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Abstract: The synthesis of spectral remote sensing images of the Earth’s background is affected by
various factors such as the atmosphere, illumination and terrain, which makes it difficult to simulate
random disturbance and real textures. Based on the shared latent domain hypothesis and generation
adversarial network, this paper proposes the SDTGAN method to mine the correlation between the
spectrum and directly generate target spectral remote sensing images of the Earth’s background
according to the source spectral images. The introduction of shared latent domain allows multi-
spectral domains connect to each other without the need to build a one-to-one model. Meanwhile,
additional feature maps are introduced to fill in the lack of information in the spectrum and improve
the geographic accuracy. Through supervised training with a paired dataset, cycle consistency loss,
and perceptual loss, the uniqueness of the output result is guaranteed. Finally, the experiments on
the Fengyun satellite observation data show that the proposed SDTGAN method performs better
than the baseline models in remote sensing image spectrum translation.

Keywords: remote sensing image; spectral domain translation; generative adversarial network;
paired translation

1. Introduction

Remote sensing images are widely used in environmental monitoring, remote sensing
analysis, and target detection and classification. However, in practical applications, it is
difficult to obtain multi-spectral remote sensing data, especially high-resolution infrared
remote sensing data, and spectrally poor data may be available for longer periods of
time than spectrally rich data [1]. Many researchers have explored the acquisition of
demanded spectral remote sensing images based on simulation methods [2–4]. The spectral
characteristics are determined by the optical characteristics of the underlying surface
type, atmosphere, sunlight, and terminal sensors [5]. The traditional methods based on
radiation transfer models [6–8] require pre-building a large database of ground features
and environmental characteristics. However, it is still difficult to model the complex and
random atmosphere and clouds. When the input condition is insufficient for simulating
the images of earth background, based on the correlation between the spectral domains,
the known spectral images can be used to achieve target spectral image synthesis [9–11].
However, the correlation between the spectral domains is implicit and non-linear.

As deep learning technology can obtain feature correlations in complex spaces through
a large amount of data to realize end-to-end image generation, generative adversarial
networks (GAN) have achieved rapid development in recent years [12], from the initial
supervised image translation [13–15] to the subsequent unsupervised image translation [16]
and the later multi-modal image translation [17]. Domain adaptation is critical for the
successful application of neural network models in new, unseen environments [18]. Many
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tasks that support translation from one domain to another have achieved excellent results.
Spectral domain translation refers to generating an image of the target spectral do-main
based on the image of the source spectral domain while ensuring that each pixel of the
generated image conforms to the physical mapping relationship. In the field of spectral
imaging, super-resolution [19], spectral reconstruction [20,21], and spectral fusion [22,23]
have successively adopted the GAN technology. Rongxin Tang et al. [24] used generative
adversarial networks to achieve RGB visualization through hyperspectral images. The
method reduces the dimensionality of the spectral data from tens to hundreds to three
dimensions (RGB). CHENG Wencong [25] combined satellite infrared images and numerical
weather prediction (NWP) products to generate adversarial network based on conditions.
Then, night satellite visible-light images were synthesized. However, this method is limited
to the field of view specified by the data set, and it is difficult to express the underlying
surface stably and accurately. In cross-domain research, GANs are used for image fusion
of SAR images, infrared images, and visible-light images [22,23,26]. This type of method
combines the source-domain data with different characteristics to synthesize a fusion image
that is easy to understand.

Hyperspectral image reconstruction is an example of spectral-domain translation [20,21].
Arad et al. [27] collected hyperspectral data and built a sparse hyperspectral dictionary
based on the sparse dictionary. Then, they used it as prior information to map the RGB
image to the spectral image. These methods usually learn a nonlinear mapping from
RGB to hyperspectral images based on a large amount of training data. Wu, J et al. [21]
applied hyperspectral reconstruction based on super-resolution technology. Pengfei Liu
et al. [28] proposed a generative adversarial model based on a convolution neural network
for hyperspectral reconstruction from a single RGB image.

Although these methods have achieved satisfactory results in image-to-image trans-
lation, they still cannot be directly applied to the spectral domain translation of remote
sensing images mainly due to the following limitations.

1. The location accuracy of the surface area: The cloud and water vapor will shield
the earth’s surface in the remote sensing image and affect the transmittance of the
atmospheric radiation, resulting in the incompleteness of the surface boundary and
misjudgment of features in the image. Based on a single source of remote sensing spec-
tral data, it is difficult to deduce the true surface under cloud cover and atmospheric
transmittance fluctuations.

