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Abstract: The rate at which lava is discharged plays a key role in controlling the distance covered
by lava flows from eruptive vents. We investigate the available time-averaged discharge rates
(TADRs) estimated for recent flank eruptions at Mt. Etna volcano (Italy), in order to define a possible
generalized effusion rate trend which is consistent with observed real data. Our analysis indicates a
rapid waxing phase in which effusion rate peaks occur for between 0.5 and 29% of the total eruption
time, followed by a progressive decrease in the waning phase. Three generalized curves are built
by calculating the 25th, 50th and 75th percentiles values associated with the occurrence of effusion
peaks, and with the slope variations of descending curves in the waning phase. The obtained curves
are used as an input for the GPUFLOW model in order to perform numerical simulations of the lava
flows paths on inclined planes, and are compared with those generated by using effusion rate curves
with a bell-shaped time-distribution. Our tests show how these characteristic curves could impact
single-vent scenarios, as well as short- and long-term hazard maps, with maximum variations of up
to 40% for a specific category of eruptive events.

Keywords: lava flows; flank eruptions; trend analysis; numerical simulations

1. Introduction

Lava flows are recurring and widespread hazards affecting areas around active volca-
noes, which can cause significant social and economic loss. In the last decades, advances
in the knowledge of the physical parameters controlling the evolution of flowing lava
allowed the development of physics-based models of lava flows, which have been proven
to be effective to forecast and assess the hazard posed by effusive events (e.g., [1–4]). Such
numerical simulations can be adopted for real-time applications by forecasting in a few
minutes the expected path that flowing lava could cover in days or weeks during an on-
going eruption [5–8]. Alternatively, they constitute a powerful tool for the evaluation of
the long-term hazard through the development of lava flows hazard maps (e.g., [9,10]).
These models require different input parameters, such as the physical properties of the
fluid (e.g., melt compositions, water content, rheological law, thermal properties) and the
topography of the terrain. A critical parameter in physical-mathematical modelling is the
effusion rate, i.e., the rate at which the lava is discharged. The lava effusion rate is variable
in time, strongly controlling the emplacement and run-out distance of lava flows. Generally,
greater lengths of lava flows are correlated with high lava effusion rates [11,12], and at
basaltic volcanoes lava discharge occurs at high rates during the early phases of eruptions,
followed by a slow decrease towards the end [13,14]. Nevertheless, both for the assessment
of long-term hazards and for monitoring efforts during on-going eruptions, the effusion
rate is assumed to be constant or to have a bell-shaped time-dependent behavior [10,15].

Various approaches have been adopted to estimate lava effusion rates, including
volume-based measurements and thermal approaches [16]. The first is based on the
reconstruction of the morphological evolution of the lava field, in which time-averaged
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discharge rates (TADRs, i.e., the effusion rate averaged over given periods) are estimated by
calculating the partial volume of lava which erupted in defined time spans (e.g., [17–19]).
Partial lava volumes are obtained by determining the thickness and covered area of the
different portions of lava flows through field measurements or, if available, by comparing
pre- and post-eruption topographic surfaces. The accuracy of lava volume estimation,
depending on the quality and density of field measurements, as well as on the spatial
resolution of topographic models, and the poor temporal resolution of TADR measurements
constitute the major sources of uncertainties. More recently, TADR temporal series have
been derived from satellite thermal infrared data [20–24]. The detection of hotspot pixels
allows the recognition of the volcanic area affected by thermal anomalies associated with the
flowing lava, and the total radiant heat flux is converted into TADRs [20]. The advantage
of using this approach is a near real-time estimation of the lava effusion rate, proving to be
useful as a monitoring tool of volcanic activity [25,26]. The main limitation of this approach
is the dependency on atmospheric conditions, such as the presence of clouds impacting the
detection of hotspot pixels and the associated heat flux.

