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Abstract: Power line extraction is the basic task of power line inspection with unmanned aerial
vehicle (UAV) images. However, due to the complex backgrounds and limited characteristics, power
line extraction from images is a difficult problem. In this paper, we construct a power line data set
using UAV images and classify the data according to the image clutter (IC). A method combining
line detection and semantic segmentation is used. This method is divided into three steps: First, a
multi-scale LSD is used to determine power line candidate regions. Then, based on the object-based
Markov random field (OMRF), a weighted region adjacency graph (WRAG) is constructed using the
distance and angle information of line segments to capture the complex interaction between objects,
which is introduced into the Gibbs joint distribution of the label field. Meanwhile, the Gaussian
mixture model is utilized to form the likelihood function by taking the spectral and texture features.
Finally, a Kalman filter (KF) and the least-squares method are used to realize power line pixel tracking
and fitting. Experiments are carried out on test images in the data set. Compared with common
power line extraction methods, the proposed algorithm shows better performance on images with
different IC. This study can provide help and guidance for power line inspection.

Keywords: power line extraction; object-based Markov random field (OMRF); weighted region
adjacency graph (WRAG); unmanned aerial vehicle (UAV) image

1. Introduction

Power system patrol inspection is an important method for transmission line main-
tenance, as well as guaranteeing the safe and stable operations of the power system. It
is of great significance to improve the ability to deal with natural disasters and to ensure
the safe and stable operations of power systems [1]. At present, transmission power line
inspection methods mainly include manual inspection, manned helicopter inspection, robot
inspection, unmanned aerial vehicle (UAV) image inspection, and satellite remote sensing
image inspection [2–4]. Compared with other methods, UAV image detection technology
has been widely used, due to its low cost and ease of operation [5,6]. Quickly and accurately
extracting power lines from UAV images with complex backgrounds is the core step of
UAV inspection. The main reasons for this are as follows [7–9]: (1) power line extraction
algorithms can provide theoretical support for UAV automatic line inspection, automatic
data acquisition, and field-of-view control; (2) the power line extraction algorithm can be
applied to UAV flight obstacle avoidance systems in order to ensure the flight safety of
the UAV in complex power line corridor environments; and (3) power line extraction is
one of the necessary steps for potential fault diagnosis related to a variety of conductor
bodies, such as fracture detection, sag calculation, icing thickness measurement, dangerous
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crossing distance measurement, and so on [10–13]. However, due to the relatively weak
presence of power lines in UAV images and the changeable and complex background of
UAV images, it is a very challenging problem to extract power lines accurately and quickly.

In recent years, many methods for extracting power lines from UAV images have
been developed, which can be divided into edge detection-based and joint feature-based
methods (see Table 1). Methods in the former category mainly use the features of the
power line itself, first detecting the edges and then extracting the lines. These methods
do not require the preparation of a large number of samples, have fewer data restrictions,
and can realize the rapid and automatic extraction of power lines; however, when the
edge information is weak and the image background is complex, there will be a large
number of false extraction results and the anti-noise performance will be relatively poor.
For example, Shan et al. [14] proposed a power line extraction method based on a regional
growth and ridge-based line detector; however, this method is only applicable to situations
with relatively simple backgrounds, lacks an effective denoising ability, cannot eliminate
the interference of non-power line features (e.g., roads), and has poor noise immunity.
Yan et al. [15,16] proposed a power line extraction method based on Radon transform and
Kalman filter (KF) tracking, but the algorithm requires the power line direction in the
image as a priori knowledge and is only applicable to the case where the direction in all
images is the same. However, the existence of power towers will change the direction of
the power lines, thus reducing the reliability of the method. Tan et al. [17] proposed an
automatic power line extraction algorithm based on a Ratio edge detection operator and
the RANSAC algorithm. In the process of fitting secondary power lines, the algorithm
discards multiple split wires in a group and uses only one line to replace multiple split lines,
resulting in an incomplete number of extracted power lines and low accuracy. Li et al. [9]
first designed the Pulse Coupled Neural Filter to obtain the edge map, based on the prior
knowledge that the brightness of the power line is higher than that of the surrounding
objects, then processed candidate line segments in the Hough transform space using the
improved Hough algorithm combined with k-means, according to the parallelism between
the power lines, and took the class with the highest number of votes as the power line, as
the relatively simple model cannot be applied to UAV images with complex backgrounds.
Chen et al. [18] obtained the line set in the edge graph through the Cluster Radon Transform
(CRT), then segmented each line area and distinguished power lines from non-power lines
by calculating the similarity of the background on both sides of each line segment.

Table 1. Summary of methods discussed in the introduction.

Method Category Author Advantages Limitations

Edge detection-based
Shan et al. [14], Yan

et al. [15,16], Tan et al.
[17], Chen et al. [18]

Simple model, fast
and automatic, low
data requirements

Low noise resistance,
low extraction

accuracy

Joint feature-based Zhang et al. [19],
Zhao et al. [20]

Diverse use of
information, high
scene applicability,

high extraction
accuracy

Complex model, high
data requirements,

low extraction
efficiency

The latter category (i.e., joint feature-based methods) uses the context information and
auxiliary information of the image, which can effectively make up for the lack of power line
features. These methods are more flexible in the construction of features, as well as having
higher extraction accuracy and stronger applicability to different scenes, but the models are
more complex and the efficiency of object extraction is low; furthermore, the performance
of the algorithm will be affected when the constructed features are inconsistent with the
image features. For example, Zhang et al. [19] first used a line segment detector (LSD) to
extract line segments, then extracted tower features, defined line-tower spatial correlation
features according to the spatial relationship between power lines and towers, and finally
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constructed a power line extraction model based on a Bayesian network to distinguish
power lines and non-power lines. These two methods combine line features with spatial
context information in the area around the line, thus overcoming the limitations caused
by using a single power line feature. However, when the image is inconsistent with the
pre-set context information, the accuracy of these algorithms may decline rapidly. Zhao
et al. [20] first used LSD to extract line segments, regarded each line segment as a node to
establish an irregular graph model, and then proposed an object-based Markov random
field (OMRF) with an anisotropic weighted penalty to realize the classification of power
lines. This method considers power line extraction as an image segmentation task and
can achieve good results. It shows that the combination of a line detection algorithm and
machine learning method for semantic segmentation is suitable for line extraction and that
Markov random field (MRF) has great application potential for the extraction of power
line pixels.

In this paper, a multi-scale LSD based on the adaptive Gaussian pyramid method is
proposed to obtain power line candidate regions, and the OMRF is constructed—using
a Gaussian mixture model (GMM) and weighted region adjacency graph (WRAG)—in
order to extract the power line pixels using the simplified KF to track the extracted pixels
and connect the broken lines. Finally, the power lines are fitted using the least-squares
method. The remainder of this paper is organized as follows: In Section 2, we introduce the
UAV image data used in this paper. Section 3 describes the power line extraction method.
Section 4 presents the algorithm threshold and results. Finally, Section 5 further discusses
and concludes the paper. Note that the term “power line” used in this paper refers to the
“conductor” (a professional term in electrical engineering, consult the specific meanings
given by https://www.electropedia.org, accessed on 26 February 2022), which is a power
transmission facility formed through the binding of multiple transmission power lines.
These lines constitute the smallest unit that can be recognized in current spatial resolution
UAV images.