2. Limitations of spectral characterization information: The physical characteristics
expressed by each spectrum are different. For example, the band of 3.5~4.0 microns
can filter water vapor to observe the surface, while the band of 7 microns can
only show water vapor and clouds. Due to the differences in the information of
different spectral images, even with spatio-temporal matching datasets, datasets, it
is difficult to realize the information migration or speculation between the bands
with significant differences.

3. Spectral translation accuracy: Computational vision tasks often focus on the similarity
of image styles in different domains and encourage the diversity of synthesis effects.
However, spectral translation tasks require the conversion of pixels under the same
input conditions between different spectral images. The result is unique and conforms
to physical characteristics.

To overcome the limitations mentioned above, this paper explores the spectral transla-
tion by introducing the conditional GAN, which focuses on the migration and amplification
of a small amount of spectral data to multi-dimensional data.

As shown in Figure 1, the translation task into two steps: the first step is to encode the
source spectral domain image and add additional feature maps to the shared latent domain
through the source domain encoder. The second step is to decode the shared latent domain
code to the target spectral domain through the target domain decoder.
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The main contributions of this paper are as follows:

1. The introduction of shared latent domain: Through cross domain translation and
within domain self-reconstruction training, the shared latent domain fits the joint
probability distribution of the multi-spectral domain, and can parse and store diver-
sity and the characteristics of each spectral domain. It is the end of encoders and
the beginning of the decoders of all spectral domains. In this way, the parameter
expansion problem of many-to-many translation is avoided.

2. The introduction of multimodal feature map: By introducing discrete feature (e.g.,
surface type and cloud map type), and numerical feature maps (e.g., surface temper-
ature), the location accuracy of the surface area is improved, and the limitations of
spectral characterization information are overcome.

3. The training is conducted on the supervised spatio-temporal matching data sets,
combined with cycle consistency loss and perceptual loss, to ensure the uniqueness of
the output result and improve spectral translation accuracy.

The structure of this paper is as follows: In Section 2, the structure and loss functions
of the GAN used in this study are introduced. In Section 3, the building of the datasets
and the experiments to evaluate different methods are elaborated. Finally, future work and
conclusions are given in Section 4.

2. Materials and Methods

We begin with an overview of the spectral domain translation method, and then, the
basic assumptions and model architectures are introduced. Finally, the loss function of
networks and the training process are described.

2.1. Overview of the Method

In this work, a multi-spectral domain translation generation adversarial model is
proposed for remote sensing images. Following the basic framework of image-conditional
GANs [12], the model has an independent encoder E, a decoder G, and a discriminator D
for each spectral domain. The difference is that the model assumes the existence of a shared
latent domain, which make it possible to encode each spectral domain into that space and
reconstruction of information from that space.

In the training process, the shared latent domain is constructed in two ways. First, the
source domain spectral image and the target domain spectral image are encoded to the
feature matrix with the same size. The training with L1 loss makes the encoded feature
matrix consistent across spectral domains. Second, in within domain training, the source
and target domains use their encoders and decoders to achieve image reconstruction from
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the feature matrix. In cross domain training, the feature matrices output from the source and
target domain encoders are exchanged, and then the images are reconstructed following
the above steps. The purpose of this step is to enable decoders in different spectral domains
to obtain the information needed for their reconstruction from the shared latent domain.

During the test, there is no need to reload all the encoders and decoders. Only the
combination of encoders for the source domain spectrum and the combination of decoders
for the target domain need to be loaded. The feature matrix is generated by the encoder
in the source domain, and then the spectral image is generated by the decoder in the
target domain.

Since all encoding and decoding is based on the shared latent domain, the set of
spectral domains of the model can be continuously expanded. When a new spectral
domain is added, it is only necessary to ensure that the encoder of the new spectral domain
can make the image output to the shared latent domain and the decoder can recover its
own image from that space.

Meanwhile, the model can add additional physical property information to improve
the simulation accuracy. For remote sensing imaging, the underlying surface and clouds
are the main influencing factors of optical radiation transfer. Therefore, earth surface
classification data RGT and cloud classification data RCLT are used as feature maps to form
the boundary conditions of the scene.

