction branch.The input of the ECGAN is RGB images and the output is the
corresponding segmentation result.

3.2. Edge Guided Context Aggregation Branch
3.2.1. Edge Extraction Module (EEM)

Since the edge feature information are utilized to drive the procedure of edge context
aggregation and they connect with the mainstream semantic features, EEM adopts the
middle representations information from the backbone as its input directly. This step is
beneficial to fully utilize low level feature and high level semantic information when the
connections between the mainstream and the edge stream are created to allow different
levels of information to flow over the network. As shown in Figure 1, the feature maps
were obtained from every stage of the backbone Resnet101 by a 3 × 3 convolution. The
following upsampling operation directly utilized bilinear interpolation to acquire the same
size feature as the input feature maps. After that, the edge extraction module obtained
the feature maps {I2, I3, I4}. In order to get more, clearer edge information and feed the
edge information into the decoder part of the network, canny and dilation operations were
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utilized to get the binary edge map I1. As shown in Figure 1, the EEM offers a concatenate
operation to get the binary edge map and the feature maps from backbone together.

X = ψ(I1, I2, I3, I4) (1)

where X denotes the result of the EEM. ψ denotes a series of operations: concatenate, 1× 1
convolution, BatchNorm and Sigmoid.

3.2.2. Dual Expectation Maximization Attention Module (DEMA)

The ddge guided context aggregation branch introduces the expectation maximization
algorithm into the self-attention mechanism, which runs the attention mechanism through
a set of compact base set instead of every pixel position of the whole image. The expec-
tation maximization algorithm refers to finding the maximum likelihood estimation or
the maximum posterior estimation of parameters in a probabilistic model, which depends
on hidden variables that cannot be observed directly. The main steps of the algorithm
are step E and step M [48]. As illustrated in Figure 2, step E is purposed to calculate the
spatial attention map Z, using the existing estimate of the hidden variable to calculate its
maximum likelihood estimate. Step M is purposed to maximize the maximum likelihood
value µ obtained in step E to calculate the value of the parameter. The parameter estimates
gained at step M are used in the following step E to calculate the expectation. The algorithm
executes step E and step M alternately until the convergence criterion is satisfied.

Figure 2. An overview of the dual expectation maximization attention module (DEMA). DEMA
contains two parts: SEMA and DEMA. The main steps of DEMA are step E and step M. Step E is
purposed to calculate the spatial attention map z. Step M is purposed to maximize the maximum
likelihood value obtained in step E to calculate the value of bases µ.

As illustrated in Figure 2, a dual expectation maximization attention (DEMA) mod-
ule was developed to explore the feature correlations along both spatial and channel
dimensions. The feature map X, which is the output of edge extraction module, has been
considered with a size of C× H ×W, where C represents the number of channels, and H
and W denote the height and width, respectively.

First, the SEMA module reshapes X into a simplified form of N × C, where N = H ×W.
After that, the bases µ is initialized as K vectors of length C, then the EM iteration step is
executed (step E generates the attention map, step M updates µ). In the t-th iteration, the
spatial attention map Z is expressed in the form of exponential inner product as:

Z(t)
nk = softmax

(
λXn

(
µ
(t−1)
k

)T
)

(2)

where 1 ≤ n ≤ N and 1 ≤ k ≤ K and λ is a hyper-parameter to control Z. Next, µ can be
updated through Z to:

µ
(t)
k =

Z(t)
nk Xn

∑N
m=1 Z(t)

mk

(3)
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In order to ensure that the learning of µ is stable, L2 norm is adopted to normalize µ
in each update. After T iterations, the feature X̃s about spatial dimension can be obtained
by reconstructing the final Z and µ as:

X̃s = Z(T)µ(T) (4)

Similar to SEMA, the CEMA module reshapes X̃s to RC×N . Then, base ν is initialized to
RN×J . Next, the EM iteration step is performed. In the t-th iteration, the channel attention
map F is represented in the form of exponential inner product as:

F(t)
cj = softmax

(
θX̃c

(
v(t−1)

j

)T
)

(5)

where 1 ≤ c ≤ C and 1 ≤ j ≤ J and θ is a hyper-parameter to control F. Next, ν can be
renewed according to F to:

ν
(t)
j =

F(t)
cj Xc

∑C
m=1 F(t)

mj

(6)

To make sure that the learn of ν is stable, L2 norm is also adopted to normalize ν in
each iteration. After T iterations, the feature X̃c can be obtained by reconstructing the final
F and ν as:

X̃c = F(T)ν(T) (7)

Ultimately, refined features X̃s and X̃c are reshaped to RC×H×W and combined with X
to generate the edge area attention map.

3.2.3. Edge Guided Module (EGM)

As previously stated, the edge of remote sensing imageries contains pixels that are
hard to distinguished in the semantic segmentation task. Thus, the results of DEMA were
sent into the EGM, the decoder part of the mainstream. The EGM retrains the pixels along
the region of the edge and remodels the edge feature space. This strategy helps to improve
the abilities of discriminatory for edge pixels. As shown in Figure 1, the result of the encoder
part of EGCAN noted as Dn is fed it into EGM. The edge guided module gets τ(Dn) where τ
denotes 1× 1 convolution, BatchNorm, and ReLu. Following that, an upsample procedure
is performed. In order to maintain the same dimensions the upsampling ratio n ∗ n ( n is
predetermined was set to 16, 8, 2 in EGM1, EGM2, EGM3, respectively). The edge feature
is then used to reconstruct as

f
(

D′n
)
= τ(Dn)⊗ X̃ (8)

where ⊗ denotes elementwise production, and X̃ is the result of DEMA. Guided by edge
area attention map, f (D′n) accentuates the pixels along the edge which is hard to distinguish.
Next, the edge guided module combines f (D′n) with Dn by the means of downsample
procedure and concatenate operation. Meanwhile, the downsample ratio m ∗m is set to be
the same as the upsample operation. In order to effectively utilize the advantages of the
edge area attention map, the decoder part of EGCAN gradually enhances the representation
ability of features

fn = ξ
(
Cat

(
f
(

D′n
)
, Dn

))
(9)

where ξ formed by convolution layers (i.e., 1× 1 convolution, BatchNorm, and ReLU),
which are used to reduce the number of channels and maintain resolution, respectively.
“Cat” refers to a concat operation used to fuse f (D′n) and Dn. fn is the output of EGMn.

3.3. Minority Categories Extraction Branch

As stated in the introduction, the current algorithms neglect to consider and analyze
the segmentation for categories which take a small percentage of remote sensing imageies,
which makes it difficult for existing CNN-based methods to effectively extract contextual
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features. At the same time, due to the diverse topology shapes and different distribution
scales for minority categories elements, the segmentation accuracy of minority categories
is further limited. Global average pooling and dilated convolution operation have been
proven to be powerful tools for capturing contextual characteristics. Besides this, it is
beneficial to obtain multi-scale spatial information by adjusting scale and rate parameters.
Accordingly, a hybrid spatial pyramid pooling (HSPP) module is investigated in minority
categories extraction branch of the proposed EGCAN network.

Figure 3 depicts an illustration of the HSPP module, which is comprised of two parallel
different-scale dilated convolutions and global average pooling operations. The input
of this module is from the output feature of the dilated Resnet101 backbone network.
To reduce the computational complexity, the HSPP employs 1× 1 convolution to reduce the
channel dimension of the corresponding feature for each pooling operation, while dilated
convolutions apply a smaller number of filters. The following upsampling directly utilize
bilinear interpolation to acquire the same size feature as the input feature map. Then,
different scales and rates of features are concatenated as the final hybrid spatial pyramid
feature. At the end of the proposed network, EGCAN fuses the results of the mainstream
and the minority categories extraction branch via an ensemble strategy by voting.