2. Data Descriptions
2.1. UAV Image Data

The high spatial resolution images used in this paper rely on the QLiDAR-H200H1C
UAV point cloud and image integrated acquisition system. This system was mounted
on a DJ M600 multi-rotor UAV with the APS-C camera, which has a 16 mm fixed focus
lens. The data acquisition area was mainly distributed in the rural areas of Yongchuan and
Fuling Districts, Chongqing, China, in July 2020 and October 2021. The effective acquisition
distance was about 200 km, and the objects were 220 kV and 550 kV power line channels.
Based on the above acquisition images, after screening and cropping, the clear images of
power lines were retained to build a data set, with a total of 409 images with a size of
600 × 600 pixels.

2.2. Characteristics of Power Lines in UAV Images

(1) The surface layer of a power line is mostly made of special materials, where the colors
are mainly gray and bright white.

(2) The topological structure is generally simple, straight, long, and runs through the
whole image, which is similar to one straight line, and the power lines are parallel to
each other.

(3) The pixel width of a 220 KV power line is about 1–2 pixels, while the maximum width
of a 550 KV power line can reach 4 pixels.

(4) The background of power line images acquired by UAVs from overhead typically
contain complex ground object information. The ground objects with linear structures
that seriously interfere with power line extraction mainly include the branches and
stems of land surface vegetation, artificially built roads, and various buildings. How-
ever, most of the background objects on both sides of a single power line are similar,
and there is no drastic pixel value gradient change [21].

https://www.electropedia.org
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2.3. Analysis of Image Clutter

In order to deeply analyze the extraction effects of different algorithms on power lines,
the data set was further classified. In this paper, the index of image clutter (IC) was selected
to classify the images [8,22]. The IC can effectively indicate the complexity of the image
background, and is defined as follows:

IC =

√√√√ K

∑
i=1

σi
2/K (1)

µi =
Ni

∑
j=1

(
Xj
)
/Ni (2)

σi =

√√√√ Ni

∑
j=1

(
Xj − µi

)2/Ni (3)

where K is the number of sub-windows dividing the image, µi represents the mean value
of the three RGB channels of all pixels in the ith sub-window, Xj is the mean value of a
single pixel in the three channels, and Ni and σi

2 are the number of pixels and the variance
of the pixel value of the sub-window, respectively. According to [22], K = 16 was selected
in this paper.

The IC distribution of the data set is shown in Figure 1, with a maximum value of
58.90, a minimum value of 19.65, and a mean value of 39.47. According to the ranges 15–30,
30–45 and 45–60, the IC index was divided into low, medium, and high levels, accounting
for 29.34%, 41.55%, and 29.11% of the data set, respectively. Example images with different
IC are shown in Figure 2. It can be seen that the image background with low IC includes
simple ground objects, such as water and bare land, with uniform color and prominent
power lines. Medium-IC images mainly feature crops, trees, and other vegetation, with
some linear features similar to the characteristics of power lines. The background of a
high-IC image is complex, composed of the natural landscape and artificial buildings, and
the interference with power line pixels is serious.
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3. Power Line Extraction Method

The UAV image power line extraction method based on line detection and semantic
segmentation proposed in this paper is mainly divided into three steps: (1) by combining
the LSD algorithm and information entropy theory, an adaptive Gaussian pyramid multi-
scale LSD algorithm is constructed, which can effectively extract the long and coherent line
segment information in the image and form the power line candidate regions; (2) in order
to reflect the interaction between line segments, an OMRF model on a WRAG is defined,
in which the likelihood function is constructed by GMM, which utilizes the spectral and
texture information of power lines, and the joint distribution is designed by considering
the distance and angle between line segments, in order to realize pixel-level power line
extraction; and (3) a simplified Kalman filter (KF) is used to track the power line pixels, in
order to form a complete power line segment and eliminate the object fracture problem
caused by image segmentation. Finally, the tracked power line pixels are fitted using the
least-squares method. The specific technical process is shown in Figure 3.
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3.1. Construction of Power Line Candidate Regions

Due to the complex background of the image, it is impossible to directly extract the
power line using the semantic segmentation algorithm. Considering the very prominent
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line structure, a line detector can be used to extract the line segments in the image first,
in order to determine the power line candidate regions, which can effectively reduce the
difficulty of subsequent segmentation and greatly improve the efficiency and accuracy of
extraction. Commonly used line detectors include the Hough transform [23,24], Radon
transform [25–27], and LSD [28–30], but the detection results of the first two methods are
straight lines after fitting, and there is no pixel information of the original object; as such,
they are not suitable for extracting candidate regions. LSD is a common and fast line
detection method and the extracted results are straight line segments, which can be used to
construct power line candidate regions with width information.

3.1.1. LSD Algorithm

Based on the gradient direction and amplitude of each pixel, LSD forms the regions
of pixels that meet the constraints (determined through constraint rules) and generates
line support regions as candidates for line segment detection. By the minimum constraint
rule of the line support regions, whether the line support region is a line segment can be
determined [28]. The algorithm only judges whether there are pixels with similar gradient
angles through the neighborhood of one pixel; thus, it is easy to produce discontinuous
line segments, and a large number of false line segments will be extracted in regions
with dense vegetation, such as crops and forests. Therefore, the original LSD needs to be
improved, in order to make this method more suitable for the construction of power line
candidate regions.

3.1.2. Multi-Scale LSD Algorithm

In order to avoid the problem of line segment discontinuity caused by LSD using a
single pixel, an adaptive multi-scale LSD algorithm combined with the information entropy
theory is proposed, realized by the use of a Gaussian pyramid [31–33], which can mine
the image information of the same object at different scales. In the process of building
the image pyramid, Gaussian blur is applied to the image. If the image is blurred many
times, the originally independent objects may be connected together, resulting in image
distortion. If the algorithm detects a line segment in the distorted image, the result will
also contain incorrect information; however, when there are too few images, the pyramid
will lose information at a certain scale. Therefore, it is particularly important to determine
the number of groups for the Gaussian pyramid and the number of images in each group.

Mutual information entropy can describe the similarity between two images. With this
characteristic, the mutual information entropy between the Gaussian blurred image and the
original image is calculated, and the results are compared with the threshold to determine
whether to retain the processed image to construct an adaptive Gaussian pyramid, such
that the algorithm can adapt to different image backgrounds. The calculation formula for
the mutual information entropy is as follows:

H(A) = −∑
a

P(a) log2 P(a) (4)

H(AB) = − ∑
a∈A

∑
b∈B

P(a, b) log2 P(a, b) (5)

N(A,B) =
H(A) + H(B)

H(AB)
(6)

where A and B are two images; a and b are image values; H(A) and H(B) are the information
entropies of A and B, respectively; H(AB) is the combined information entropy; and N(A,B)
is the mutual information entropy.

The calculation steps can be summarized as follows: (1) Set l as the group of the
adaptive Gaussian pyramid P, i as the image number in l, and initialize i and l = 0. (2) Take
the input image a as the image i in group l; that is, the image at the bottom of P. (3) Use
Gaussian blur for the image i of l and calculate N(a,i). If N(a,i) < ε0, i = i + 1, and i is stored
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in the ith position of l; if N(a,i) > ε0, i is discarded and the construction of l is stopped.
(4) Down-sample the i of l and calculate N(a,i). If N(a,i) < α, l = l + 1, and i is stored in the ith
position of l. Repeat (3)–(4) until N(a,i) > α. Then, i is discarded and the construction of P is
stopped. (5) The P corresponding to image a is obtained.

