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Abstract: The monitoring of land cover and land use patterns is pivotal in the joint effort to fight defor-
estation in the Amazon and study its relation to climate change effects with respect to anthropogenic
activities. Most of the region, typically monitored with optical sensors, is hidden by a persistent
cloud cover for most of the wet season. The necessity for a consistent and reliable deforestation
warning system based on cloud-independent radar data is therefore of particular interest. In this
paper, we investigated the potential of combining deep learning with Sentinel-1 (S-1) Interferometric
Synthetic Aperture Radar (InSAR) short time series (STS), covering only 24 d of acquisitions, to map
endangered areas in the Amazon Basin. To this end, we implemented a U-Net-like convolutional
neural network (CNN) for multi-layer semantic segmentation, trained from scratch with different
sets of input features to evaluate the viability of the proposed approach for different operating
conditions. As input features, we relied on both multi-temporal backscatter and interferometric
coherences at different temporal baselines. We provide a detailed performance benchmark of the
different configurations, also considering the current state-of-the-art approaches based on S-1 STS
and shallow learners. Our findings showed that, by exploiting the powerful learning capabilities
of CNNs, we outperformed the STS-based approaches published in the literature and significantly
reduced the computational load. Indeed, when considering the entire stack of Sentinel-1 data ata 6 d
revisit time, we were able to maintain the overall accuracy and F;-score well above 90% and reduce
the computational time by more than 50% with respect to state-of-the-art approaches, by avoiding
the generation of handcrafted feature maps. Moreover, we achieved satisfactory results even when
only S-1 InSAR acquisitions with a revisit time of 12 d or more were used, setting the groundwork for
an effective and fast monitoring of tropical forests at a global scale.

Keywords: Synthetic Aperture Radar; Sentinel-1; forest mapping; deforestation monitoring; deep

learning; convolutional neural networks

1. Introduction

Forests host most of Earth'’s terrestrial biodiversity and play a vital role in regulating
the water cycle and atmospheric gas emissions [1]. Thus, monitoring these ecosystems
and understanding the impact of land cover changes on their balance are crucial in the
context of climate change mitigation. For instance, deforestation and forest degradation
are primary sources of greenhouse gas emissions since trees are able to store carbon
throughout their lives by building biomass [2]. The effects of clear-cutting extend even
further, by accelerating erosion and desertification processes, amplifying flood events,
and altering the natural dynamics of the surroundings. Notably, tropical rainforests, which
are home to nearly half of the world’s species, suffered the largest net reduction in tree
cover over the last few decades [3]. In particular, the Brazilian Amazon Forest stands out as
a major concern to the ecological community due to land use and cover changes around the
worldwide largest river basin, which dictates climate patterns not only regionally, but also at
a global scale [4]. Therefore, the monitoring of both natural phenomena and anthropogenic
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activities in the Amazon is of utmost importance to enforce current preservation policies
and stress the necessity for new climate change mitigation actions.

In this scenario, spaceborne remote sensing arises as a powerful observational tool,
being able to provide medium- and high-resolution imagery at a large scale. There are
currently several satellite-based operational monitoring systems designed for the Ama-
zon region, such as PRODES [5], which delivers deforestation maps on a yearly basis,
and DETER [6], which aims at providing fast deforestation alerts. Additionally, the Terra-
Class project [7] quantifies legal deforestation on the basis of PRODES data and additional
on-demand datasets. These systems rely on visual interpretation of optical images and
provide deforestation information for environmental research and policy-making [8]. How-
ever, the mean annual cloud cover over the Brazilian Amazon Rainforest is approximately
74% [9], which severely affects imaging through optical sensors and is a limiting factor for
achieving a reliable, all-year-round monitoring system, especially during the wet season.