2.2. Shared Latent Domain Assumption

Let xi ∈ χi be the spectral images from spectral domain χi, and there are N spectral
domains. Let r ∈ R be the condition information of image boundary condition R. Our
goal is to estimate the conditional distribution p

(
xi
∣∣(xj, r

) )
between domains i and j

with a learned deterministic mapping function p
(
xj→i

∣∣(xj, r
) )

and the joint distribution
p(x1, x2, · · · , xN , r).

To translate from one spectral domain to multiple spectral domains, this study makes
a fully shared latent space assumption [17,29]. It is assumed that each spectral image xi is
generated from a latent code s ∈ S that is shared by all spectral domains and conditional
information. Using the shared latent code domain as a bridge, spectral image xi can be
synthesized by decoder G∗i (s), and the joint probability distribution s can be obtained by
encoder E∗i (xi, r), so that E∗i (xi, r) =

(
G∗i (s)

)−1
= s.

2.3. Architecture

As shown in Figure 1, the encoder–decoder-discriminator pair constitutes the SDT-
GAN model. Considering that the intrinsic information of an image is shared among
multiple spectral domains, the output matrix dimensions of the encoder of all spectral-
domain models are consistent.

In the process of image translation from source spectral domain χi to target spectral
domain χj, the source-domain encoder Ei is selected from the encoder library, and the
target-domain decoder Gj is selected from the decoder library. The encoder Ei maps
the input matrix to the shared latent code s, and the decoder Gj reconstructs the target
spectral-domain image from the latent code s. Then, the adversarial loss is calculated by
the target-domain discriminator Dj. Since the latent code is shared in each spectral domain,
the latent code generated by the source spectral-domain encoding can be decoded into
multiple codes in the target spectral domain. Meanwhile, the input matrices need to be
preprocessed, including the source spectral image matrix and the condition information
matrix after feature embedding.

2.3.1. Generative Network

The generative network is based on the architecture proposed by Johnson et al. [30].
The encoder consists of a set of stride-2 downsampling and convolutional layers and several
residual blocks. The decoder processes the latent code by a set of residual blocks and then
restores the image size through 1/2-strided upsampling and convolutional layers.
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2.3.2. Patch Based Discriminator Network

The patch discriminator with different fields of view is used [31,32]. The discriminator
outputs a predicted probability value for each area (patch) of the input image. Evolving
from judging whether the input is true or false, patch discriminator judges whether the
input area with a size of N × N is true or false. The discriminator with a large percep-
tual field ensures the consistency of geographic location, and discriminator with a small
perceptual field ensures the characteristics of texture details.

2.3.3. Feature Embedding

The information carried by spectral images with few bands is limited. For instance, the
earth’s surface is seriously obscured in the water vapor bands. In the process of spectrum
translation, it is difficult for the model to accurately derive the surface structure. To address
this issue, feature maps are added to the input matrix to fill the lack of information in
the spectrum.

Remote sensing image features include discrete features and numerical features. The
semantic labels of pixels such as land surface type and cloud cover type are discrete features;
the quantitative information of pixel areas such as land surface temperature and cloud
cover rate are numerical features. For discrete features, this study pre-allocates a fixed
number of channels for each category, and encodes the label as a one-hot vector. For
numeric features, this study pre-sets the interval of the upper and lower limits of the value,
and then normalizes the value to [0, 1]. Then, the size of the feature map is adjusted to that
of the spectral image. Finally, the feature matrix and the spectral matrix are combined and
input to the encoder.

2.4. Loss Function

Based on the paired dataset, this study introduces the bidirectional reconstruction
loss [29] to achieve the reversibility of the encoding and decoding processes and reduce the
redundant function mapping space. Meanwhile, this study adopts the objective function
to make all encoders output to the same latent space, and the images of various spectral
domains can be reconstructed from the latent space. Figure 2 shows the training flow of the
loss function for with-domain and cross-domain.
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2.4.1. Reconstruction loss

Based on the reversibility of the encoder and decoder, an objective function that enables
the cycle consistency of image and feature coding is constructed. The use of cross-domain
reconstruction consistency constrains the spatial diversity of the encoding and decoding
between multiple domains, and it stabilizes spectral-domain translation results. Previous
studies have found adding reconstruction loss with L1 loss is conducive to reducing the
probability of model collapse [13,29].