The structure of the obtained P is shown in Figure 4. P has l + 1 groups, and the
number of images in each group is uncertain; namely, i0 + 1, i1 + 1, i2 + 1, . . . , il + 1. The
image in the group is obtained by Gaussian blurring the previous image of the current
group, and the first image of the next group is obtained by down-sampling the last image
of the previous group.
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3.1.3. Separation of Image Background

There is a lot of noise in the image background in the constructed adaptive Gaussian
pyramid; however, the background is not important for the contour and edge of the
object in the foreground. Therefore, it is necessary to separate the background from the
foreground before line detection. This operation can avoid calculating non-edge pixels and
save computation time. It can also reduce noise interference and avoid the false detection
of line segments. The Otsu threshold [34–38] can be used to determine the gray level that
can maximize the inter-class variance between the foreground and background and obtain
the segmentation threshold of the foreground and background. The calculation formula is
as follows:

σ = w0w1(u0 − u1)
2 (7)

where w0 is the ratio of the number of foreground pixels to the total number of image
pixels, u0 is the average gray value of foreground pixels, w1 is the ratio of the number of
background pixels to the total number of image pixels, and u1 is the average gray value of
the background pixels.

When the background pixels in the image are similar, the original Otsu threshold
algorithm has a better effect. When there are several kinds of background values in the
image, the original Otsu threshold algorithm cannot separate the foreground well. In this
paper, the Otsu threshold is optimized, the image is divided into several parts, and the
foreground and background are separated using a gradient threshold. The calculation steps
are as follows:

(1) Read an image i in P and calculate the gradient→
g

for i.

(2) Determine the pixel points x of the peak of→
g

, convert the Cartesian coordinates of

x into polar coordinates, count the collinear x, and fit the lines L through the least-
squares method. Then, calculate the intersection X between L and divide i into several
parts through X.

(3) Calculate σ with Formula 7 for each part of i, respectively.
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(4) Separate the local foreground of i from the background through σ, and→
g

correspond-

ing to the background pixel is discarded.
(5) Judge whether i is the last image in P. If not, repeat (4)–(5); if so, end the algorithm.
(6) Obtain→

g
corresponding to the foreground pixel of i in P.

The image background is separated and the foreground is retained through the above
steps. The original LSD algorithm is used to find the line segment according to the gradient
angle, and segments are verified by the Helmholtz criterion. All reserved segments are
considered power line candidate regions.

3.2. Segmentation of Power Line Pixels
3.2.1. OMRF Model

MRF [39] is a probabilistic graphical model, which provides a statistical method to
simulate the spatial context constraints of images. Therefore, it is suitable for capturing
texture information and has been widely used for semantic segmentation. The classical MRF
model is a pixel-based model. The MRF model further considers semantic segmentation at
the object level. The OMRF model [40] first uses the basic segmentation method to segment
the given image into some over-segmented regions. Then, the region adjacency graph
(RAG) is constructed using these regions, and the OMRF model is defined on the RAG (see
Figure 5).
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For image I, the OMRF model uses the basic unsupervised segmentation method to
divide I into an initial region set R = {R1, R2, . . . , Rn}. Each Ri in R is an over-divided
region (I = 1, 2, . . . , n), Ri ∩ Rj = Ø (i 6= j), and n is the number of regions. Based on R, the
OMRF model can construct an RAG G = (V, E), where V = (vi) is the vertex set and E = (eij)
is the edge set. Each vertex vi represents an over-divided region Ri (I = 1, 2, . . . , n), and the
existence of an edge eij indicates that the regions Ri and Rj are adjacent. Then, a label field
X = {Xi|i = 1, 2, . . . , n} is defined on G. Each random variable Xi represents the class of
region Ri, and takes a value in the set Λ = {1, 2, . . . , k}. Assuming that there are k different
classes in I, let x = {xi|i = 1, 2, . . . , n} represent an implementation of X. In the OMRF
model, the x̂ that maximizes the a posteriori probability distribution P(x|I) is regarded
as the appropriate image segmentation result. The segmentation problem is transformed
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into the best implementation of estimating a given observed image I using the maximum a
posteriori (MAP) criteria:

x̂ = argmax P(x|I),
x

= argmax P(I|x)· P(x)
P(I)

x
= argmax P(I|x)· P(x).

x

(8)

In Formula (8), the meaning of the MRF model defines the equation in the first line,
and the Bayes formula provides the equation in the second line. As P (I) has no effect on
the choice of x, the final equation can be defined.

The likelihood function P (I|x) is used to describe the conditional probability of
image I belonging to the realization of x in the above equation, which can be further
defined by GMM [41]. The feature vector of each random variable can be expressed as

Ii = f
(

I1
i , I2

i , . . . , Ip
i

)T
, where p is the dimensions of vectors. The parameters of GMM are

the set of mean vectors of each class, µ = {µ1, µ2, ···, µk}, and the set of the feature covariance
matrix of each class is Σ = {Σ1, Σ2, ···, Σk}, where k is the number of segmentation classes.

The joint distribution P(x) is used to simulate the spatial interaction between regions
according to the label field. In addition, assuming that P(x) has the Markov property in the
MRF model, it can be defined as:

P(xi
∣∣xj, ∀j ∈ V/{vi}) = P(xi

∣∣xj, ∀j ∈ Ni) (9)

where Ni is the set of regions adjacent to Ri. Based on the Hammersley–Clifford theo-
rem [39], P(x) obeys a Gibbs distribution; that is:

P(x) =
1
z

exp(−U(x)) (10)

where Z = ∑x exp (−U(x)) is a normalized constant and U(x) = ∑c∈C Vc(x) is an energy
function, which adds the clique potential Vc (x) on all possible cliques C. In most cases of
the OMRF model, only the pair-site cliques are used for the energy function, as they are
simple in form but transmit context information.

3.2.2. Construction of WRAG

In the classic image segmentation RAG of the OMRF model, each vertex only indicates
the existence of one region, and each edge only indicates whether two regions Ri and Rj are
adjacent. However, the interactions between regions are complex, and the edge information
in classic segmentation is not suitable for power line candidate regions; therefore, other
information is required to measure the intensity of interaction. Therefore, a new WRAG,
Gw (Vw, Ew), is constructed to describe the relationships between line segments, where the
weights include the distances between line segments and the angle of line segments.

(1) In order to reduce the amount of calculation and improve the calculation speed,
OWRF adopts a neighborhood system for each object. The neighborhood is defined
by the common boundary between the segment regions. However, for the problem
of power line extraction, the detected segments are not necessarily adjacent to each
other, and there is no complete common boundary, such that the neighborhood system
cannot be defined with the boundary. In this paper, the k-nearest neighbors (kNN)
method [42], based on the Euclidean distance, is used to construct the neighborhood
system of line segments, where the value of k is 8. To obtain the distance, the line
segments detected by multi-scale LSD are numbered (Figure 6). After numbering, each
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line segment L = {li|i = 1, 2, . . . , n} can be used to calculate the minimum Euclidean
distance; that is:

dij =

 min
(√

(x1 − x2)
2 + (y1 − y2)

2
)

+∞

, i 6= j
, i = j

(11)

where x1, x2, y1, and y2 represent the abscissa and ordinate of any two points in the
two segments, respectively. The neighborhood system after kNN clustering is shown
in Figure 8. Neighborhood A, where segment L1 is located, includes another seven
green segments close to L1, while segments of other colors belong to neighborhoods
B, C, D, and E.