Different from optical imaging platforms, Synthetic Aperture Radar (SAR) systems
are active microwave sensors able to operate independently of daylight and under ad-
verse weather conditions. These peculiarities make them a suitable candidate for the
challenging task of assessing land use and cover changes in the Amazon Rainforest. Indeed,
the potential of SAR data for large-scale forest mapping has been investigated under a few
different scenarios over the last few years. Since the visual inspection of radar images to
such an extent might be significantly time consuming and prone to human error, state-of-
the-art SAR-based approaches typically rely on the definition of adaptive thresholds for
automatically segmenting images using backscatter as the input feature. In [10], a global
forest/non-forest mosaic was generated from L-band ALOS PALSAR data by thresholding
backscatter intensity values in HV polarization. Moreover, several approaches for generat-
ing accurate forest maps have been recently developed at a regional scale. In [11], a forest
disturbance alert system was proposed for monitoring the Congo Basin with Sentinel-1
(S-1) data [12]. The disturbances were detected by assigning VV- and VH-polarized SAR
backscatter into a pixelwise probability of forest occurrence based on Gaussian mixture
models. Machine learning techniques are yet another trend for identifying and monitoring
forest areas. For example, a global forest map was produced from TanDEM-X Interferomet-
ric SAR (InSAR) data [13] by exploiting the interferometric coherence and, in particular,
its estimated volume correlation factor, as a discriminating feature for a supervised ma-
chine learning classification approach based on fuzzy clustering [14]. Regarding the use
of multi-temporal SAR images, the study in [15] made use of random forests, AdaBoost,
and Multilayer Perceptron Artificial Neural Network (MLP-ANN) algorithms to monitor
selective logging in the Amazon with an X-band CosmoSkyMed dataset [16]. The most
recent advances in Artificial Intelligence (AI) solutions for pattern recognition have the
potential to optimize data extraction and interpretation beyond any manual feature crafting.
In particular, Deep Learning (DL) is an Al field devoted to learning complex functions in
high-dimensional data with the minimum computational effort possible [17]. In the last few
years, deep Convolutional Neural Networks (CNNs) have led to a series of breakthroughs
in image classification problems and have become an important tool to perform tasks such
as image recognition and semantic segmentation in the field of remote sensing as well.
For example, regarding the task of forest mapping, TanDEM-X InSAR data were used to
generate a forest map over the state of Pennsylvania, USA [18]. The classification was per-
formed by considering different state-of-the-art deep learning approaches based on CNNs.
In their work, a U-Net architecture [19] was found to outperform other state-of-the-art
networks such as DenseNet [20] and ResNet [21].

In this context, the Sentinel-1 mission, which comprises a constellation of two polar-
orbiting satellites (Sentinel-1A and Sentinel-1B) with C-band SAR imaging capabilities [12],
provides a consistent and openly available database that has been constantly gaining at-
tention in biosphere-related applications, among which is land cover classification. Its
Interferometric Wide Swath (IW) mode allows for achieving a large swath width with
a moderate geometric resolution, using the Terrain Observation with Progressive Scans
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(TOPS) technique [22]. With a 12 d repeat cycle (down to 6 d with both satellites operating
over some selected regions), the potential of using Sentinel-1 interferometric time series
for the systematic monitoring of forests is manifold. Besides the consistent and reliable
surveillance capability of a wide area under illumination, the joint exploitation of backscat-
ter and the evolution in time of the interferometric coherence have built up a valuable set
of input features for discriminating vegetated areas. Such an approach was originally intro-
duced for land cover mapping over central Europe in [23], where the multi-temporal SAR
backscatter was combined with a mathematical modeling of the temporal decorrelation
in InSAR stacks with a 6 d revisit time, allowing for the derivation of a set of features in
input to a random forests classification algorithm. This concept was recently extended to
the mapping of the Amazon Rainforest in [24]. In this case, a series of additional texture
features were computed from the mean multi-temporal backscatter through the sum and
difference histograms method [25]. The proposed approach was able to better capture the
spatial dependency among neighboring pixels at the expense of an increased computational
load and processing time.

In this paper, we investigated the potential of CNNs for mapping and monitoring
forests with Sentinel-1 interferometric Short Time Series (STS). The term “short time series”
was chosen to highlight the limited time span required for the acquisition of the multi-
temporal image stack. Since we considered time series of data acquired within a single
month, this represents a significantly shorter time span with respect to the most common
multi-temporal InSAR applications, which typically require much longer acquisition time
intervals (e.g., persistent scatterers, requiring at least several months [26], or dense time
series of at least one year for land cover classification and crop-type mapping purposes [27]).
By exploiting the recent advances in deep learning, our goal was to reduce the processing
load, which jeopardizes the techniques proposed in [23,24] for a frequent, large-scale
application scenario, by avoiding both manually crafted features, as well as the modeling of
the temporal decorrelation from repeat-pass INSAR acquisitions. Moreover, we also aimed
to generate a model that does not necessarily require the availability of Sentinel-1 InSAR
stacks with temporal baselines of six days. This condition was necessary for performing a
reliable fitting of the temporal decorrelation in both previously mentioned works. In this
way, it will be possible to extend the proposed methodology at a global scale, where
only temporal baselines of 12 d might be available. To this end, we propose a network
architecture based on the U-Net [19], a state-of-the-art semantic segmentation approach
that combines a deep data-driven feature extraction with a precise retrieval of spatial
information. We trained the network from scratch to avoid any type of transfer learning.
For both the training and test sets, we selected a region of interest located in the Amazon
Rainforest over Ronddnia State, Brazil, in an area that historically suffers from extensive
landscape changes [28]. The experimental results were validated with an independent
thematic map and confirmed the potential of the proposed convolutional neural network
for large-scale monitoring of the Amazon Rainforest, requiring less pre-processing and
achieving a higher agreement with the external reference when compared to the other
works in the literature. Moreover, the proposed framework will allow us to improve the
current state-of-the-art of forest monitoring by radically decreasing the required observation
time for the generation of large-scale deforestation products. For example, we will be able
to generate forest maps over the entire Amazon Rainforest monthly and track down fast
changes, while currently, most operational products are updated on a yearly basis.