1. Within domain reconstruction loss

Given an image sampled from the data distribution, its spectral image and latent code
after encoding and decoding can be reconstructed, and the within-domain reconstruction
loss can be defined as:

Lxi
Recon = λIExi ,r∼p(xi ,r)[‖Gi(Ei(xi, r))− xi‖1] + λEExi ,r∼p(xi ,r)[‖Ei(Gi(Ei(xi, r)))− Ei(xi, r)‖1] (1)

where λI and λE are the weights that control the importance of image reconstruction term
and latent code reconstruction term, respectively.

2. Cross domain reconstruction loss

Given two spectra domain images sampled from the joint data distribution, their
spectral images after exchanging encoding and decoding can be reconstructed, and its cross
domain reconstruction loss can be defined as:

L
xi ,xj
Recon = Exi ,xj ,r∼p(xi ,xj ,r)

[
‖Gi
(
Ej
(

xj, r
))
− xi‖1

]
+Exi ,xj ,r∼p(xi ,xj ,r)

[
‖Gj(Ei(xi, r))− xj‖1

]
(2)

LRecon = λwithin

N

∑
i=1

Lxi
Recon + λcross

N

∑
i=1

N

∑
j=i+1

L
xi ,xj
Recon (3)

where LRecon is the sum of the multi-domain reconstruction loss; λwithin and λcross are
weights that control the importance of the within-domain reconstruction term and cross-
domain reconstruction term, respectively.

2.4.2. Latent Matching loss

Given two multi-spectral images sampled from the same data distribution, the latent
code should be matched after encoding. In previous work, auto-encoders and GANs
use KLD loss, and adversarial loss [16,33] or implicitly constrain [29] the latent domain
distribution. The present model uses the calculation of L1 Loss across domains to strongly
constrain different domains to encode in the same space.

L
xi ,xj
LM = Exi ,xj ,r∼p(xi ,xj ,r)

[
‖Ei(xi, r)− Ej

(
xj, r

)
‖1

]
(4)

LMatch =
N

∑
i=1

N

∑
j=i+1

L
xi ,xj
LM (5)

where L
xi ,xj
LM is the latent matching loss that depicts the L1 loss between the latent of the

i-domain and j-domain images under the joint probability distribution.

2.4.3. Adversarial loss

This study employs Patch-GANs to distinguish between the real images or the images
translated from the latent space in the target domain.

Lxi
GAN = Exi ,r∼p(xi ,r)[log(1− Di(Gi(Ei(xi, r))))]

+ Exi ,r∼p(xi ,r)[log(Di(xi))]
(6)

L
xj→i
GAN = Exi ,xj ,r∼p(xi ,xj ,r)

[
log
(
1− Di

(
Gi
(
Ej
(
xj, r

))))]
(7)
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LGAN = λcross

N

∑
i=1

N

∑
j=i+1

L
xj→i
GAN+λwithin

N

∑
i=1

Lxi
GAN (8)

where Lxi
GAN is the within-domain GAN loss of the images sampled from domain i; L

xj→i
GAN is

the cross-domain GAN loss that depicts the GAN loss of spectral image translation from
domain j to domain i, and LGAN is the sum of multi-domain GAN loss.

2.4.4. Total Loss

In this study, the model is optimized through joint training of encoders, decoders, and
discriminators in all spectral domains. The total loss function is the weighted sum of the
counter loss, reconstruction loss, and latent matching loss in each spectral domain.

When a new spectral domain is added to the trained multi-spectral domain model,
the model parameters of the existing spectral domain can be fixed, and the shared feature
space can be exploited to accelerate the training process and avoid the expansion of training
parameters.

min
E,G

max
D

LTotal(E, G, D) = λGANLGAN + λReconLRecon + λMatchLMatch (9)

where λGAN, λRecon, and λMatch are weights that control the importance of loss terms.

2.5. Traning Process

In the initial training of the model, all source and target domains are combined into a
set that contains N spectral domains. Then, the SDTGAN model is trained by updating
the generators and discriminators alternately, which follows the basic rule of GANs. The
training of generators is the key point of the method, and the steps are illustrated in the
following Algorithm 1.