(2) L in the above neighborhood system can be considered as the over-segmented region
Rw = {Rw

i |i = 1, 2, . . . , n} in WARP. The node VW = {Vw
i |i = 1, 2, . . . , n} of each Ri

represents a line segment. The edge set E can be replaced by the distance Ew between
line segments; that is, Ew = {ew

ij = dij|i, j = 1, 2, . . . , n}.

(3) In addition to the distance between line segments, the angle between two lines also
affects whether line segments can be classified into the same class. The angle α of a
line segment can be calculated by using the two vertices A1 (x1, y1) and A2 (x2, y2) of
the centerline of the line segment (Figure 7); the calculation formula is as follows:

α =

{
arctan((x1 − x2)/(y1 − y2))

90
, y1 6= y2
, y1 = y2

. (12)
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From this, aw
ij can be calculated; that is:

∆α =
∣∣αi − αj

∣∣, (13)

aw
ij =

1/
1/∆α ,

|∆α− 180| ,
+∞ ,

0 < ∆α < 90
90 ≤ ∆α < 180

α = 0 or ∆α = 180
. (14)

The range of ∆α is 0–180. When 0 < ∆α < 90, the greater the value of ∆α, the greater
the included angle of the two line segments, and the smaller the weight represented by the
angle. When 90 ≤ ∆α < 180, as the included angle increases, the two line segments tend to
be parallel and the weight increases. Therefore, aw

ij can be divided into the same increasing
and decreasing trend, as in Formula (14): when ∆α approaches 0 and 180, aw

ij increases.
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(4) If the RAG is directly constructed using line segments (Figure 9a), the adjacency
relationship between each R is the same, and invalid line information cannot be
eliminated. By calculating the minimum Euclidean distance and included angle
between R, the WRAG, which includes the connection strength between line segments,
can be defined (Figure 9b). Taking R1 as the calculation object, the adjacent line
segments have different distances and included angles, such that they have different
impact weights on R1.
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3.2.3. Definition of Likelihood Function

In the OMRF model, the likelihood function P (I|x) is equivalent to ∏i∈{1,2,...,n} P
(

IRi

∣∣xi
)
.

IRi represents the feature vector of the object. In the image segmentation task, the feature
vector often uses the spectral value of each pixel s in Ri. In this paper, the spectral and
texture features of every pixel s in a power line segment Ri are combined with the GMM
model to form a comprehensive feature vector IRi; namely:

IRi = f
(
SRi , TRi

)T , (15)

where SRi represents the spectral information of each pixel of the line segment, including
the hue (h), saturation (s), and value (v) of the image; that is, SRi = f (h, s, v). TRi represents
the texture information of the line segment and the texture can be defined by information
entropy; that is:

TRi =
n

M× N
×
(

1− log
(

n
M× N

))
, (16)

where n is the number of pixels in the line segment Ri, M and N are the image dimensions,
and all pixels in one segment define the same texture.

In the meantime, assuming that the likelihood function conforms to a Gaussian distri-
bution, P

(
IRi

∣∣xi
)

can finally be written as:

P
(

IRi

∣∣xi = h
)

= ∏
s∈Ri

P(Is|xi = h)

= ∏
s∈Ri

(2π)−
n
2 |Σh|−

1
2

× exp
[
− 1

2 (Is − uh)
TΣh

−1(Is − uh)
]
,

(17)

where uh
t and Σh

t represent the mean vector and covariance matrix of features in class h,
respectively, which can be estimated using the maximum likelihood estimation algorithm;
that is:

uh
t =

∑Ri∈R,xt
i=h ∑s∈Ri

Is

∑Ri∈R,xt
i=h

∣∣∣Ri

∣∣∣ , (18)

Σh
t =

∑Ri∈R,xt
i=h ∑s∈Ri

(Is − uh
t)

T
(Is − uh

t)

∑Ri∈R,xt
i=h

∣∣∣Ri

∣∣∣ . (19)

3.2.4. Definition of Joint Distribution for Label Field

Based on RAG information in the classic OMRF model, the clique potential Vc(x) of
the joint distribution can be defined; for example, the commonly used multi-level logistic
(MLL) model defines Vc(x) as:

V
(

xi, xj
)
=

{
−β,
β,

if xi = xj
if xi 6= xj

(20)

The WRAG Gw(Vw, Ew) constructed in Section 3.2.2 improves the RAG and optimizes
the lack of the interaction strength information between objects in the original model.
Therefore, based on this WRAG, a new clique potential function Vw(xi, yi) can be proposed
to measure the interaction between line segments. It is defined as:

Vw(xi, xj
)
=


−β·

aw
ij

ew
ij

, if xi = xj

β·
aw

ij
ew

ij
, if xi 6= xj

(21)
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where aw
ij represents the angle information between line segments (the smaller the included

angle between line segments, the greater the aw
ij , and the greater the possibility of dividing

segments into the same class) and ew
ij represents the distance information between line

segments (the greater the distance between line segments, the less likely they are to be
divided into the same class).

Based on the proposed Vw(xi, xj
)

and Formula (10), the joint distribution P(xi) can be
written as:

P(xi) =
exp

[
−∑j∈R Vw(xi, xj

)]
∑xi

exp
[
−∑j∈R Vw

(
xi, xj

)] . (22)

The two weights aw
ij and ew

ij balance each other, as shown in Figure 10. R1–R9 are
segments in the same neighborhood system, in which only R1, R2, and R5 are power lines
and other segments are non-power lines. In the iteration, due to the large number of
non-power lines around R1, the local probability of R1 being divided into non-power lines
is very high in the original Vc(x). After introducing the angle weight, R1 and non-power
line segments cannot be divided into the same class due to the large included angle between
R1 and non-power line segments. However, if only the angle is used, R3 and R1 also have a
small angle, such that they may be easily divided into the same class. This problem can be
reduced by using the distance weight. R3 is far from R1 and, in fact, these two segments
will not be divided into the same class (Figure 10).
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3.2.5. Maximum a Posteriori

The MAP criterion is used to iteratively optimize the results of the model (Formula (8)).
There is no label field information in the first iteration, so the label field needs to be initial-
ized. The k-means algorithm is often used as the implementation method of initialization
in the MRF model. In the subsequent iteration, the tth posterior result is used as the (t +
1)th a priori hypothesis. The segmentation line, x̂, can be obtained by the MAP distribution
criterion; that is:

x̂t+1
i = argmax P

(
IRi

∣∣∣xt+1
i , ut, Σt

)
· P
(

xt/
{

xt
i
}

, xt+1
i

)
x̂t+1

i ∈ {1, 2, . . . , k}
. (23)

According to this method, the pixels belonging to power lines can be obtained until
the result converges. Some false extraction and interruption occur in the segmentation
results, which require further processing to fit these line segments.