Figure 3. An overview of the hybrid spatial pyramid pooling module (HSPP). The input of HSPP
is from the output feature of the dilated Resnet101 backone network. The output of HSPP is the
concatenation of different scales and rates of features.

4. Experiments and Results

In this section, the effectiveness of the proposed method is validated through a variety
of datasets. Section 4.1 introduces fundamental experiment conditions and settings. A brief
description of datasets utilized for the benchmark is shown in Section 4.2. Introduction for
evaluation metrics can be found in Section 4.3. In Section 4.4, the effectiveness of the model
EGCAN was evaluated in the Tianzhi Cup AI Challenge Dataset, ISPRS Vaihingen, and
Potsdam dataset. Experimental results comprising the comparison of the proposed method
and other classic methods can also be found in Section 4.4.

4.1. Experimental Settings

The hardware and system configuration for the laboratory server intended for our
experiments is shown in Table 1. Essential packages for the experiment include Python 3.6,
CUDA 9.0, Pytorch 1.1.0, and others.

Table 1. Hardware configuration.

CPU Intel(R) Core(TM) i9-9900K CPU @ 3.60 GHz

RAM 32 G
Disk 2 T
GPU GeForce GTX2080 Ti

System Ubuntu 16.04

Certain operations for images like rotation, flip, brightness adjustment, and noise
addition were adopted randomly in data augmentation to improve the generalization
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performance of the proposed method. Furthermore, due to sample imbalance in certain
datasets, sample equalization was introduced to enhance the effectiveness of the train-
ing process.

In order to avoid problems caused by hardware resource limitations, the images were
cropped into patches of 512 × 512 resolution with a stride of 256 pixels for both rows and
columns. For the Tianzhi Cup AI Challenge Dataset, 6422 images are used for training. For
the ISPRS Vaihingen and Potsdam Challenge Datasets, the training set contains 864 and
9580 images, respectively. Adam optimization was adopted with the batch size 8 in the
training process. The learning rate is initialized at 0.00002 with the polynomial function
of power = 1.5 as the decay policy. The total training epoch is set as 100. Based on the
experimental settings description above, the training time for the proposed method is
approximately 24.3 mins using the Tianzhi Cup AI Challenge Dataset, 3.5 mins using the
ISPRS Vaihingen Challenge Dataset, and 38.8 mins using the ISPRS Potsdam Challenge
Dataset, respectively.

4.2. Dataset Description

The proposed method was validated on the dataset released in the TianZhi Cup Artifi-
cial Intelligence Challenge, ISPRS Vaihingen, and Potsdam benchmarks.The ground truth
of the TianZhi dataset comprises five different common land cover categories: farmland,
roads, water, vegetation, and backgrounds that denotes all other categories that differ from
the above four categories. ISPRS datasets include the six most common land cover classes,
impervious surfaces (imp_surf), buildings (building), low vegetation (low_veg), trees (tree),
cars (car), and clutter/background (clutter).

The Tianzhi Cup AI Challenge Dataset consists of a pair of 23 RSIs of 7400 × 4950
resolution and corresponding ground truth semantic labels. Each image contains three
channels of red (R), green (G), and blue (B). Following the contest instructions, 12 of them
are used for training, 6 of them are used as validation data, and the remaining RSI are used
for testing.

The ISPRS Vaihingen Challenge Dataset contains a variety of independent buildings
and small multi-storey buildings, involving 33 orthorectified patches of different sizes
acquired by a near-infrared–green (G)–red (R) aerial camera over the town of Vaihingen
(Germany). Each image is accompanied by a corresponding DSM representing the absolute
heights of pixels. The average size of the tiles is 2494 × 2064 pixels with a spatial resolution
of 9 cm. DSM is not used in these experiments. Recently, the challenge organizer opened
the ground truths of all the images. Among the previously opened ground truths, 12
annotated images were used to train the networks, 4 images (ID 5, 7, 23, and 30) were used
to validate performance, and the remaining 17 images were used as a test set to evaluate
the segmentation generalization accuracy.