Algorithm 1. Generators training process in a single iteration

for i = 1 to N
for j = i + 1 to N

Lxi
Recon ← ‖Gi(Ei(xi, r))− xi‖1

L
xj
Recon ← ‖Gj

(
Ej

(
xj, r

))
− xj‖

1
L

xi ,xj
Recon ← ‖Gj(Ei(xi, r))− xj‖1and‖Gi

(
Ej

(
xj, r

))
− xis‖

1
L

xi ,xj
LM ← ‖Ei(xi, r)− Ej

(
xj, r

)
‖

1
Lxi

GAN ← Di(Gi(Ei(xi, r)))
L

xj
GAN ← Dj

(
Gj

(
Ej

(
xj, r

)))
L

xi→j
GAN ← Dj

(
Gj(Ei(xi, r))

)
L

xj→i
GAN ← Di

(
Gi

(
Ej

(
xj, r

)))
LTotal update
Backward gradient decent
Optimizer update

end for
end for

3. Experiment
3.1. Datasets

In the experiment, the paired data consists of spectral remote sensing images of earth
background and condition information data including earth surface type data and cloud
type data. For paired data of spectral images, the earth coordinates corresponding to each
pixel need to be aligned since the task aims to achieve spectral translation at the pixel
level of the image. The model establishes the mapping relationship between spectra by
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learning the intensity mapping relationship originating from the same location and time of
the sampled images.

3.1.1. Remote sensing Datasets

This study takes the L1 level data obtained by the multi-channel scanning imaging
radiometer of the FY-4A satellite [34,35] as the satellite spectral image data. The FY-4A
satellite is a new generation of China’s geostationary meteorological satellite, and it is
equipped with various observation instruments including the Advanced Geosynchronous
Radiation Imager (AGRI). As shown in Table 1, AGRI has 14 spectral bands from visible
to infrared (0.45–13.8 µm) with a high spatial resolution (1 km for visible light channels,
2 km for near-infrared channels, and 4 km for remaining infrared channels) and temporal
resolution (full-disk images at the 15-min interval).

Table 1. The description of spectral image information.

Channel
ID Description Band (µm) Spatial

Resolution (km)
Main

Application

CH01
Visible &

Near-Infrared

0.45~0.49 1 Aerosol
CH02 0.55~0.75 0.5~1 Fog, Cloud
CH03 0.75~0.90 1 Vegetation

CH04
Short-Wave Infrared

1.36~1.39 2 Cirrus
CH05 1.58~1.64 2 Cloud, Snow
CH06 2.1~2.35 2~4 Cirrus, Aerosol

CH07
Mid-Wave Infrared

3.5~4.0 (High) 2 Fire
CH08 3.5~4.0 (Low) 4 Land Surface

CH09 Water Vapor 5.8~6.7 4 Water Vapor
CH10 6.9~7.3 4 Water Vapor

CH11

Long-Wave Infrared

8.0~9.0 4 Water Vapor,
CH12 10.3~11.3 4 Cloud
CH13 11.5~12.5 4 Surface Temperature
CH14 13.2~13.8 4 Surface Temperature

The daily data from January to December 2020 were used for the training process, and
the daily data from June to August 2020 were used for testing. The daily data are sampled
from 12:00 in the satellite’s time zone, to maximize the visible area in the image.

3.1.2. Condition Information Dataset

(1) Earth surface type

The earth surface type data is obtained from the global land cover maps (Glob-
Cover [36]) developed and demonstrated by ESA. The theme legend of GlobCover is
compatible with that of the UN Land Cover Classification System (LCCS).

As shown in Table 2, GlobCover is a static global gridded surface type map with a
resolution of 300 m and 23 classification types. Since the surface type labels of GlobCover
are encoded as one-hot vectors, they are rearranged in this study.

Table 2. The description of the earth surface type label.

Label Type

0 Post-flooding or irrigated croplands
1 Rainfed croplands
2 Mosaic Cropland (50–70%)/Vegetation (grassland, shrubland, forest) (20–50%)
3 Mosaic Vegetation (grassland, shrubland, forest) (50–70%)/Cropland
4 Closed to open (>15%) broadleaved evergreen and/or semi-deciduous forest (>5 m)
5 Closed (>40%) broad leaved deciduous forest (>5 m)
6 Open (15–40%) broad leaved deciduous forest (>5 m)
7 Closed (>40%) needle leaved evergreen forest (>5 m)
8 Open (15–40%) needle leaved deciduous or evergreen forest (>5 m)
9 Closed to open (>15%) mixed broadleaved and needle leaved forest (>5 m)

10 Mosaic Forest/Shrubland (50–70%)/Grassland (20–50%)
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Table 2. Cont.