3.3. Connection and Fitting of Power Lines

The extracted power line pixels are often broken, and the extracted results need to be
further connected to obtain a complete line. This paper uses the idea of the Kalman filter
(KF) [43] and regards each disconnected power line segment as a uniform linear motion
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track. When the power line in a segment is interrupted, it is tracked to the next segment
in a way similar to the KF. If there are segments that meet the matching conditions in the
next segment, the segments are connected. After multi-scale LSD extraction and OMRF
segmentation, there are few noise segments in the image. Therefore, the KF can be greatly
simplified, only its tracking part is retained, and the filtering function is not considered.
The KF consists of a state equation, a measurement equation, and a recursive iterative
method. As there is no noise, the state equation for uniform motion is:

xk = Axk−1. (24)

The measurement equation can be simplified to:

zk = Hxk. (25)

The state prediction equation in the system prediction stage is:

x̂k = Ax̂k−1, (26)

where xk and xk−1 represent the state vectors at times k and k−1, respectively; A =[
1 T
0 1

]
represents the system state transition matrix; T is the step size; and H =

[
1 0

]
represents the observation matrix. The state correction equation in the system update
stage is:

x̂k = xk + Kk(zk − Hxk). (27)

After KF tracking and connection, the interrupted segments can be connected to form
a more complete extraction result. Finally, the extracted power lines can be fitted directly,
using the least-squares method. The specific steps are as follows:

(1) Find the longest segment Rstart in the extracted segments Rextract, and take the mid-
point of the Rstart centerline as the starting point x1.

(2) Take the adjacent point x2 as the tracking direction point, and initialize the KF with
the coordinates of x1 and x2.

(3) Set the tracking step to n = 1.
(4) Use the KF to track the next position and judge whether there is a point x3 of the line

segment in the 8-neighborhood of x2.
(5) If there is Rx3x2, add it to the tracked line segment, let x1 = x3, record the tracking

position, and repeat step (3); if there is no Rx3x2, make n = n + 1, and judge whether N
is greater than the preset step size or exceeds the image boundary. The preset step size
is set to 20 pixels in this paper. The previous extraction method can obtain relatively
complete power lines, and the fracture of the object is small. When it is more than
20 pixels, it is most likely that they are not interrupted power lines, but other false
extraction results.

(6) If n exceeds the step size, mark the segment as USED; if n does not exceed the step
size, repeat step (4).

(7) Judge whether all segments are marked as USED. If they are already marked, stop
tracking and output all USED segments; if there are unmarked segments, repeat
step (1).

(8) All connected segments are fitted into straight lines using the least-squares method.

The flow of the method used in this paper is as follows. All experiments were designed
and implemented using a PC with a Core i9-10850k CPU at 3.6 GHz with a 10 GB RTX3080
GPU and 128 GB of memory.
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Algorithm 1: Power line extraction algorithm based on multi-scale LSD and OMRF.

Input: Image I, information entropy thresholds α and ε, the number of classes k (k = 10 in this
paper), potential function parameter β.
Output: The power line extraction results.

(1) Construct the Gaussian pyramid of I, obtain foreground segmentation gradient→
g

;

(2) Use the LSD to get the region set L = {L1, L2, . . . , Ln} based on→
g

and construct the

neighborhood system R = {R1, R2, . . . , Rn};
(3) Construct the WRAG based on R and define the OMRF on WRAG;
(4) Initialize the a priori information x0 =

{
x0

1, x0
2, . . . , x0

n
}

of the label field X of the OMRF,
based on R and xp;

(5) Set t = 0;

(6) Estimate the parameters ut and Σt of the likelihood function P
(

IRi

∣∣∣xt+1
i , ut, Σt

)
in

Equation (17), based on xt;

(7) For label xt+1 ∈ {1, 2, . . . , k} of each region Ri, calculate the clique potential Vw
(

xt+1
i , xt

j

)
in Equation (21) based on xt, and get the joint Gibbs distribution P(xt/

{
xt

i
}

, xt+1
i );

(8) Sequentially update each xt
i into x̂t+1

i using the MAP;

(9) Renew the label field xt+1 =
{

x̂t+1
i , x̂t+1

2 , . . . , x̂t+1
n

}
. If xt 6= xt+1, set t = t + 1 and go to

step 6, else output xt+1;
(10) Obtain the Rstart in Rextract based on xt+1 and the starting point x1, use the KF to track the

next position, and mark the tracked Rextract as USED;
(11) Repeat step 10 until all Rextract are marked;
(12) Fit marked Rextract using the least-squares method.

4. Experimental Results
4.1. Analysis of Parameters
4.1.1. Thresholds of Multi-Scale LSD

As described in Section 3.1.2, two parameters are used when building the Gaussian
Pyramid P: the threshold α is set as x times the normalized information entropy between the
0th image in group 0 and the 0th image in group 1 of P; and the thresholds ε0, ε1, . . . , εl are set
as y times the normalized information entropy between the 0th image of the corresponding
group and the 0th image of the 0th group of P. The specific values of x and y are determined
experimentally.

First, when the y value is not determined, y is temporarily set to 0.5. For the same
input image, the x values are set to 0.4, 0.6, and 0.8, respectively. The typical detection
results of a low IC image are shown in Figure 11a–f. Secondly, when the x value is not
determined, x is temporarily set to 0.4. For the same input image, the y values are set to
0.5, 0.7, and 0.9, respectively. The typical detection results of a high IC image are shown in
Figure 11g–l.

It can be seen that the multi-scale LSD combined with information entropy has more
advantages than the original LSD algorithm in filtering short and small background seg-
ments, and has a strong ability to detect continuous and long segments. The power lines
across the image are not easy to divide into multiple small segments, which can be used for
line detection before further image segmentation. In terms of the threshold, with increases
in x and y, the false detection of short line segments caused by land surface vegetation in
the image background gradually decreases: with larger values of x and y, the fewer the
number of images in the group corresponding to the input image, less detailed information
of the image is retained, and the noise information in the background is filtered. However,
if x and y are set too large, the power line segment will also be broken and discontinuous,
while if x and y are too small, a large number of small line segments due to other objects in
the background will appear, interfering with subsequent image segmentation. Through
experimental testing, we determined the optimal values of x and y as 0.6 and 0.7, respec-
tively. These thresholds give full play to the advantages of the Gaussian pyramid, not only
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ensuring that the power line segments will not be excessively split, but also filtering out a
large number of noisy line segments of background objects, making it suitable for images
with different IC.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 28 
 

 

y as 0.6 and 0.7, respectively. These thresholds give full play to the advantages of the 
Gaussian pyramid, not only ensuring that the power line segments will not be excessively 
split, but also filtering out a large number of noisy line segments of background objects, 
making it suitable for images with different IC. 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

Figure 11. Detection results with different thresholds in the multi-scale LSD. (a) Low IC image; (b) 
Gray image of (a); (c) LSD result of (a); (d) x = 0.4; (e) x = 0.6; (f) x = 0.8; (g) High IC image; (h) Gray 
image of (g); (i) LSD result of (g); (j) y = 0.5; (k) y = 0.7; (l) y = 0.9. 