The paper is organized as follows. Section 2 describes the considered test area, the uti-
lized Sentinel-1 InSAR dataset, as well as the background concepts on the baseline process-
ing of short time series. Section 3 introduces the architecture and training strategy of the
proposed U-Net-like convolutional neural network, as well as the considered performance
evaluation metrics and the experimental setup. The results are then presented in Section 4.
In Section 5, the network’s performance and perspectives in the context of land cover
classification are discussed in more detail. Finally, the overall remarks and contributions of
this work are summarized in Section 6.
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2. Materials and Background Concepts

In the present paper, we considered a large area within the Amazon Rainforest as
our test site. This region covers most of Rondénia State, Brazil, and extends to parts of
neighboring Brazilian states and Northern Bolivia. As presented in Figure 1, the selected
areas comprise approximately 238,000 km? and are of particular interest in the context of
environmental monitoring due to their high deforestation rates and human-made landscape
changes over the years. However, most of the current satellite-based forest monitoring
systems generate maps on a yearly basis, which is insufficient for planning and enforcing
effective preservation policies. Thus, our database was generated such that we were able
to produce monthly reports and regularly map rainforest areas threatened by landscape
changes and degradation.
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Figure 1. Study sites in the Amazon Forest comprising the Brazilian states of Rondénia, Amazonas,
and Mato Grosso, as well as smaller regions in Bolivia. In total, 12 swaths were considered for
mapping the Amazon Rainforest by processing S-1 interferometric STS, divided according to relative
orbits 010, 054, 083, and 156. The considered footprints are superimposed on an aerial scene from
Google Earth.

2.1. Sentinel-1 Multi-Temporal Dataset

Sentinel-1 (S-1) interferometric STS are a recent trend for efficiently mapping regions
of interest within a short temporal span. Following the works in [23,24], we processed
12 STS stacks, whose footprints are shown in Figure 1. Each stack refers to areas of up to
40,000 km? on the ground with a predominance of forests, even though the landscape also
contains grassy plains, croplands, some Amazon River branches, wetlands, and urban areas.

The selected swaths were divided according to their relative orbit planes, and some
imaging gaps appeared between swaths that shared the same orbit, as shown in Figure 1.
This is caused by a misalighment in azimuth between Sentinel-1A and -1B acquisitions and
the strict coregistration requirements for TOPS data [24]. Additional S-1 interferometric
acquisition parameters are summarized in Table 1.
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Table 1. Sentinel-1 platform and interferometric acquisition parameters.

Parameter Value
Satellite platform Sentinel-1A, Sentinel-1B
Orbital node Descending

Interferometric Wide Swath (IW)
Center frequency 5.405 GHz, C-band
Data product Single-Look Complex (SLC) images
Revisit time 6d

Acquisition mode

The S-1 multi-temporal data stacks considered in this paper were acquired with the full
constellation of Sentinel-1A and Sentinel-1B satellites, i.e., with a 6 d revisit cycle. In total,
five acquisitions were considered per time series stack, resulting in an observation period
of 24 d for each relative orbit. Each stack was coregistered with respect to a master image,
designated as the one associated with the central acquisition date. Table 2 summarizes the
acquisition dates and geolocations of all 12 S-1 STS stacks considered in this paper.

Table 2. Description of the 12 Time Series (TS) stacks, their relative orbits, acquisition dates, and corner
coordinates of the swaths.

Center Coordinates

Stack[opiyy Observation Period Master Date - -
Latitude Longitude
TS1p10 8°43/22.08” S 60°48'27.36" W
TS2010 10°14/31.02" S 61°09'11.52" W
TS3410 25.04.19-19.05.19 07.05.19 11°44/'92 56" S 61°30'21.06" W
TS4¢10 13°12/30.24" S 61°51/05.76" W
TS1ps4 28.04.19-22.05.19 10.05.19 9°08'25.44" S 67°04'17.76" W
TS1os3 7°51'05.76"" S 62°39'54.72" W
TS20s3 9°25/42.24"” S 63°01'30.72" W
TS 24.04.19-18.05.19 06.0519 [ iocviioogi s 6302240.08" W
TS4083 12°28'26.04” S 63°43/50.88"” W
TS1456 8°43/22.08” S 64°55'07.68" W
TS2156 29.04.19-23.05.19 11.05.19 9°33/28.08” S 65°06'21.06" W
TS3156 10°09'46.08"” S 65°14/55.09” W