The ISPRS Potsdam Challenge Dataset contains 38 orthorectified same-size patches
of size 6000 × 6000 pixels with a spatial resolution of 5 cm over the town of Potsdam
(Germany). This dataset offers near-infrared, red, green, and blue channels together with
the DSM and normalized DSM (NDSM). There are 20 images in the training set, 4 images
(ID 2_11, 4_10, 5_11, and 7_8) in the validation set, and 14 images in the test set.

4.3. Evaluation Metrics

The performance of the proposed method was evaluated by overall accuracy (OA),
mean Intersection over union (mIoU), and F1 score.

The overall accuracy as an intuitive metric computes a ratio of the amount of correctly
classified pixels and the total number of pixels, standing for a general assessment result for
overall pixels. The OA can be calculated as follows:

OA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(10)



Remote Sens. 2022, 14, 1353 10 of 22

The intersection over union (IoU) represents a ratio of the intersection of pixels pre-
dicted to be of a specific category and the ground truth pixels of that category and their
union. The mIoU can be derived by averaging the IoU for all the label categories besides
background. It is assumed that there are total k + 1 categories (from 0 to k, and 0 represents
the Backgrounds), while pij stands for the number of pixels belonging to category i and
being predicted as category j. The mIoU can be calculated as follows:

mIoU =
1

k + 1

k

∑
i=1

pii

∑k
i=1 pij + ∑k

j=1 pji − pii
(11)

F1 score is defined as the harmonic mean of recall and precision, and can be calculated
as follows:

F1 = 2
recall × precision
recall + precision

(12)

Recall and precision, representing completeness and correctness, respectively, for class i
are calculated as follows:

recall =
TP

TP + FN
, precision =

TP
TP + FP

(13)

True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN)
are the four most basic metrics, in which Positive and Negative represent the prediction
whether pixels belong to one class, while True and False represent the authenticity of this
prediction, For example, TP represents the number of pixels predicted to be one class and
belongs to this class. Assume that there are total k + 1 classes (from 0 to k), and pij stands
for the number of pixels belonging to class i but being predicted as class j, for class i, they
can be derived as:

TP = Pij, FP = ∑
j 6=i

Pji, TN = ∑
j 6=i

Pjj, FN = ∑
j 6=i

Pij (14)

4.4. Experimental Results

Quantitative comparisons between other approaches and the proposed method on
the Tianzhi testing dataset are conducted by metrics of OA and mIoU. In the TianZhi
Cup dataset, the proportion of road elements is the lowest, so the minority categories
extraction branch of the proposed network is mainly used to distinguish road elements.
As shown in Table 2, the proposed method ranks first in OA and mIoU among six other
classic methods and achieves 84.1% in OA and 68.1% in mIoU on the Tianzhi testing dataset.
Meanwhile, the proposed method performs the best in categories of farmland and roads
by a relatively large margin compared to other networks, which denotes the proposed
method’s effectiveness, especially for the minority category. From Figure 4, it can be seen
that our method achieves the best visualization effect, reflecting the consistency of the
numerical results. In view of road element, the proposed method provides a more complete
and accurate segmentation along the edge of the road. Meanwhile, misclassified pixels
along the edge of objects take a smaller proportion.
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Table 2. Quantitative comparisons between other methods and our method on the Tianzhi test-
ing dataset. The bolded values represent the best results and the underlined values represent the
second best results.