4.1.2. Threshold β of OMRF 
Before discussing the threshold β, it is necessary to select appropriate indices to quan-

tify the performance of the segmentation algorithm. In this paper, pixel-level power line 
extraction is simplified into a binary classification problem. The class of power line pixels 

Figure 11. Detection results with different thresholds in the multi-scale LSD. (a) Low IC image;
(b) Gray image of (a); (c) LSD result of (a); (d) x = 0.4; (e) x = 0.6; (f) x = 0.8; (g) High IC image;
(h) Gray image of (g); (i) LSD result of (g); (j) y = 0.5; (k) y = 0.7; (l) y = 0.9.



Remote Sens. 2022, 14, 1367 17 of 28

4.1.2. Threshold β of OMRF

Before discussing the threshold β, it is necessary to select appropriate indices to
quantify the performance of the segmentation algorithm. In this paper, pixel-level power
line extraction is simplified into a binary classification problem. The class of power line
pixels is the power line, and other background pixels are classified as non-power lines.
Recall (Rec) and Precision (Prec) are used as evaluation indices, which are calculated as
follows:

Rec =
TP

TP + FN
(28)

Prec =
TP

TP + FP
(29)

where TP represents the number of pixels whose detection result and the ground truth are
both power lines, FP indicates the number of pixels detected as power lines but the ground
truth is a non-power line, and FN is the detected non-power line where the ground truth
is a power line. The higher the values of Rec and Prec, the more complete the extracted
power line pixels are.

In the OMRF model, the parameter β in Formula (21) is very important and needs to
be set manually. β is used to balance the influence between the likelihood function P (I|x)
and the joint distribution P (x). A large value of β will emphasize P (x), and results with
large uniform areas can be obtained; to the contrary, a small value of β will emphasize
P (I|x), and results with many details will be obtained. Therefore, too large or too small
β will lead to unsatisfactory results, and the β value is directly related to the size of the
image to be segmented [44]. In order to analyze the influence of different values of β on the
accuracy of power line segmentation, taking into account the size of images used in this
paper, β was set the range 1–60 to segment the images, respectively.

The segmentation performance under different values of β is shown in Figure 12, from
which it can be seen that when β = 20 and 60, the accuracy of power line segmentation is not
as good as when β = 40. The interference of artificial features on the segmentation of power
lines will be much greater than that for vegetation and bare land, and this phenomenon
is more obvious when β is too small. The variation of the accuracy of the segmentation
result is shown in Figure 13. When β increases, for different IC images, Rec and Prec have a
similar trend—they first increase and then decrease, and finally, both will fall to a stable
state. In the stage when Rec and Prec are increasing, P (I|x) and P (x) work together. At
this stage, the energy of P (I|x) and P (x) gradually increases, the segments which have
similar spectral and texture characteristics, a small distance from the power line, and a
small included angle are gradually divided into one class, which means that more pixels
are segmented into the true class. When β increases to a certain extent, the energy of P (I|x)
becomes larger, the power line segments with similar characteristics but a long distance
and large included angle may be divided into different classes, and the false and missed
segmentation begins to increase. Therefore, there is a stage of Rec and Prec decline. In
addition, the final stable accuracy for different IC images varies. This is due to the spectral
fluctuation being small in low IC images, and the energy of P (I|x) mainly composed of
spectral features is relatively small. In this state, when β increases, the energy of P (x)
will far exceed that of P (I|x). Therefore, in the later iteration process, there will be more
false detection and missed segmentation of images with low IC. In summary, we adopted
β = 40 for the subsequent experiments in this paper; this value can ensure the high-accuracy
extraction of power lines under different IC backgrounds.



Remote Sens. 2022, 14, 1367 18 of 28

Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 28 
 

 

is the power line, and other background pixels are classified as non-power lines. Recall 
(Rec) and Precision (Prec) are used as evaluation indices, which are calculated as follows: 

Rec =
TP

TP + FN
 (28) 

Prec =
TP

TP + FP
 (29) 

where TP represents the number of pixels whose detection result and the ground truth 
are both power lines, FP indicates the number of pixels detected as power lines but the 
ground truth is a non-power line, and FN is the detected non-power line where the ground 
truth is a power line. The higher the values of Rec and Prec, the more complete the ex-
tracted power line pixels are. 

In the OMRF model, the parameter β in Formula (21) is very important and needs to 
be set manually. β is used to balance the influence between the likelihood function P (I|x) 
and the joint distribution P (x). A large value of β will emphasize P (x), and results with 
large uniform areas can be obtained; to the contrary, a small value of β will emphasize P 
(I|x), and results with many details will be obtained. Therefore, too large or too small β 
will lead to unsatisfactory results, and the β value is directly related to the size of the image 
to be segmented [44]. In order to analyze the influence of different values of β on the ac-
curacy of power line segmentation, taking into account the size of images used in this 
paper, β was set the range 1–60 to segment the images, respectively. 

The segmentation performance under different values of β is shown in Figure 12, from 
which it can be seen that when β = 20 and 60, the accuracy of power line segmentation is not 
as good as when β = 40. The interference of artificial features on the segmentation of power 
lines will be much greater than that for vegetation and bare land, and this phenomenon is 
more obvious when β is too small. The variation of the accuracy of the segmentation result is 
shown in Figure 13. When β increases, for different IC images, Rec and Prec have a similar 
trend—they first increase and then decrease, and finally, both will fall to a stable state. In the 
stage when Rec and Prec are increasing, P (I|x) and P (x) work together. At this stage, the 
energy of P (I|x) and P (x) gradually increases, the segments which have similar spectral and 
texture characteristics, a small distance from the power line, and a small included angle are 
gradually divided into one class, which means that more pixels are segmented into the true 
class. When β increases to a certain extent, the energy of P (I|x) becomes larger, the power line 
segments with similar characteristics but a long distance and large included angle may be di-
vided into different classes, and the false and missed segmentation begins to increase. There-
fore, there is a stage of Rec and Prec decline. In addition, the final stable accuracy for different 
IC images varies. This is due to the spectral fluctuation being small in low IC images, and the 
energy of P (I|x) mainly composed of spectral features is relatively small. In this state, when β 
increases, the energy of P (x) will far exceed that of P (I|x). Therefore, in the later iteration 
process, there will be more false detection and missed segmentation of images with low IC. In 
summary, we adopted β = 40 for the subsequent experiments in this paper; this value can en-
sure the high-accuracy extraction of power lines under different IC backgrounds. 

   
(a) (b) (c) 

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 28 
 

 

   
(d) (e) (f) 

Figure 12. Segmentation results of the OMRF model with different values of β. Blue pixels are power 
lines and yellow pixels are non-power lines; (a–c) are results for Figure 11a when β = 20, 40, and 60, re-
spectively; (d–f) are the results for Figure 11f when β = 20, 40, and 60, respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Experiments of the OMRF model with different values of β. (a) Rec of Figure 11a with 
different β; (b) Prec of Figure 11a with different β; (c) Rec of Figure 11f with different β; (d) Prec of 
Figure 11f with different β. 