2.2. Sentinel-1 Data Preparation

The temporal processing of our interferometric STS followed the workflow originally
introduced in [23] and further developed in [24], as illustrated in Figure 2. Firstly, each
stack of focused S-1 acquisitions was coregistered with respect to a master image, whose
acquisition date is presented in Table 2. Up to this step, the processing was performed
in the Interactive Data Language (IDL). Afterwards, the workflow was implemented in
Python and divided into two branches: Single-Look Complex (SLC) SAR and InSAR
processing. The implemented steps were included within the TAXI experimental INSAR
processor, available at the DLR Microwaves and Radar Institute [29,30]. Regarding the
first branch, it comprises the computation of the multi-temporal SAR backscatter image
’yoavg by performing the temporal average of the gamma nought coefficient 7%; from
all ith acquisitions and a spatial multi-looking, while, regarding the second branch, we
estimated the interferometric coherences p for every possible image pair combination
at a given temporal baseline. Both backscatter multi-looking processing and coherence
estimation were performed by applying a 5 px X 19 px moving average filter (in the
azimuth X range dimension). This allowed for achieving an almost square resolution cell of
70 m x 70.3 m, since the original single-look complex Sentinel-1 products are characterized
by an independent pixel spacing of about 14 m x 3.7 m in azimuth and ground range,
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respectively. Multiple coherences, characterized by the same temporal baseline, were
averaged together in order to increase the robustness of the estimation. One should note
that, in order to perform multi-temporal averaging of both backscatter and coherence, we
assumed the stationarity of the illuminated scene. This is a reasonable assumption, given
the limited observation time span of an STS. After geocoding, the images were posted to
the final resolution of 50 m x 50 m to achieve a dataset that was comparable to the current
state-of-the-art work from [24].

S-1 Acquisitions

Coregistration

SAR Processing | InSAR Processing

!

Backscatter Estimaton
[Y”i]

l Multi-Looking
Multi-Temporal
Averaging [v°,,

| Coherence Estimation

! ’ el

Multi-Looking : Texture Estimation :

- 4

! !

Geocoding
: Exponential Model :
| Fitting [Tr pL’II |
Classification

|

Forest Map

Figure 2. Short time series processing chain as developed in [24]. Our goal was to reduce the
processing time required for classifying S-1 InNSAR images by skipping the texture estimation and
exponential model fitting steps (highlighted using dashed lines). To this end, we propose a CNN for
automatically learning relevant features.

The magnitude values of the complex coherence tend to be degraded by temporal
changes occurring between repeat-pass INSAR acquisitions. This source of noise is called
temporal decorrelation (0temp), and it can be estimated from the coherence by compensating
for the decorrelation component caused by the limited signal-to-noise ratio, as done in [23].
Ptemp can then be properly modeled as a time-dependent exponential decay, as presented
in [23]:

Premp (1) = (1 — PLT)e_(%)2 +pLr- 1)

Here, the so-called temporal decorrelation constant T and long-term coherence prr
were estimated and used as additional input features for a random forest classification
algorithm. In [24], a similar approach for mapping the rainforest was proposed, increasing
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the feature space even further by computing texture statistics from the backscatter with
the sum and difference histograms technique [25]. The method aimed at providing spatial
information to an otherwise pixel-based algorithm, i.e., random forest, which improved the
classification accuracy at the expense of an increased computational effort.

We now propose to skip the exponential model fitting and the texture estimation steps
from the baseline processing chain shown in Figure 2 to reduce the computational burden.
Instead, we aimed to rely on stacks of multi-temporal backscatter and interferometric
coherences at different temporal baselines to generate a set of meaningful input features for
a CNN classifier. With this approach, we expect not only to reduce the processing load, but
also to improve the classifier’s learning capabilities beyond any manual feature crafting.
Finally, to ensure meaningful training and validation, we prepared a robust database with
significant diversity, derived by utilizing a reliable external reference with full coverage of
the study sites over the Amazon Rainforest.

2.3. From-GLC Thematic Maps and Reference Database Generation

As an independent external reference for training and validating our classification
approach, we considered the 2017 Finer Resolution Observation and Monitoring of Global
Land Cover (FROM-GLC) 10 m thematic map [31]. This global map was originally gen-
erated at 30 m resolution from 2015 acquisitions by utilizing Landsat Thematic Mapper
(TM) and Enhanced Thematic Mapper Plus (ETM+) data. The FROM-GLC map was then
updated to 2017 at 10 m resolution by transferring the training from 2015 to 2017 Sentinel-2
images with a random forest classifier. The result was a stable classification, as less than
1% overall accuracy was lost even when less than 40% of the same training set was used.
Finally, in order to match the desired output resolution of 50 m x 50 m, we performed a
nearest-neighbor interpolation.

The 2017 FROM-GLC thematic map comprises a total of 10 land cover classes, namely
Cropland, Forest, Grass, Shrub, Wetland, Water, Tundra, Impervious, Bareland, and Snow /Ice.
Since Tundra and Snow /Ice are not present in the region of the Amazon Basin, eight FROM-
GLC classes are represented within the swaths shown in Figure 1 and Table 2, as illustrated in
Figure 3. In this scenario, the number of samples for each category is extremely imbalanced
towards vegetated areas. For instance, a difference of up to four orders of magnitude can
be observed when comparing the dominant Forest class with the minority one, i.e., the
Bareland class.