Description Farmland Roads Water Vegetation OA mIoU

Deeplabv3+ 65.2 34.9 93.8 73.4 83.7 66.8
PSPNet 64.5 34.9 93.9 72.7 83.4 66.5
SegNet 59.1 28.6 92.6 73.0 82.4 63.3
UNet 60.0 20.5 92.5 64.4 79.2 59.4

ErfNet 53.8 14.6 89.2 73.5 81.2 57.8
FCN 58.9 24.6 92.4 74.8 83.0 62.7
Ours 65.3 39.3 93.4 74.4 84.1 68.1

Input Label FCN UNet SegNet PSPNet DeepLabv3+ Ours

background farmland road water vegetation

Figure 4. Visual quality comparison of the proposed model over other different methods on the
Tianzhi testing dataset.

To further test the effectiveness of the proposed EGCAN, comparisons with competi-
tors’ methods on the two challenging Vaihingen and Potsdam benchmarks were carried out.
In the Vaihingen and Potsdam benchmarks, the proportion of car elements is the lowest,
so the minority categories extraction branch of the proposed network in Vaihingen and
Potsdam benchmarks is mainly used to distinguish car elements. The competitors’ meth-
ods on the two challenging Vaihingen and Potsdam benchmarks contain: SVL_1, SVL_3,
DST_2, DST_5, UZ_1, RIT_L7, ONE_7, ADL_3, DLR_10, CASIA_2, BKHN_10, TreeUNet,
SWJ_2. Cascade denotes the Cascade-Edge-FCN and Correct denotes the Correct-Edge-
FCN [56]. EDENet denotes the edge distribution-enhanced semantic segmentation neural
network [57]. Tables 3 and 4 show the quantitative comparisons on the Vaihingen and Pots-
dam testing dataset. Correspondingly, visual comparisons are shown in Figures 5 and 6. In
Table 3, the proposed EGCAN obtains an OA of 91.0% and Mean F1 of 89.7%. The Mean F1
of ours is listed in third place. From this, it can be seen that our method provides a very
competitive result. As for the Potsdam testing dataset, the proposed method can acquire
93.0% in MeanF1, exceeding all the comparisons listed in Table 4. Moreover, the OA is
second only to SWJ2. From Figures 5 and 6, our method still has significant advantages in
dealing with complex feature images.
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Input Label SVL_3 DST_2 UZ_1 RIT_L7 ONE_7 ADL_3 DLR_10 CASIA2 BKHN10 Ours

impervious surface low vegetation car building tree clutter

Figure 5. Visual quality comparison of the proposed model over other different methods on the
Vaihingen testing dataset.

Table 3. Quantitative comparisons between other methods and our proposed method on the Vaihin-
gen testing dataset. The bolded values represent the best results and the underlined values represent
the second best results.

Method Imp_surf Building Low_veg Tree Car Clutter OA Mean
F1

SVL_3 86.6 91.0 77.0 85.0 55.6 58.9 84.8 79.0
DST_2 90.5 93.7 83.4 89.2 72.6 61.2 89.1 85.9
UZ_1 89.2 92.5 81.6 86.9 57.3 58.6 87.3 81.5

RIT_L7 90.1 93.2 81.4 87.2 72.0 63.4 87.8 84.8
ONE_7 91.0 94.5 84.4 89.9 77.8 71.9 89.8 87.5
ADL_3 89.5 93.2 82.3 88.2 63.3 69.6 88.0 83.3
DLR_10 92.3 95.2 84.1 90.0 79.3 79.3 90.3 88.2
CASIA2 93.2 96.0 84.7 89.9 86.7 84.7 91.1 90.1
BKHN10 92.9 96.0 84.6 89.8 88.8 81.1 91.0 90.4
TreeUNet 92.5 94.9 83.6 89.6 85.9 82.6 90.4 89.3

Ours 93.2 95.8 84.2 89.9 85.3 85.6 91.0 89.7
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Table 4. Quantitative comparisons between other methods and our proposed method on the Pots-
dam testing dataset. Cascade denotes the Cascade-Edge-FCN and Correct denotes the Correct-
Edge-FCN [56]. EDENet denotes the edge distribution–enhanced semantic segmentation neural
network [57]. The bolded values represent the best results and the underlined values represent the
second best results.