Label Type

11 Mosaic Grassland (50–70%)/Forest/Shrubland (20–50%)
12 Closed to open (>15%) shrubland (<5 m)
13 Closed to open (>15%) grassland
14 Sparse (>15%) vegetation (woody vegetation, shrubs, grassland)
15 Closed (>40%) broadleaved forest regularly flooded-Fresh water

16 Closed (>40%) broadleaved semi-deciduous and/or evergreen forest regularly flooded-Saline
water

17 Closed to open (>15%) vegetation (grassland, shrubland, woody vegetation) on regularly
flooded or waterlogged soil-Fresh, brackish or saline water

18 Artificial surfaces and associated areas (urban areas >50%)
19 Bare areas
20 Water bodies
21 Permanent snow and ice
22 No data

(2) Cloud type

The cloud classification data is obtained from the L2 level real-time product of the
FY4A satellite. According to the microphysical structure and thermodynamic properties of
the cloud, the effective absorption optical thickness ratios of the four visible light channels
have different properties. As shown in Table 3, there are 10 categories of cloud type labels
included in the image. The sampling moment for cloud classification is the same as that of
spectral images, thus forming paired data.

Table 3. The description of the cloud type label.

Label Type

0 Clear
1 Water Type
2 Super Cooled Type
3 Mixed Type
4 Ice Type
5 Cirrus Type
6 Overlap Type
7 Uncertain
8 Space
9 Fill Number

3.2. Implementation Details

In the experiment, the parameters of the proposed method were fixed. For the network
architecture, each encoder contains three convolutional layers for downsampling and
three residual blocks for feature extraction. The decoder adopts the symmetric structure
of the encoder, including three layers of residual blocks and three layers of upsampling
convolutional layers. The discriminators consist of stacks of convolutional layers. Besides,
LeakyReLU was used for nonlinearity. The hyper-parameters were set as follows:

λI = 1, λE = 1, λwithin = 1, λcross = 10, λGAN = 1, λRecon = 1 and λMatch = 1.

The translation models taken for comparison include the SDTGAN model using
surface type tags, the SDTGAN model using both surface type tags and cloud type tags,
the pix2pixHD model, the cycleGAN model, and the UNIT model. Among these models,
SDTGAN, cycleGAN, and UNIT can achieve multiple outputs for a single model, and
pix2pixHD needs to exchange input and output data to train two sets of models.

For all models, the training was repeated for 200 epochs on an NVIDIA RTX3090 GPU
with 24GB GPU memory. The weights were initialized with Kaiming initialization [37].
The Adam optimizer [38] was used, and the momentum was set to 0.5. The learning rate
was set to 0.0001, and it linearly decayed after 100 epochs. Instance normalization [39]
was used, which is more suitable for scenes with high requirements for a single pixel was
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used. Reflection padding was used to reduce artifacts. The size of the input and output
image blocks for training was 512 × 512. Each mini-batch consisted of one image from
each domain.

3.3. Visual Comparison

In this work, the first three reflection channels of AGRI (CH01, CH02, and CH03)
are used for visible light spectrum combination. The combined images of the three RGB
channels are more in line with the human eye observation and can effectively visualize the
details of oceans, lands, and clouds. Meanwhile, the long-wave infrared band CH11 is used,
and its main visual content is water vapor and cloud features. Due to the lack of features of
the underlying surface of the earth in the visual results of CH11, the image translation from
the infrared spectral domain to the visible spectral domain poses a challenge to the model.

Figures 3–5 illustrate two examples of the translation between the above two sets of
spectral remote sensing images. Each set contains image information such as oceans, lands,
and clouds. In Figure 3, the underlying surface of the earth in group (a) is mainly land,
and that of the earth in group (b) is dominated by the ocean. Figure 4 shows the visual
comparison of different models for translation from infrared spectrum domain to visible
spectrum domain. Figure 5 shows the visual comparison of different models for translation
from visible spectrum domain to infrared spectrum domain.
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3.4. Digital Comparison

To quantitatively measure the proposed method, three image quality metrics, i.e.,
mean-square-error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity
index (SSIM) [40], are selected to evaluate the translation effectiveness. MSE measures the
difference between the real and simulated values. The smaller the MSE is, the more similar
the two images are. PSNR is a traditional image quality evaluation index. A higher PSNR
generally indicates a higher image quality. SSIM measures the structural similarity between
the real image and the simulated image.