107 4

10° 4

N? of Samples

104 4

F

H
o
:
‘

Grass -

Cropland 4

Wetland -
Water
Impervious
Bareland

Figure 3. Available number of samples, i.e., pixels, within the 12 interferometric short time series
stacks defined in Table 2 for every class considered in the FROM-GLC thematic maps. The class
imbalance is a challenge for training and validating neural networks, as a prediction bias favors the
detection of dominant classes.

Classification of imbalanced datasets is highly challenging when training neural
networks such as CNNs due to an undesired bias towards the dominant classes, i.e., since
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the training focuses on improving the classification accuracy, the prediction of classes with
more samples tends to be more rewarding. Moreover, balancing a database for patch-
based approaches such as the U-Net might be particularly difficult since an image patch
containing minority classes will likely have samples from the dominant classes as well.
In order to achieve a meaningful and robust training dataset, we decided to group the
FROM-GLC classes Cropland, Grass, Shrub, Wetland, Impervious, and Bareland into a
single higher-level one, the Non-Forested Region (NFR) class. In this way, we could still
achieve our goal of monitoring the resources of greatest environmental interest within
the Amazon Basin (Forest and Water classes). The original eight FROM-GLC classes and
the adapted three higher-level ones considered in this paper are shown in Figure 4 for a
cropped area within the swath from TS41.

Cropland Forest Grass Shrub Wetland Water Impervious  Bareland

Non-Forested Region (NFR) Forest Water

(b)

Figure 4. Cropped region from the TS4¢;g swath, displaying (a) the highly imbalanced original eight
FROM-GLC classes and (b) the three higher-level classes considered in this paper: Non-Forested
Region (NFR), Forest, and Water.

After the simplification of the FROM-GLC classes, an additional balancing course of
action was performed to bring the three classes to the same order of magnitude through
data augmentation. First, the NFR and Forest classes were undersampled by randomly
removing patches where the Water class was absent. Then, data augmentation techniques
were used to increase the number and diversity of the underrepresented Water class.
The proposed patch-based augmentation included both horizontal and vertical flipping,
as well as rotations with mirrored padding on the borders [17]. These techniques were
chosen to maintain the pixelwise spatial relationship between labels and the input data—
which could be affected by transformations that involve pixel interpolation. It should also
be noted that, even after this processing, the database was not perfectly balanced since the
oversampling of the minority class would likely have a similar effect on the dominant ones,
as can be seen in Figure 5.
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Figure 5. Original number of samples for each of the three high-level classes of interest (left) and
data availability after balancing (right). We artificially augmented Water patches and undersampled
the ones dominated by the NFR and Forest classes.

3. Methodology

In this section, we investigate the potential of CNNs for forest mapping by exploiting
the evolution in time of S-1 interferometric STS. The objective was to exploit the powerful
learning capabilities of a CNN to address some of the challenges that revolve around
land cover classification with multi-temporal radar imagery over forests. For instance,
the available number of reliable annotated samples for training remote sensing data is
much smaller than in most computer vision problems, which might require the learning
of higher-level features with respect to most applications. At the same time, given the
unique nature of radar imaging and depending on the resolution cell size, there will be
a high spatial dependency between neighboring pixels—and thus, it is desirable to keep
track of these patterns and their localization on a pixel level. Hence, to comply with these
requirements, we propose to use a convolution neural network based on the state-of-the-art
U-Net architecture [19] to perform semantic segmentation of S-1 multi-temporal data.

3.1. Proposed U-Net-Like Classification Model

The U-Net was originally proposed to efficiently capture nuances required in the
analysis of medical images, but has ever since become one of the standard tools for several
classification problems, including land cover applications using spaceborne SAR data [18].
This architecture is based on a nearly symmetric encoder—-decoder approach, which resem-
bles a U-shaped structure: while the encoder part consists of a contraction path to capture
context via feature extraction, the decoder is responsible for precisely retrieving spatial in-
formation along the upsampling, where the output of each convolutional level is combined
with high-resolution features from the contraction path through skip connections.

We now propose our own implementation of a U-Net-like architecture consisting of
five convolutional levels, as shown in Figure 6. As the input, we considered patches of
size 128 px x 128 px, stacked into N SAR and InSAR input feature channels. In the encoder
path, each convolutional level consisted of two consecutive convolutions with a 3 x 3
kernel followed by a Rectified Linear Unit (ReLU) activation function. Then, we performed
a2 x 2 max pooling with stride 2 for downsampling. For the initial convolutional layer,
we applied 64 filters (thus generating the same number of feature maps), which were
doubled at each successive level. Moreover, differently from the original U-Net [19], our
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feature maps were not cropped after every convolution since we padded the borders with
zero-valued pixels to keep the original image size at the output. On the decoder side, we
performed an upsampling on every convolutional level by applying a 2 x 2 transposed
convolution that halves the number of feature maps. These outputs were concatenated
with the corresponding encoder features and, once again, went through two successive
convolutions, each followed by a ReLU transformation. At the end of the network, a final
layer uses a 1 x 1 convolution with a softmax activation function to perform the multi-layer
semantic segmentation, mapping 64 features into the probability of each pixel to belong
to the three classes of interest, i.e., Non-Forested Region, Forest, and Water. The class
associated with the highest estimated probability would then be the one predicted by the
network. This classification scheme was implemented in Python using the TensorFlow and
Keras packages.