Mt. Etna (Italy) is one of the most active and best-monitored basaltic volcanoes
worldwide, and is characterized by both persistent degassing and explosive activity at
the summit alternating with recurrent flank eruptions (e.g., [27,28]). The latter represent
the major source of hazard for the densely populated areas around the volcano due to the
emission of basaltic lava at vents located at the lower heights, with higher probabilities
to impact the inhabited areas. Here, we present an analysis of the TADRs for the best-
documented flank eruptions in the last century at Mt. Etna (11 eruptions), using data
from both field measurements and satellite thermal imagery, in order to define a possible
generalized effusion rate trend to be used for the physical modeling of lava flows. This
analysis provides insights into the eruptive dynamics of the volcano and tools to improve
the assessment of lava flow hazards both in nowcasting scenarios and for long-term maps.

2. Materials and Methods

The generalization of the effusion rate curve for flank eruptions at Mt. Etna was
performed by analyzing the 1928, 1981, 1983, 1985, 1986–87, 1991–93, 2001, 2002–03 (south
flank), 2004–05, 2008–09 and 2018 effusive events. The effusion rates provided for the
1928 [19] and the 1981 eruptions [17] were obtained by the reconstruction of the evolution
of the lava flows emplacement. The TADRs for the 1983, 1985, 1986–87, 1991–93 and
2002–03 (south flank) eruptions were estimated by converting the thermal data collected by
the AVHRR sensor, which is characterized by a minimum temporal resolution of 12 h [14].
For the other post-2000 eruptions, the TADRs data were estimated through the HOTSAT
system [22,29], which uses infrared radiation collected by MODIS (2001 eruption [30]) and
SEVIRI sensors (2004–05, 2008–09 and 2018 eruptions [31–33]). The main parameters for
the best-documented Etnean flank eruptions that occurred in the last century and used in
this study are summarized in Table 1.

In order to obtain homogeneous curves in the duration and sampling times, reducing
redundancies and improving data consistency, we normalized both the time data (dividing
by the total duration) and the TADR amplitude (dividing by the maximum value) for each
eruption. However, due to the different temporal resolutions of the satellite sensors, the
satellite-derived TADRs are characterized by oscillations at different frequencies, making
it challenging to define a general trend for all of the investigated eruptions (Figure 1).
Even though such oscillations can be due to actual variations in effusion rates, other
factors, such as atmospheric effects or the presence of volcanic clouds, could result in
a high variability of the TADR curves [22]. Because we are interested in defining an
overall trend for all of the selected eruptive episodes, each time series derived from the
satellite has been convoluted by selecting local positive peaks, avoiding negative peaks
related to the potentially underestimated TADRs (Figure 2a). Additionally, for the 2004–05,
2008–09 and 2018 eruptions, data provided by SEVIRI sensors were collected every ~15 min,
producing huge time series characterized by several oscillations at various frequencies.
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In these cases, high-frequency noise was removed by performing a filtering in the frequency
domain (Figure 2b) using the PeakFit package software by Jandel Scientific [34] before the
convolution and normalization.

Table 1. Start and end date, duration, volume, effusion rate peak and reference for the investigated
flank eruptions at Mt. Etna.

Eruption Start Date End Date Duration
(Days)

Volume
(×106 m3)

Effusion Rate
Peak (m3s−1) Reference

1928 (Lower fissure) 4 November 1928 19 November 1928 15 53 374.4 [19]
1981 17 March 1981 23 March 1981 6 23 641.4 [17]
1983 27 April 1983 16 October 1983 131 62 50.0 [14]
1985 12 March 1985 13 July 1985 124 15 3.2 [14]

1986–87 30 October 1986 27 February 1987 120 82 13.0 [14]
1991–93 14 December 1991 30 March 1993 471 183 13.5 [14]

2001 (Calcarazzi system) 17 July 2001 9 August 2001 23 38 34.3 [30]
2002–03 (south flank) 27 October 2002 29 January 2003 94 50 39.2 [14]

2004–05 7 September 2004 8 March 2005 182 64 21.5 [31]
2008–09 13 May 2008 7 July 2009 420 68 15.6 [32]