Method Imp_surf Building Low_veg Tree Car Clutter OA Mean
F1

SVL_1 83.5 91.7 72.2 63.2 62.2 69.3 77.8 74.6
DST_5 92.5 96.4 86.7 88.0 94.7 78.4 90.3 91.7
UZ_1 89.3 95.4 81.8 80.5 86.5 79.7 85.8 86.7

RIT_L7 91.2 94.6 85.1 85.1 92.8 83.2 88.4 89.8
SWJ_2 94.4 97.4 87.8 87.6 94.7 82.1 91.7 92.4

CASIA2 93.3 97.0 87.7 88.4 96.2 83.0 91.1 92.5
TreeUNet 93.1 97.3 86.8 87.1 95.8 82.9 90.7 92.0
Cascade 76.3 82.2 78.3 81.7 83.5 86.9 81.4 82.3
Correct 83.5 88.2 84.9 86.1 85.6 87.5 85.9 86.4
EDENet 95.6 96.3 88.4 89.6 83.5 87.6 90.1 91.8

Ours 93.4 97.1 88.2 89.2 96.9 86.3 91.4 93.0

Input Label SVL_1 DST_5 UZ_1 RIT_L7 SWJ_2 CASIA2 Cascade Correct EDENet Ours

impervious surface low vegetation car building tree clutter

Figure 6. Visual quality comparison of the proposed model over other different methods on the
Potsdam testing dataset.

5. Disussion
5.1. Ablation of Edge Extraction Module

As shown in Table 5, four experiments were designed to evaluate the performance of
edge extraction module. In experiment (a), the Unet is adopted as baseline for semantic
segmentation of remote sensing imageries. In experiment (b), the sEEM is introduced
into the baseline where the sEEM denotes single-scale edge extraction module which
only utilizes one intermediate feature from the decode part of the backbone, Resnet101.
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It means that information I4 instead of I2 or I3 is used in the following ablation experiments.
In experiment (c), all information {I2, I3, I4} from each stage of Resnet101 are used to
aggregate context from multi-scale features. Based on experiment (c), canny and dilation
operations are utilized to get clearer edge features. Then, the clearer edge features are fed
into the decoder part of EGCAN. In view of the results, the improvement using sEEM alone
is not significant, only a 2.1% increase on mIoU. However, the proposed method achieves
4.2% improvement by EEM (without canny and dilation), thus proving the effectiveness of
the multi-scale context extraction. Furthermore, a better result of 63.2% on mIoU is obtained
by adding canny and dilation operations in experiment (d), which clearly validates the
significance of canny and dilation operations. From experiment (a) to experiment (d), the
proposed network gets more and more edge information when the baseline Unet gradually
adds other modules which enhance the representations ability of the network along the
edge of different categories.

Visual comparisons are shown in Figure 7. The first column is the input and the
second column is the the label of input. The third to sixth columns show the results from
experiments a, b, c, and d. According to the visual results, EEM effectively extracts rich
feature information especially with the help of canny and dilation operations. From the first
row and second row, it shows the improvement of the edge extraction, especially on the
road element. However, from the second row to third row, it can be seen that the proposed
method still performs well when the context of remote sensing images become more and
more complicated.

Input Label (a) (b) (c) (d)

background farmland road water vegetation

Figure 7. Visual quality comparison of the proposed model over EEM on the Tianzhi testing dataset.
(a) Unet, (b) Unet + sEEM, (c) Unet + EEM (without canny and dilation), (d) Unet + EEM (the whole).
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Table 5. Quantitative comparisons on edge extraction module (EEM). (a) Unet, (b) Unet + sEEM,
(c) Unet + EEM (without canny and dilation), (d) Unet + EEM (the whole). The checkmarks indicate
that the corresponding modules are selected. The bolded values represent the best results and the
underlined values represent the second best results.