The test dataset used in the visual comparison is also taken for quantitative comparison.
The dataset includes 500 remote sensing images. The average values of the evaluation
metrics are calculated, and the results are listed in Tables 4 and 5, where optimal values are
highlighted in bold.

Table 4. Quality result of the translation from infrared spectrum domain to visible spectrum domain.

Method MSE PSNR SSIM

CycleGAN 0.0979 10.1333 0.347
UNIT 0.0931 10.3951 0.3841

Pix2pixHD 0.0663 11.8969 0.4846
SDTGAN with Surface Label 0.0361 14.5794 0.6246
SDTGAN with Surface and

Cloud Label 0.0237 16.4055 0.7018

Table 5. Quality result of the translation from visible spectrum domain to infrared spectrum domain.

Method MSE PSNR SSIM

CycleGAN 0.0521 13.014 0.7148
UNIT 0.1592 8.1298 0.5055

Pix2pixHD 0.0105 19.9687 0.775
SDTGAN with Surface Label 0.0017 27.9227 0.8695
SDTGAN with Surface and

Cloud Label 0.0019 27.6883 0.9031

The results of Tables 4 and 5 show that the proposed SDTGAN method is superior
to other comparative methods. It achieves better image recognizable structure and data
authenticity in the spectral domain translation from infrared spectrum domain to visible
spectrum domain and vice versa.

3.5. Ablation Study

The against ablations of within domain reconstruction loss, cross domain reconstruc-
tion loss, and latent matching loss are compared. In this case, the basic model contains
only adversarial loss. As shown in Tables 6 and 7, adding reconstruction loss and latent
matching loss alone can effectively improve the evaluation metrics of the images, and the
model including all the loss functions achieves the highest evaluation score.

Table 6. Ablation study of the translation from infrared spectrum domain to visible spectrum domain.

Method MSE PSNR SSIM

Basic 0.0393 14.1868 0.5986
Basic + within Domain

Reconstruction Loss 0.0382 14.2955 0.5867

Basic + cross Domain
Reconstruction Loss 0.0251 16.0984 0.6801

Basic + Latent Matching Loss 0.0326 14.9459 0.6195
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Table 7. Ablation study of the translation from visible spectrum domain to infrared spectrum domain.

Method MSE PSNR SSIM

Basic 0.0037 24.4947 0.5256
Basic + within Domain

Reconstruction Loss 0.0048 23.3879 0.8383

Basic + cross Domain
Reconstruction Loss 0.0019 27.6244 0.898

Basic + Latent Matching Loss 0.0032 25.083 0.56

3.6. Limitation

The spectral translation task involves the transformation of energy intensity and
graphic texture. In most cases, the model can generate plausible cloud and continental
shapes. However, there are still many cases in which the model causes loss of details and
distortions. As shown in Figure 6a, in the real image, the ocean is covered with large areas
of thin clouds, yet. The generated image has difficulty in inferring the random phenomenal
changes over a large area, thus yielding an erroneous result. As shown in Figure 6b, in
continental terrain, a certain distortion and blurring is produced for the boundary areas
with variable shapes.
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These detail distortions may be due to the limitations in the structure of the generative
network or feature selection. In future work, we will continue to explore these issues.
For example, by selecting the feature data that can represent cloud height, and surface
temperature, and enhancing the generated details of textures by better network structures.

4. Conclusions and Future Work

In this paper, a multi-spectral domain translation model based on conditional GAN
architecture is proposed for remote sensing images of the earth background. To achieve
multi-spectral domain adaptation, the model introduces feature maps of earth background
and shared latent domain. In addition to adversarial loss, within domain reconstruction
loss, cross domain reconstruction loss and latent matching loss are added to train the
network. Besides, multi-spectral remote sensing images taken from a FY satellite are used
as a dataset to test the effect of bidirectional translation between infrared band and visible
band images. Compared with models such as pix2pix and cycleGAN, SDTGAN achieves
more stable and accurate performance in translating spectral images at the pixel level, and
simulating the surface structure and texture of clouds. In future work, we will explore a
better structure for extraction, construction, and utilization of shared latent domain for
spectral-domain translation, and extend it to other band combinations.
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