2018 24 December 2018 27 December 2018 4 2.5 80.2 [33]

Normalized averaged curves were built by taking the 25th, 50th and 75th percentiles
associated with the occurrence of the effusion rate peaks, time and slope change of the
analyzed curves with respect to the total time, as described in the Results section below.
Then, these normalized curves were converted into real-time effusion rates to be used as
an input for the GPUFLOW model [35], an improved version of the MAGFLOW cellular
automaton [4,36] that features several enhancements such as support for landslides and
pyroclastic density currents, and an improved thermo-rheological model for lava flows
including a variable emissivity model and a windchill parameter. In addition to the
effusion rate, the input parameters required by GPUFLOW are the physical properties of
lava (density, eruption and solidus temperatures, water content), the digital topography
over which the lava is emplaced, and the locations of eruptive vent(s) or fissure(s).

In order to quantify the difference in the emplacement and run-out distance of the
simulated lava flows exclusively as a function of the effusion rate coupled with the effects
of the slope on which the lava is flowing, we performed a sensitivity analysis by running all
of the simulations on three flat planes with different inclinations (10◦, 20◦ and 30◦), which
are consistent with the mean slopes of the volcanic edifice. The other input parameters, in
particular the physical properties of the lava, were kept constant for all of the simulations,
using averaged values within the possible ranges of the variations defined for Etnean lavas
(density: 2600 kg·m−3; solidus temperature: 1143 K; eruption temperature: 1360 K; water
concentration: 0.1 wt.% [4]). The spatial resolution of inclined planes is 10 m.
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measurements (a,b), from AVHRR sensor (c–f,h), from MODIS sensor (g) and from SEVIRI sensor 
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Figure 1. Estimated TADR time series related to the flank eruptions at Mt. Etna from field measure-
ments (a,b), from AVHRR sensor (c–f,h), from MODIS sensor (g) and from SEVIRI sensor (i–k). See
Table 1 for references.
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allows the determination of when the peak of the effusion rate and the eventual slope 
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Figure 2. Examples of (a) convoluted and (b) filtered (dashed orange line) and convoluted (red line)
TADR curves estimated from the satellite infrared data.

3. Results
3.1. Analysis of the TADR Curves

Normalized TADR curves are easier to compare in terms of time variations in ef-
fusion rates among the investigated eruptions. The total duration ranges vary from 4
(2018 eruption) to 471 days (1991–93 eruption), while the peaks of the effusion rates vary
from 3.2 m3s−1 (1985 eruption) to 641.4 m3s−1, (1981 eruption). Thus, the normalization
allows the determination of when the peak of the effusion rate and the eventual slope curve
changes occur relative to the total duration of the eruption.

The calculation of the percentage cumulative frequency indicates that most effusion
rate peaks are observed during the initial phases of eruptions: 45% of the peaks occur in the
first 5% of the total eruption duration, 64% of the peaks in the first 10%, 82% occur in the
first 20%, and 91% occur in the first 30%. The calculation of 25th, 50th, 75th, 90th and 95th
percentiles of the incidence of the peaks highlights a strong asymmetry in the distribution
of the peaks, occurring respectively in the first 2.8%, 5.2%, 16.2%, 29.2% and 57.9% of the
total duration (Figure 3).
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By analyzing the shape of the investigated curves, at least two trends can be recog-
nized. Trend 1 (Figure 4a) includes the 1928, 1981, 1983, 1991–93, 2002–03 (south flank),
2008–09 and 2018 eruptions: a rapid initial waxing phase with peaks localized between 0.5%
and 5% of the total eruption time is followed by a longer waning phase with a nearly expo-
nential trend, characterized by relatively low effusion rates (average/peak ratio ~0.10–0.41),
although some oscillations at low frequencies still affect some curves (e.g., 1983, 2008–09
eruptions). Trend 2 (Figure 4b) includes the 1985, 1986–87 and 2001 eruptions, which show
a longer waxing phase with the peaks localized between 15% and 29% of the total duration,
followed by a slower decrease in the effusion rate (average/peak ratio ~0.36–0.55). Only the
effusive 2004–05 eruption showed a different behavior, characterized by a large oscillation
with the occurrence of the peak at 87% of the total eruption duration.
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Figure 4. Diagrams showing the filtered, convoluted and normalized TADRs, where two trends can
be recognized: (a) Trend 1, characterized by effusion rate peaks between the first 0.5% and 5% of the
total eruption duration, followed by a decrease in the TADRs with an exponential trend; (b) Trend
2, where the effusion rate peak is observed between 15% and 29% of the total eruption duration,
followed by a more progressive decrease of the TADR.