4.2. Comparison of Different Methods 
4.2.1. Results for Different IC Images 

In this section, we discuss the power line extraction accuracy through KF tracking 
and fitting after multi-scale LSD detection and WRAG-OMRF segmentation and compare 
the results obtained by the proposed method with those of several common UAV image 
power line extraction methods. The selected comparison methods include: (1) the detec-
tion method based on the improved Hough transform (IHT) proposed by Li et al. [9], 
which uses knowledge-based line clustering to refine the detection results in the Hough 
space; (2) the cluster Radon transform (CRT) detection method proposed by Chen et al. 
[18], which uses the cluster index to enhance the anti-noise ability of the Radon transform; 
(3) the power line extraction method based on optimized LSD (OLSD) proposed by Ju et 
al. [45], which detects the object directly through the straight-line features of the power 

Figure 12. Segmentation results of the OMRF model with different values of β. Blue pixels are power
lines and yellow pixels are non-power lines; (a–c) are results for Figure 11a when β = 20, 40, and 60,
respectively; (d–f) are the results for Figure 11f when β = 20, 40, and 60, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 18 of 28 
 

 

   
(d) (e) (f) 

Figure 12. Segmentation results of the OMRF model with different values of β. Blue pixels are power 
lines and yellow pixels are non-power lines; (a–c) are results for Figure 11a when β = 20, 40, and 60, re-
spectively; (d–f) are the results for Figure 11f when β = 20, 40, and 60, respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 13. Experiments of the OMRF model with different values of β. (a) Rec of Figure 11a with 
different β; (b) Prec of Figure 11a with different β; (c) Rec of Figure 11f with different β; (d) Prec of 
Figure 11f with different β. 

4.2. Comparison of Different Methods 
4.2.1. Results for Different IC Images 

In this section, we discuss the power line extraction accuracy through KF tracking 
and fitting after multi-scale LSD detection and WRAG-OMRF segmentation and compare 
the results obtained by the proposed method with those of several common UAV image 
power line extraction methods. The selected comparison methods include: (1) the detec-
tion method based on the improved Hough transform (IHT) proposed by Li et al. [9], 
which uses knowledge-based line clustering to refine the detection results in the Hough 
space; (2) the cluster Radon transform (CRT) detection method proposed by Chen et al. 
[18], which uses the cluster index to enhance the anti-noise ability of the Radon transform; 
(3) the power line extraction method based on optimized LSD (OLSD) proposed by Ju et 
al. [45], which detects the object directly through the straight-line features of the power 

Figure 13. Experiments of the OMRF model with different values of β. (a) Rec of Figure 11a with
different β; (b) Prec of Figure 11a with different β; (c) Rec of Figure 11f with different β; (d) Prec of
Figure 11f with different β.



Remote Sens. 2022, 14, 1367 19 of 28

4.2. Comparison of Different Methods
4.2.1. Results for Different IC Images

In this section, we discuss the power line extraction accuracy through KF tracking
and fitting after multi-scale LSD detection and WRAG-OMRF segmentation and compare
the results obtained by the proposed method with those of several common UAV image
power line extraction methods. The selected comparison methods include: (1) the detection
method based on the improved Hough transform (IHT) proposed by Li et al. [9], which
uses knowledge-based line clustering to refine the detection results in the Hough space;
(2) the cluster Radon transform (CRT) detection method proposed by Chen et al. [18], which
uses the cluster index to enhance the anti-noise ability of the Radon transform; (3) the
power line extraction method based on optimized LSD (OLSD) proposed by Ju et al. [45],
which detects the object directly through the straight-line features of the power line; and
(4) the original LSD and the original MRF (LSD-MRF) combined to form a simple detection
method based on line detection and image segmentation.

The extraction results for each method are shown in Figures 14–16. The results for the
methods based on Hough and Radon were similar. The basic principle of these methods is
to project the image space to a parameter space, and then select the peak points for straight-
line fitting. Overall, IHT and CRT showed a good anti-interference effect on natural features
such as water and vegetation. The short-edge features formed by these natural features
will not be considered in the selection of peak points, such that the associated noise can
be easily filtered. Note that IHT shows obvious fracturing of the power line with unclear
edge features (Figure 14(a2)), while the straight lines fitted by CRT always run through
the whole image (Figure 15(a3)), which do not form fractures due to the weakening of
edge features and can effectively avoid the influence of highlighted roads. However, due
to the difficulty of selecting the peak points of CRT, and judging and choosing the pixel
characteristics on both sides of the power line, some chaotic false detection lines were
generated (Figure 16(a3)). As it only considers straight-line features, OLSD cannot obtain
good results. This method judges the background features as a large number of short
straight lines (in particular, the leaves of vegetation have a great impact on them; see
Figure 15(b4)), there are obvious misdetection results over roads with unclear straight-line
features (Figure 15(a4)), and the anti-interference ability for artificial buildings is also weak;
as such, it is only suitable for detecting power lines in images with a single background.
After the line detection step, the classification is carried out using LSD-MRF, which can
effectively filter out the background features, but there are also obvious fractures in the
images with weak power line features (e.g., dense vegetation and highlighted roads; see
Figure 15(a5,b5). The method proposed in this paper obtained satisfactory results, the
extracted power lines were complete and accurate, and most kinds of ground objects in
complex backgrounds could be effectively filtered; however, in some areas where the power
line characteristics are not obvious and the intensity of background object characteristics is
particularly large, false and missed detections may occur.

The Rec and Prec values (Formulas (28) and (29)) were also used to compare the
performance of the different methods; however, as some detection algorithms do not obtain
power line pixel information, and the extraction results were only a fitted straight line, it
was impossible to compare the accuracy by counting pixels. Therefore, the meaning of
the variables in these formulas needed to be changed. Here, TP indicates that both the
detection result and ground truth are the number of power lines, FN indicates that the
background objects are misclassified into the detection results, and FP indicates that the
detection result is the number of power lines but the ground truth is non-power lines. If
the distance between the detected center point on the power line and the nearest point to
the ground truth is less than 5 pixels and the angular deviation from the ground truth is
less than or equal to 5◦, it is considered that one power line has been successfully detected.
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truth; (a2,b2) are the results of the IHT method; (a3,b3) are the results of the CRT method; (a4,b4) are
the results of the OLSD method; (a5,b5) are the results of the LSD-OMRF method; and (a6,b6) are the
final fitting results of the method proposed in this paper.
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Figure 15. Extraction results for medium IC images: (a,b) are the original images; (a1,b1) are the
ground truth; (a2,b2) are the results of the IHT method; (a3,b3) are the results of the CRT method;
(a4,b4) are the results of the OLSD method; (a5,b5) are the results of the LSD-OMRF method; and
(a6,b6) are the final fitting results of the method proposed in this paper.
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A total of 30 images were selected from low, medium, and high IC images in the data
set for testing. The extraction accuracy values of the different methods for every test image
are shown in Figure 17, and the average extraction accuracy for these images was also
calculated (see Table 2). Overall, each method had relatively strong detection ability for
low IC images, low accuracy for high IC images, and the influence of image background
complexity on power line extraction was very obvious. The detection accuracy of IHT



Remote Sens. 2022, 14, 1367 23 of 28

was close to that of CRT, and it had an acceptable extraction effect for images with simple
backgrounds. The Prec of OLSD was low, the stability of this algorithm was not high, and
there was no obvious correlation with the complexity of the background. The accuracy
mainly depended on whether there were other objects with linear features in the image. The
method used in this paper had high accuracy, with Rec up to 0.98 and Prec up to 0.97. The
algorithm based on multi-scale LSD and OMRF with WRAG showed good performance
for different IC images, and the stability of this method was strong.
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Table 2. The mean Rec and Prec of test images.