128 256 256

3x3 Conv. with ReLU Activation
2x2 Max Pooling
2x2 Upsampling

Skip Connection

512 i 1024 g 1024 o® —> 1x1 Conv. with Softmax Activation

Figure 6. U-Net-like architecture proposed for mapping the Amazon Basin.

During the training phase, we used the cross-entropy between our annotated samples
and the network’s predictions as the loss function that we wished to minimize. Moreover,
since optimization algorithms tend to converge much faster when performing quick esti-
mates of the gradient, we trained our algorithm utilizing batches of 32 randomly chosen
image patches, from which we computed the average gradient. As the reparametrization
method, we performed batch normalization after each convolutional level to better coor-
dinate parameter updates across the layers. Finally, we selected the Adam algorithm [32]
as our optimizer to iteratively adapt the network’s learning rate by using bias-corrected
estimates of first- and second-order moments. This approach combines the advantages of
both the Adaptive Gradient Algorithm (AdaGrad) [33] and Root-Mean-Squared Propaga-
tion (RMSProp) [34], being the standard optimization algorithm for several state-of-the-
art CNNs.

3.2. Performance Evaluation Metrics
For the evaluation of the classification performance, we considered the following
well-known pixelwise definitions:
*  True Positive (TP): data points correctly assigned to their class, i.e., the predicted label
is the same as the ground truth;
*  True Negative (TN): correct rejection of a given class;
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*  False Positive (FP): data points mistakenly predicted as the class under consideration;
¢  False Negative (FN): incorrect rejection of a class.

These outcomes were used to calculate specific metrics for assessing the performance
of a classification algorithm. In this paper, the following metrics were considered: precision,
recall, F1-score, and accuracy, which are given by Equations (2)-(5), respectively:

Precision = % ; 2)

P
Recall = TP+ EN ®3)
F1-Score = %, 4)
Accuracy = 75 %I:ITSIY +FN ©)

Once these metrics are calculated for every class, we can compute their mean values in
order to evaluate the macro performance of our classifiers. However, this analysis does not
consider a potential class imbalance among the samples under test, as it weighs all classes
equally. Thus, for a fairer global performance evaluation, we also estimate the overall
statistics by computing the weighted average of each evaluation metric, with respect to the
representativity of each class.

3.3. Experimental Setup

We evaluated the proposed classification model with different sets of input feature
maps in order to provide a complete benchmark of their impact on the final classification
performance and to compare the proposed framework with the baseline state-of-the-art al-
gorithms. Thus, we divided the approaches under analysis into 10 different configurations,
as summarized in Table 3. Case [ is the baseline scheme presented in [23], which makes use
of a random forest classifier with the following input features: the multi-temporal mean
backscatter 'yoavg, the local incidence angle 6;,,, the temporal decorrelation constant T,
the long-term coherence p; 1, and the local incidence angle 6;,,.. As mentioned in Section 2,
both T and p; 1 were estimated in an exponential-model-fitting step to better characterize
the temporal decorrelation between interferometric pairs. This approach was further ex-
ploited in [24], defined as case 11, where 18 additional texture features were estimated from
the multi-temporal mean SAR backscatter to better describe the spatial dependency among
neighboring pixels. The considered textures were: average, cluster prominence, cluster
shade, contrast, correlation, energy, entropy, homogeneity, and variance. Each quantity
was computed twice by considering displacement vectors along both the azimuth and the
slant-range directions, respectively, whose mathematical formulation can be found in [24].
As for our convolutional neural network, we first tested it on case I1I for the same input
features considered in the baseline, in order to make a direct comparison. We skipped
the texture estimation step, as it was expected that the network would be able to capture
pixelwise spatial dependencies thanks to the two-dimensional convolutional layers. Then,
in cases IV-X, we investigated if our approach was able to learn the temporal decorrela-
tion trend by simply stacking in the input the interferometric coherence maps at different
temporal baselines, where pg, is the average among the four possible 6 d coherences, p1, the
average among the three 12 d coherences, p15 the two averaged 18 d coherences, and pyq4
simply the only available 24 d coherence. Each case considers a different combination of
backscatter and coherence maps, although the local incidence angle 6;,. is provided in all
cases since the acquisition geometry impacts all the considered input features. Moreover,
case IV makes use of the entire stack of multi-temporal coherence maps, but avoids the
use of backscatter. Symmetrically, case V relies on backscatter information only. These two
configurations were investigated in order to assess the additional value of combining both
backscatter and coherence for improving the classification performance.
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Table 3. Different land cover classification schemes considered in this paper. The baseline ap-
proaches were based on Random Forest (RF) classifiers and the exponential modeling of the temporal
decorrelation [23,24], as well as the crafting of texture features from the SAR backscatter [24]. We
evaluated the potential of CNNs for replacing such heavy processing steps with stacks of interfero-
metric coherences at different temporal baselines. Black dots identify the considered input feature
maps for each configuration.