The variations of the slope for all of the effusion rate curves were evaluated by
approximating the first derivatives through divided differences between consecutive pairs
of sampled points. The minimum value calculated through this numerical differentiation
of each curve corresponds to the inflection point of the waning phase. Most curves are
characterized by initial elevated positive values of the numerical derivative, followed by
a sudden decrease to negative values within 50% of the total duration, and finally by a
progressive increase. Some curves (i.e., the 1983, 2004–05, 2008–09 eruptions, and to a lesser
extent the 2001 and 2002–03 eruptions) show a more oscillating trend, making it more
difficult to identify the inflection points (Figure 5).

3.2. Definition of “Characteristic” Effusion Rate Curves

We defined the characteristic effusion rate curves by assuming a behavior that initially
increases up to a peak, decreasing with one slope until the inflection point, and then further
decreasing to 0. Due to the small number of time series available for the two identified
trends, a single curve for both trends was defined by taking the peak and inflection points at
the 50th percentile of peaks and inflection points, considering all of the curves (regardless of
trend) where the inflection point can be easily identified, thus excluding the 1983, 2004–05
and 2008–09 eruptions. The resulting normalized curve is characterized by a peak occurring
at 5.2% and an inflection point occurring at 24.7% of the total eruption duration, with the
inflection point reaching a value that is 49% of the peak. Two further curves were built
by calculating, respectively, the 25th and 75th percentiles of occurrence of the peaks and
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inflection points, in order to take into account the variability of the investigated TADRs
series for the sensitivity analyses. We found that the resulting 25th curve is more similar to
Trend 1 (in particular, to the 1928, 1981 and 2018 eruptions), with a sharper peak at 2.8%
and an inflection point at 17.6% of the total eruption duration. The effusion rate at the
inflection point is only 27.1% of the peak, and then decreases progressively to zero toward
the end. On the contrary, the resulting 75th curve is closer to Trend 2, where the peak was
found at 16.2%, the inflection point was found at 34.7%, and the associated value of the
effusion rate at the inflection point was 71.0% of the peak (Figure 6).
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In order to use the “characteristic” curves in a model such as GPUFLOW, they must be
de-normalized. If the given constraints are the total duration T (in seconds) of the eruption
and the total volume of lava V (in m3), then the de-normalized peak (tpeak) and inflection
time (tinfl) can be found simply as tpeak = tpeak_norm*T and tinfl = tinfl_norm*T. The peak of flux
rate Fp (m3s−1) can be calculated as

Fp =

(
1
c

)(
V
T

)
(1)

where c is the normalized volume, computed as

c =
tpeak_norm

2
+

(
1 + TADRin f l_norm

)(
tin f l_norm − tpeak_norm

)
2

+
TADRin f l_norm

(
1− tin f l_norm

)
2

(2)
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25th percentiles (dotted red line), 50th percentiles (solid red line) and 75th percentiles (dashed red
line) of incidence of the effusion rate peaks and the inflection points from the normalized TADRs
(solid grey line: Trend 1; dashed grey line: Trend 2).