Methods a b c d

sEEM !
EEM (without Canny and Dilation) !
EEM (the whole) !
mIoU (↑) 59.4 60.7 61.9 63.2

5.2. Ablation of Dual Expectation Maximization Attention Module

To evaluate the effect of each component of the proposed approach, an ablation study
is conducted on the Tianzhi dataset. As shown in Table 6, the baseline network only
utilizing the dilated Resnet101 as backbone framework can achieve 59.4% in mIoU score.
Then, the individual SEMA module or CEMA module are added to the backbone network
to explore the multi-category segmentation. It can be seen that the SEMA or CEMA module
alone would yield 60.6% or 61.1%, which can bring 2.0% or 2.8% improvement, respectively,
thus proving the effectiveness of a single SEMA or CEMA module. Subsequently, three
different ways were compared to arrange these two attention modules. As shown in
Table 6, ‘SEMA || CEMA’ denotes that SEMA and CEMA module are set in the paralleled
structure. ‘CEMA → SEMA’ stands for the structure where a SEMA module follows a
CEMA module. ‘SEMA→ CEMA’ denotes the structure where a CEMA module follows a
SEMA module. Compared with the baseline result, involving SEMA and CEMA modules
simultaneously and placing them in a cascade structure will bring 5.7% improvement. Then,
consider placing SEMA and CEMA module in a paralleled structure. In the case where
the SEMA module follows the CEMA module, 8.9% improvement can be achieved. In the
case where the CEMA module follows the SEMA module, the improvement will be 9.9%
and yield 65.3% in mIoU. In order to get a better result, the DEMA module of the EGCAN
network applies this arrangement, which enhances edge feature interdependencies and
representations ability of the network along the spatial and channel directions. Quantitative
visualization results are shown in Figure 8. Obviously, DEMA enhances our model’s
sensitivity to edges of various scales and enables the pixels of the same class to achieve
similar gains.

Table 6. Quantitative comparisons on dual expectation maximization attention module (DEMA).
(a) Unet, (b) Unet + SEMA, (c) Unet + CEMA, (d) Unet + SEMA||CEMA, (e) Unet + CEMA→SEMA,
(f) Unet + SEMA→CEMA. The checkmarks indicate that the corresponding modules are selected.
The bolded values represent the best results and the underlined values represent the second best
results.

Module Description a b c d e f

SEMA ! ! ! !
CEMA ! ! ! !
SEMA || CEMA !
CEMA→ SEMA !
SEMA→ CEMA !
mIoU (↑) 59.4 60.6 61.1 62.8 64.7 65.3
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Input Label (a) (b) (c) (d) (e) (f)

background farmland road water vegetation

Figure 8. Visual quality comparison of the proposed model over DEMA on the Tianzhi testing dataset.
(a) Unet, (b) Unet + SEMA, (c) Unet + CEMA, (d) Unet + SEMA||CEMA, (e) Unet + CEMA→SEMA,
(f) Unet + SEMA→CEMA.

5.3. Influence of Edge Guided Module

As shown in Table 7, the proposed EGM enhances the model’s mIoU by 0.4%, 1.3%,
and 2.5%, respectively, confirming their efficiency in retraining the pixels along the region
of the edge and remodeling the edge feature space. The promotion brought by EGM3
is more distinct than others, considering that the feature map in this module processes
the largest resolution to maintain edge information. Quantitative visualization results are
shown in Figure 9. From the third column to the sixth column, the results of semantic
segmentation get better and better because of progressively relearning error-prone pixels
by EGMs to enhance our model’s ability to distinguish different classes.