Backscatter Exp. Model Geom. Coh. Stacks(p gy

Approach # 5
Y avg Textures T PLT 0inc P6 P12 P18 P24
RF [23] I ° - ° ° ° - - - -
RF [24] 11 ° ° ° ° ° - - - -
CNN 111 ° - ° ° ° - - - -
% - - - - ° ° ° ° °
|4 ° - - - o - - - -
VI . - - - ° ° - - -
CNN VII ° - - - ° - . - -
VIII ° - - - ° ] - - .
IX ° - - - . - . - .
X ° - - - ° ° ° ° °
4. Results

The proposed algorithms were evaluated for the same dataset, i.e., swaths, considered
in [24], in order to attain a fair comparison with the baseline technique. Thus, we used the
four time series stacks from Orbit 083 shown in Figure 1 as our test set, while the remaining
ones were allocated to the training set. In total, 9980 image patches of size 128 px x 128 px
were used in the training phase, with 20% being randomly sampled for validation purposes.
For each input feature configuration (cases /1! to X in Table 3), we optimized the network
with an initial learning rate of 103 and for 90 epochs.

Performance Evaluation

The numerical performance assessment of the Amazon Rainforest mapping was eval-
uated by considering the accuracy (see Equation (5)) and F;-score (see Equation (4)), which
is the harmonic mean between precision and recall. These metrics were first individually
computed for the classes NFR, Forest, and Water. Then, the total performance was summa-
rized either by the mean values among these classes or by the overall statistics, as described
in Section 3.2.

Table 4 shows the results for all 10 cases defined in Table 3. It can be seen that all CNN-
based classification schemes outperformed the current state-of-the-art shallow learners
from cases I [23] and II [24] with the exception of case IV, in which we did not use any
SAR backscatter information as the input. It should be noted that the random forests from
cases I and II were reproduced with the parameters defined in [24], which were optimized
for the same STS used in our work. Thus, we used the Gini impurity to measure the quality
of our splits, with a minimum of 50 samples per leaf node, for a random forest classifier
composed of 50 trees. Moreover, from the results presented in Table 4, we can make the
following considerations:
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Table 4. Performance assessment of the 10 test cases under analysis, considering the F;-score and
accuracy for each class, as well as their macro (mean) and weighted (overall) statistics. It can be
seen that case X—with backscatter, local incidence angle, and all available coherence stacks as input
features—showed the best performance for all considered metrics.

# Metrics Classes Mean Overall
NFR Forest Water

I F{-Score 78.41% 91.26% 61.85% 77.17% 87.20%
Accuracy 87.44% 87.85% 98.93% 91.41% 87.11%
I F{-Score 80.81% 92.17% 69.56% 80.85% 88.62%
Accuracy 88.86% 89.10% 99.18% 92.38% 88.57%
1 F1-Score 87.15% 94.92% 79.99% 87.35% 92.50%
Accuracy 92.64% 92.87% 99.55% 95.02% 92.53%
v F1-Score 79.21% 90.19% 58.15% 75.85% 86.65%
Accuracy 87.13% 86.73% 98.78% 90.88% 86.32%
v F;-Score 81.30% 92.56% 64.66% 79.51% 88.98%
Accuracy 89.13% 89.56% 99.42% 92.70% 89.05%
Vi F{-Score 84.25% 93.47% 81.05% 86.26% 90.65%
Accuracy 90.70% 90.94% 99.60% 93.75% 90.62%
VIl F{-Score 82.65% 92.91% 80.80% 85.45% 89.79%
Accuracy 89.88% 90.11% 99.59% 93.19% 89.79%
VIII Fq-Score 84.89% 93.28% 80.26% 86.15% 90.70%
Accuracy 90.64% 90.88% 99.56% 93.69% 90.54%
IX F{-Score 83.21% 93.97% 80.52% 85.90% 90.69%
Accuracy 91.07% 91.28% 99.57% 93.97% 90.96%
x F{-Score 87.73% 95.18% 80.91% 87.94% 92.85%
Accuracy 92.99% 93.21% 99.58% 95.26% 92.89%