Specifically, we have c ' 0.22 for the 25th curves, c ' 0.36 for the 50th curves, and
c ' 0.47 for the 75th curves. The value of the effusion rate at the inflection point can then
be computed as Finfl = TADRinfl_norm*Fp for each characteristic curve, while the effusion
rate values at any given time during the running of the simulation are calculated by the
linear interpolation of the fixed points. For this work, we calibrated all of the characteristic
curves using the total durations and total volumes associated with the eruptive classes
used for the assessment of the lava flows at Mt. Etna (Table 2), as defined by analyzing
the distribution of the flow duration and volumes of more than fifty effusive eruptions
which occurred during the last 400 years [10]. Both short- and long-lasting eruptions were
considered in the definition of the eruptive classes, setting thresholds of the total durations
at 30 and 90 days, while the thresholds of the total volumes of lava which erupted were
fixed at 30, 100 and 200 × 106 m3 [10]. The combination of the durations and volumes
leads us to obtain six effusion rate curves for each characteristic curve (18 in total), where
higher effusion rate peaks were calculated for the 25th characteristic curves compared to
the corresponding 50th and 75th for each eruptive class. In this regard, the maximum value,
up to 351 m3s−1, is associated with class 5 (i.e., 200 × 106 m3 of lava erupting in 30 days),
derived from the 25th percentile curves, while the 50th and 75th percentiles curves show,
respectively, values of 216 m3s−1 and 164 m3s−1 for the same eruptive class.

Table 2. Thresholds of the total durations and the lava volumes defined for each eruptive class
associated with the flank eruptions (adapted from [10]).

Eruptive Classes Total Time (Days) Volume (m3)

Class 1 30 30 × 106

Class 2 90 30 × 106

Class 3 30 100 × 106

Class 4 90 100 × 106

Class 5 30 200 × 106

Class 6 90 200 × 106
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3.3. GPUFLOW Simulations

A total of 54 lava flow simulations generated by the six eruptive classes (Table 2)
with the effusion rate curves derived from the three characteristic curves (Figure 6) were
performed on three planes with variable inclinations (10◦, 20◦, 30◦) by using the GPUFLOW
model. All of the simulated lava flows are tongue-shaped, and are generally characterized
by narrow channels in correspondence with the eruptive vent, becoming wider toward the
front (Figure 7). This effect is more marked on the simulated lava derived from the 50th and
75th characteristic curves, which also show a greater thickness at the lava flow front on the
plane at 10◦. Few simulations performed at the same inclinations show small lateral flows
close to the vent area that are symmetric with respect to the main flow direction. This effect
is particularly evident in long-lasting simulations (90 days). The increase in the inclination
of the planes produces a progressive increase of the lava flow thickness toward the vent area
with narrower and thinner lava fronts. However, for hazard purposes, the most important
features are the area and the run-out distance of the lava flows. In this regard, short-lasting
simulations (30 days) originating from 25th percentiles show a positive correlation between
the final lengths and the inclination of planes, whereas lava flows generated by using 75th
curves are generally characterized by a negative correlation. Concerning lava flows derived
from the 50th characteristic curve, the maximum lengths of lava flows are observed mostly
for simulations performed on a plane inclination of 20◦ (Figure 8). In general, the length
variations induced by plane inclinations are very limited.
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The highest run-out distances were reached by the simulations using the 25th curves,
which show a greater length than the simulated lava associated with the 50th and the 75th
curves for the corresponding eruptive classes by factors of 1.20–1.29 and 1.22–1.45, respec-
tively (Figure 9). The highest difference is observed between simulations derived from
the 25th and 75th percentiles, which correspond to the eruptive class 1 on the 30◦ inclined
plane (Figures 7 and 9). Conversely, the run-out distances obtained from 50th curves are
longer than factors of 1.01–1.13 with respect to the 75th simulated lavas, suggesting that
they reached similar lengths from the vent (Figure 8). The inclination of the planes induced
a slightly greater difference in the length ratios, which was particularly evident between
the simulations derived from 25th and 75th characteristic curves due to decoupled effects
on the final lengths of lava flows at increasing plane inclinations.
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Figure 9. Diagrams showing the length ratios L (a–c) and fitness values φ (d–f) between simulated
lava derived from the characteristic curves on all of the inclined planes (10◦, 20◦, 30◦). Calculations
were performed between the 25th and 50th curves (circles), the 25th and 75th curves (square), and
the 50th and 75th curves (triangles) for each eruptive class.
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The difference in the emplacements between the simulated lava flows was evaluated
using the fitness value φ, which is a scalar value computed as the ratio between the
intersection and the union of the areas covered by the simulated flows (given two lava
flow areas A and B, the fitness value is calculated as φ = (A ∩ B)/(A ∪ B) [15]). Our tests
revealed variations of 27–34% (φ = 0.66–0.73) between lava flows derived from the 25th
and the 50th curves, while slightly greater variations of 32–44% (φ = 0.56–0.68; Figure 9)
characterize the fitness value calculated between the 25th and the 75th simulations. On the
contrary, the lava emplacements from the 50th and the 75th curves show variations of
3 –19%, providing very similar results (φ = 0.81–0.97; Figure 9).