5.4. Effections of Hybrid Spatial Pyramid Pooling Module

Based on the statistics of the total number of categories, the proportion of road category
is usually smaller, owing to the inherent narrow and long distribution paradigm. Mean-
while, the scale of road distribution is variable, making it difficult to adequately extract road
characteristics and making the segmentation accuracy low. The proposed EGCAN method
considers to employ another branch designing the HSPP block to fulfill the road segmen-
tation. The results are shown in Table 8. In particular, ASPP uses parallel convolution
operation to extract multi-scale semantic features; its ability for driving mainstream context
aggregation is not completely realized. Our model outperforms ASPP by 1.39% in terms of
accuracy. In comparison to prior self-attention-based strategies, such as Non Local, RCCA,
and DNL, HSPP successfully helps to reduce the negative effect of intra-class inconsistency,
resulting in significant mIoU improvements of 4.6%, 5.0%, and 1.4%, respectively. The
experimental result shows that considering both the mainstream segmentation and the road
extraction segmentation can further produce better prediction. The mIoU score reaches
68.1%, which is 1.4% higher than the second best result. Quantitative visualization results
are shown in Figure 10.
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Table 7. Quantitative comparisons on edge guided module (EGM). (a) Unet + EEM + DEM, (b) Unet +
EEM + DEM + EGM1, (c) Unet + EEM + DEM + EGM1 + EGM2, (d) Unet + EEM + DEM + EGM1 +
EGM2 + EGM3. The checkmarks indicate that the corresponding modules are selected. The bolded
values represent the best results and the underlined values represent the second best results.

Module Description a b c d

EGM1 ! ! !
EGM2 ! !
EGM3 !
mIoU (↑) 66.4 66.7 67.3 68.1

Input Label (a) (b) (c) (d)

background farmland road water vegetation

Figure 9. Visual quality comparison of the proposed model over DEMA on the Tianzhi testing dataset.
(a) Unet + EEM + DEM, (b) Unet + EEM + DEM + EGM1, (c) Unet + EEM + DEM + EGM1 + EGM2,
(d) Unet + EEM + DEM + EGM1 + EGM2 + EGM3.
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Input Label (a) (b) (c) (d) (e)

Figure 10. Cont.
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background farmland road water vegetation

Figure 10. Visual quality comparison of the proposed model over spatial pyramid pooling module on
the Tianzhi testing dataset. (a) Unet + ASPP, (b) Unet + Non Local, (c) Unet + RCCA, (d) Unet + DNL,
(e) Unet + HSPP.

Table 8. Quantitative comparisons on spatial pyramid module. (a) Unet + ASPP, (b) Unet + Non
Local, (c) Unet + RCCA, (d) Unet + DNL, (e) Unet + HSPP. The bolded values represent the best
results and the underlined values represent the second best results.

Module Description (a) (b) (c) (d) (e)

mIoU 64.3 63.5 62.8 66.7 68.1

6. Conclusions

By considering abundant edge information and low-percentage categories of segmen-
tation, a novel edge guided context aggregation network (EGCAN) designed for semantic
segmentation of RSI breaks the barricades of the performance of RSI semantic segmentation,
proving that the structure of the proposed method works and performs well. Essentially,
an edge guided context aggregation branch was developed to promote the accuracy of
edge predictions. Then, a hybrid spatial pyramid pooling (HSPP) module was investi-
gated in the minority categories segmentation branch, which is utilized to capture rich
multi-scale contextual information for improving EGCAN’s discriminative capability of
minority categories. As a result, our proposed method performed the best on the Tianzhi
Cup AI Challenge Dataset and is among the best on the ISPRS Vaihingen and Potsdam
Challenge Datasets.

Nevertheless, there are still several challenging issues to be addressed. First of all, the
annotations of the dataset need to be more precise to improve the semantic segmentation
performance. Moreover, computing power is consumed more when the model becomes
larger and larger. Thus, how to balance the performance of semantic segmentation and the
computer power is an important direction of future research. Furthermore, whether some
smaller edge extraction module can replace the edge guided context aggregation branch to
obtain better results in semantic segmentation is a direction worth studying as well.
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