IHT CRT OLSD LSD-MRF This Paper

Low IC
images

Mean Rec 0.536 0.607 0.671 0.759 0.914
Mean Prec 0.634 0.720 0.369 0.667 0.923

Medium
IC images

Mean Rec 0.413 0.423 0.620 0.679 0.876
Mean Prec 0.456 0.569 0.267 0.581 0.878

High IC
images

Mean Rec 0.328 0.355 0.566 0.699 0.853
Mean Prec 0.330 0.448 0.213 0.511 0.839

All test
images

Mean Rec 0.426 0.462 0.619 0.712 0.881
Mean Prec 0.473 0.579 0.283 0.586 0.880

4.2.2. Results of Images Including the Power Tower

In the power system corridor, there is always a symbiosis between the power line and
the power tower. The power tower plays an important role in supporting and changing the
direction of the power line. Therefore, the application of power line extraction methods in
images including the power tower needs to be discussed separately. This section focuses
on the comparison between the CRT algorithm and the method proposed in this paper.
As shown in Figure 18, it can be seen that the addition of the power tower brings great
challenges to the power line extraction task. The angle and direction of many parts of the
power tower (e.g., the insulating ring) are consistent with that of a power line, and there are
similar spectral and texture features of the power line in some tower areas. It is impossible
to make an accurate manual judgment for some details, and boundary determination
for the complete power line is fuzzy. The method based on the Radon transform fits the
straight line by obtaining the peak points in the Radon field, where the straight line always
runs through the whole image. Therefore, when the power tower changes the power
line direction, the algorithm completely fails, cannot effectively display the difference in
power line direction, and obtains a large number of false detection lines; however, the
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characteristics of the power tower itself have little impact on the CRT extraction results.
The method used in this paper can resist the interference of the power tower, to a certain
extent. Due to the manner of tracking pixels first and then fitting, the untraceable pixels do
not participate in fitting, such that the straight-line objects can be segmented, which can
accurately extract the power line and retain the power line direction difference at the same
time; however, this method uses the pixel characteristics and object relationship of power
lines, and false detection occurs in some areas with similar power line characteristics on
the power tower.
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5. Discussion

(1) The LSD algorithm is an efficient line detection method that can quickly obtain the
line segments in an image. However, as the algorithm only judges whether there are
other points with a similar gradient angle through the eight areas connected to one
pixel, it is easy to produce discontinuous line segments, making it especially sensitive
to noise, such as that associated with vegetation, and will produce a large number of
short interference results. The multi-scale LSD algorithm used in this paper, combined
with the information entropy theory and adaptive Gaussian pyramid, can effectively
avoid the disadvantages of LSD and greatly improve the detection ability of LSD for
continuous long lines. From the results, a large amount of vegetation information
in the image background is filtered, the interruption of the detected straight lines is
greatly reduced, and the complete extraction of long straight lines can be basically
realized. Multi-scale LSD is more suitable as a line detection algorithm before power
line pixel semantic segmentation and can reduce a lot of background noise to enhance
subsequent operations.

(2) MRF is a common machine learning algorithm in the field of image segmentation.
Its main characteristic is the use of an undirected graph to represent the correlation
between variables. It provides a simple way to visualize the structure of a probability
model. In this paper, a GMM was used to define the likelihood function of the feature
field, and the joint distribution of the label field was defined in combination with the
idea of WRAG. This can effectively take into account the pixel information of the object
on the image and the relationship information between objects, and form an effective
OMRF model for power line pixel segmentation. The model has a strong information
mining ability and can accurately segment power line and non-power line pixels,
reduce the false lines (e.g., tree leaves and trunks) left by the line detection algorithm,
and has good anti-noise ability for some objects with characteristics similar to power
lines, such as the edges of artificial buildings. Compared with the method based
on Hough and Radon, this method uses richer context information, rather than just
edge information, and has a higher improvement in detection accuracy, especially for
high IC images. Moreover, this method can obtain power lines in different directions,
rather than the results always running through the image, which can be effectively
used for extraction work with power towers and direction changes. Compared to the
method using a single line detection algorithm, it avoids utilizing only the gradient
changes on both sides of the power lines, reduces the influence of false lines from
background objects, and improves the application ability of the algorithm in different
scenes. This method can provide support for power line inspection work using UAV
images with complex backgrounds.

(3) The methods used in this paper also have shortcomings, including the following: With
the deepening of the construction of the image feature and object relationship models,
the complexity of the algorithm becomes higher and this kind of machine learning
model requires a higher number of iterations, thus greatly reducing the efficiency of
the algorithm, increasing the time cost of power line detection, and imposing higher
computer hardware requirements. Therefore, it is not suitable for the fast or real-
time detection of power lines. The statistical time cost results for different methods
are shown in Table 3. Moreover, this algorithm lacks automation ability as a whole.
Design parameters are required for multi-scale LSD and OMRF, and it is difficult or
impossible to provide a suitable parameter value for various scenes, which means
that the model may obtain unstable results when considering image data obtained in
different situations. Subsequent research may consider designing the parameters to be
adaptive, in order to deal with power line images with various complex environments.
With the data accumulation and the further construction of data sets, deep learning
and other AI methods will be applied for power line extraction from images, and the
application and accuracy of extraction will be further improved by carrying out image
fusion with other data, such as LiDAR point clouds.
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Table 3. Mean time cost on test images.

IHT CRT OLSD LSD-MRF This Paper

Mean cost time
(S)

Low IC images 1.16 4.14 5.79 10.59 14.35
Medium IC images 2.45 5.56 7.82 12.78 17.34

High IC images 1.87 4.31 8.52 13.64 19.49
All test images 1.83 4.67 7.38 12.34 17.06

6. Conclusions

In this paper, a power line image data set was constructed using UAV images (with a
total of 409 images) and the images were classified according to the background clutter. The
data set contains power line objects with different specifications, rich background features,
and diverse complexity, thus providing a reliable data basis for power line extraction
algorithm research. In terms of methodology, the extraction of power lines was transformed
into an image semantic segmentation task. A combination of multi-scale LSD based on
adaptive Gaussian pyramid and OMRF with WRAG was used to obtain power line pixels.
Finally, KF and the least-squares methods were used to track and fit power lines. The
advantages of this method lie in two aspects: First, multi-scale LSD uses the multi-level
information of the image to reduce the generation of background false line segments and is
sensitive to long and continuous lines. The generated power line candidate regions can
reduce the amount of noise, enhancing the subsequent segmentation. Secondly, OMRF
uses segment distance and angle information to capture the complex interactions between
segments by constructing WRAG. In order to simulate the interaction between line segments
and obtain the characteristics of power lines, this information is further introduced into the
joint distribution of the label field and the likelihood function of the feature field. OMRF
with WRAG describes the interactions between objects through line information, which
provides an optimized OMRF model for power line pixel segmentation. The experimental
results for the test power lines from the proposed data set verified the effectiveness of this
method. Compared with other power line extraction methods, the highest Prec value of
this algorithm was 0.97, and the average Prec value for images with different IC was 0.88.
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