An additional set of 18 simulations (six eruptive classes on the three inclined planes)
were performed using the bell-shaped effusion rate curves adopted in [10], maintaining
the same physical parameters for the lava and simulations. The simulated lava flows
were then used as reference cases, and were compared with those obtained from the
characteristic curves for each corresponding eruptive class and inclined plane. In these
cases, the simulated lava generated from the 25th percentile characteristic curves also
showed higher run-out distances than the simulations performed by using bell-shaped
curves, with factors of 1.10–1.20 at 10◦ inclination, and a small increase of the length ratio
was observed at higher inclinations of planes up to 1.36 (Figure 10). Conversely, 50th and
75th are generally slightly shorter, by a factor up to 0.88, and some simulated flows derived
from the 50th percentile characteristic were slightly longer than the corresponding lava
flow derived from the bell-shaped curve on the plane with inclination of 20◦–30◦ (with a
factor of up to 1.06). Concerning the fitness value for the areas, variations of up to 39%
(φ = 0.61) were observed between the lava flows derived from the 25th percentile and
the bell-shaped curves (Figure 10). Such differences are smaller for the 50th and the 75th
percentiles (φ = 0.75–0.91), indicating that the simulated flows cover more similar areas.
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Figure 10. Diagrams showing the length ratios L (a–c) and fitness values φ (d–f) between the
simulated lava derived from the characteristic curves and bell-shaped (bs) curves on all of the
inclined planes (10◦, 20◦, 30◦). Calculations were performed to compare the 25th curves (circles), 50th
(square), and 75th curves (triangles) with the bell-shaped curves for each eruptive class.
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4. Discussion

The analysis of the TADR time series allowed us to obtain insights into the dynamics
of the lava flow emplacement during flank eruptions at Mt. Etna. The incidence of the
effusion rate peaks at the beginning of the eruptions reflects that more than 50% of the lava
volume erupts in the first 10–40% of the total duration, followed by an overall decrease
in the discharge rates. This trend is consistent with the release of the energy stored in the
reservoir through elastic deformation induced by magmatic overpressurization [13]. The
modification of the conduit shape and the dynamics of the magma supply from the depths,
which are additional factors that control the rate at which lava is discharged [13], may
be responsible for the differences in the total duration and shape of the analyzed TADR
time series, as well as between the Trend 1 and Trend 2 curves. Indeed, the unusually
high discharge rate estimated for the 1981 eruption (up to 641 m3s−1) was explained as a
complex interaction between a shallow magma reservoir with a dike intrusion from the
deeper part of the plumbing system [17]. Fluctuations in the convoluted curves can be
attributed to pulses of lava supply from the reservoir, leading to deviations of the effusion
rate from the theoretical trend. In the case of the 2001 eruption, different eruptive vents
were developed both on the summit-subterminal and flank areas, which were linked to
distinct magma pathways [37]. Thus, the potential dispersal of the energy linked to the
separated pathways through which the magma reached the surface may have induced the
observed differences in the TADR curve shape from Trend 1 for the 2001 eruption. On the
other hand, the atypical behavior of the 1985 and 1986–87 eruptions, characterized by a
rather low averaged effusion rate and a high average/peak ratio, may highlight an absence
of an energetic phase during the eruption with high lava discharge rates. However, it
is note that measurements of thermal infrared data from the AVHRR sensor during the
first 8–15 days from the beginning of the eruptive activity are lacking for the 1985 and
1986–87 eruptions. Therefore, we cannot exclude the possibility that higher TADRs values
could have characterized the lava effusion for these two events, showing that the expected
effusion rate curves could be more similar to Trend 1. Finally, the opposite trend which was
observed for the 2004–05 eruption can be attributed to the different dynamics triggering
the eruption, which were mainly controlled by the response of the eastern flanks induced
by the regional geodynamic stress, with a very poor contribution from the magmatic
overpressure [31,38]. Such inferences lead us to give more emphasis to the simulations
performed using effusion rate curves converted from the 25th characteristic curve, as they
are is closer to the pattern shown by Trend 1, which includes the most hazardous events of
the last century at Mt. Etna (i.e., the 1928, 1981 and 1991–93 eruptions). We observed that
the earlier the achievement of the peak, the higher the effusion rate at the same expected
volume of lava erupted and total time of the eruption, thereby leading to higher values of
the theoretical effusion rate peak in the 25th curves compared to the 50th and 75th curves
at corresponding eruptive classes. Similarly, the bell-shaped curves used for the definition
of the lava flow hazard map [10] are characterized by a lower maximum effusion rate than
the corresponding 25th percentile characteristic curves. This feature played a key role in
the final results achieved by simulating the lava emplacement through the GPUFLOW
model. In fact, the general behavior of lava emplacement reproduced by using the 50th
and 75th characteristic curves is more consistent with that of the reference cases linked to
the bell-shaped curves, whereas higher run-out distances were obtained for simulations
performed using the 25th percentiles.

Though steeper slopes cause a moderate shortening of the lava lengths when using
the 50th and 75th characteristic curves, this was not observed for lava flows produced with
the 25th characteristic curve in short-lasting simulations (30 days). Such a feature is due to
the relatively faster cooling of the thinner lava front induced by a higher contribution of
the gravity-driven flow at greater inclinations for simulated lava associated with the 50th
and 75th characteristic curves. On the contrary, the higher effusion rates estimated for the
corresponding 25th curves reduce the cooling effects, allowing lava flows to reach greater
distances during the early phases of the eruption, thereby leading to the low estimated
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fitness values between the lava emplacements originating from the 25th and 50th/75th
curves. Similarly, the presence of small lateral flows close to the vent in some long-lasting
simulations (90 days) on the inclined plane with a slope of 10◦ can be attributed to the
relatively lower effusion rates compared to the corresponding short-lasting simulations
with the same expected volume of lava erupted; this, combined with a lower slope, allows
cooling effects to influence the emplacement more strongly during the waning phase.
Even though the presence of lateral flows testifies to the influence of cooling during the
emplacement of lava flows generated using the 25th percentile curve for the corresponding
erupted class 2 (i.e., 30 × 106 m3 of lava erupted in 90 days), the simulated lava covered a
greater distance than lava flows produced by using the bell-shaped curve from [10] for the
same eruptive class (Figure 11a). Conversely, the lava flows associated with the 50th and
75th percentiles reached shorter distances from the vent compared to the reference case
(Figure 11b,c).
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Figure 11. Graphical representation of the fitness value, overlaying test simulations obtained by
using the 25th (a), 50th (b) and 75th (c) percentile curves associated to the eruptive class 2, with
emplacements produced by using bell-shaped curve for the same eruptive class used as a reference.
Yellow represents the common inundated areas, red represents the overestimated areas (inundation
from tests but not from the reference) and blue represents the underestimated areas (inundation from
the reference but not from the tests). The lava flow originating from the 25th percentile curve show
small lateral overflows due to cooling effects during the waning phase.

Our tests confirm that the greater lengths of the lava flows from the vent are positively
correlated with higher effusion rates. This implies that the impact of lava emplacement
is mainly controlled by the temporal evolution of the lava effusion rates at given bound-
ary conditions (e.g., the same total duration and total volume of erupted lava, emission
temperature, and water concentration). Such results have a significant repercussion on the
management of the hazard linked to the Etnean flank eruptions, as the early phases are
crucial for the determination of the extent of a lava flow.

The main limitation of our analysis is that the effusion rate curves are only available
for a small number of Etnean flank eruptions. Thus, a better characterization of such
hazardous events can be derived by collecting more TADR time series data for historical
eruptions, e.g., through a topographic approach. Our future work will also include the
analysis and characterization of the eruptive episodes producing lava flows that occurred
at the summit craters, which can threaten the touristic facilities located on the volcano
flanks, i.e., damage to which could negatively affect the local economy.

5. Conclusions

An analysis of the lava discharge rate time series was performed for recent flank
eruptions at Mt. Etna in order to define a generalized trend of lava effusion rates in time.
In total, 90% of the analyzed case studies showed that the peak of the effusion rate occurs
in the first 30% of the total duration of the eruption, which is then characterized by a
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general decrease of the volume flux until the end of the eruption. In order to represent
the main variability in the observed real curves, three generalized curves were built with
variable positions of the effusion rate peaks. Lava flow modeling was then performed
on planes with various inclinations using theoretical effusion rate curves derived from
these characteristic curves for a fixed total volume of lava erupted and the total duration
in order to evaluate the effects of time variations in the effusion rate coupled with the
inclination of the substrate on the emplacement of lava flows. The results were compared
with simulations based on the bell-shaped effusion rate curves used to develop one of the
most recent lava flow hazard maps at Mt. Etna [10]. From the analysis, we observed that
bell-shaped curves reproduce well the general behavior of lava effusion rates linked to the
flank eruptions of Mt. Etna, as differences in the lengths of the simulated lava flows from
those produced by using the characteristic curves are of the order of 5–10%. However, a
category of eruptive events characterized by a relatively early occurrence of the effusion
rate peak with exceptionally high values leads to greater lengths of simulated lava flows
than the reference cases, with variations of up to 20%. At a higher inclination of the planes,
an increase of length of up to 35–40% is observed. This category is well represented by very
short-lasting events, such as the 1928, 1981 and 2018 eruptions (4–15 days), though their
probability of occurrence is low. This contributes to increasing the volcanic hazard linked
to lava flows for flank eruptions at Mt. Etna, due to the relatively high velocities of flowing
lava erupting in a short time, and the potentially greater distances reached compared to
those predicted from the lava flow hazard map. Adding this category of effusion rate
curve will allow a better evaluation of the impact of lava flow inundation for real-time
applications, as well as an update of the lava flow hazard map at Mt. Etna, where the
probability of lava inundation is obtained by combining the numerical simulations with
the spatiotemporal probability of future vent opening and the occurrence probability of the
expected eruptive classes of eruptions.

The results obtained through our effusion rate analysis allowed us to obtain insights
into the dynamics of flank eruptions at Mt. Etna, and for lava flow hazard assessment. We
found that more than 50% of the lava volume is emitted at the very beginning of an eruption,
consistent with the overpressurization of the magmatic reservoir, which may lead to the
rapid achievement of the effusion rate peak at the initial phase of eruptions. The nearly
exponential decrease is determined by the release of elastic strain energy stored in the
reservoir. Moreover, our analysis is fundamental for the evaluation of both the short- and
long-term hazard due to lava flows, playing a role in risk mitigation in densely populated
areas in close proximity to active volcanoes. Although it was conducted on Mt. Etna, the
approach is designed to be applicable to other volcanic areas where an extensive dataset of
effusion rate temporal series is available.
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