No. of samples 16,157,783 38,624,552 579,201 55,361,536

Given a direct comparison (i.e., for the same baseline processing, training and test sets,
and input features), the use of our CNN in case II] already achieved an improvement
of more than five percentage points in both the overall F-score and accuracy with
respect to case I. Moreover, when comparing case 11 to case 11, the performance gain
was smaller—approximately 1.4 percentage points—but, most importantly, the com-
putational load of case I1I was extremely reduced since no specific computation of
backscatter textures was required as in case I1;

Case IV and V make use of either the backscatter information or the stack of multi-
temporal coherences, respectively, as input features to the CNN. In both cases, a small
drop in the performance was visible with respect to all other CNN-based cases in
which both backscatter and coherence were exploited. This confirmed the added value
of combining both SAR intensity and interferometric information for classification
purposes when utilizing STS;

Case X achieved the best performance for every considered metric, although case
I1I might be deemed comparable in terms of F;-score and accuracy. Nevertheless,
the required processing load was greatly reduced for case X, as both the backscatter
texture estimation and the exponential model fitting of the temporal decorrelation
were avoided in this setting. This suggests that the proposed CNN scheme was able to
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recognize by itself the temporal decorrelation patterns from the input multi-temporal
coherence stacks;

e It should also be noted that even when the 6 d coherence stack was not considered (see
case [X), an overall F1-score and accuracy above 90% could be achieved. Therefore,
this method could be successfully applied at a global scale, where only S-1 temporal
baselines of at least 12 d (for a single Sentinel-1 satellite) are available, overcoming
the limitations of [23,24], which required short temporal baselines for the theoretical
modeling of the temporal decorrelation;

¢ From the analysis of cases from VI to X, it becomes clear that coherences at low
temporal baselines allowed for the retrieval of a higher information content for the
discrimination between forested and non-forested areas. This behavior was expected,
since, if forests are severely decorrelated already at 6 d temporal baselines, at higher
temporal baselines, non-vegetated areas appear almost completely decorrelated as
well, increasing the confusion between these two classes. On the other hand, the long-
term coherence at a 24 d temporal baseline remains very helpful for the discrimination
of impervious areas, such as urban settlements, characterized by the presence of stable
targets on the ground. This aspect is further discussed later on in Section 5.2;

¢ Itis also important to point out that the test set still remained quite imbalanced, with a
predominance of Forest samples and underrepresentation of Water ones. Therefore,
the per-class metrics should be interpreted with caution. For instance, the Water class
will have a high accuracy in all cases since minority classes tend to have a high number
of true negatives.

In Figure 7, we present a direct visual comparison between the FROM-GLC thematic
map and the classification given by case X for the area in TS1pg3, as defined in Figure 1,
which show a high level of agreement. Nevertheless, one can notice that roads appear
slightly underestimated and often not completely connected. This effect was very likely
related to the resolution of the input data (independent pixel spacing of about 70 m and
final posting at 50 m), which mixes the signature of roads with the surroundings inside
the same resolution cell. The same effect also happened in the presence of narrow river
branches, which are only or less than a single pixel wide. We extended this analysis by
performing a visual inspection of all proposed classification schemes against Sentinel-2
(5-2) RGB and NDVI images over a few regions from this swath. Thus, we selected three
small image patches, delimited by the red squares and shown in greater detail in Figure 8,
to illustrate some crucial differences between the 10 implemented classification approaches.
Firstly, it can be noted that all CNN predictions were less noisy and more accurate than
those from the random-forests-based approaches (cases I and II), which showed much
more isolated misclassified pixels, especially over forested areas. This was probably due
to the fact that the random forest classifier solely relies on pixelwise estimations, and the
spatial information content of the data was limited to neighboring pixels only, which were
utilized for the computation of the spatial textures. On the other hand, the CNN was able
to consider a more extended spatial content in the data by relying on two-dimensional
convolutional kernels. Moreover, the classification approach in case IV, which was the
only case that did not rely on any kind of SAR backscatter information, struggled when
mapping water surfaces. The latter result was slightly overestimated, which was probably
caused by the fast temporal decorrelation of both water and forests, which led to similar
low values in the coherence. On the other hand, this ambiguity was less prominent when
adding the backscatter information. Indeed, rainforests at C-band are characterized by
well-known values of 7Y around —6.4 dB [35], whereas calm water surfaces are close to
the system noise floor [36]. Differently, in case V, where no coherence information was
used, the classifier showed some inaccuracies when discriminating between forests and
non-forested regions since they can both show very similar levels of backscatter. Finally,
even though all the CNN approaches that make use of both SAR backscatter and any
combination of interferometric coherences have a high agreement with the reference map,
case X was the one able to capture most of the details, which was confirmed by visually
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comparing the three analyzed patches with the corresponding ones from the Sentinel-2
True Color RGB channel and the Normalized Difference Vegetation Index (NDVI), which
represents a good indicator of the presence of green vegetation [37].

Finally, we provide some details on the computational times for the processing of a
single STS, as described in Section 2.2. The test was performed using a 24 Core Intel(R)
Xeon(R) CPU E5-2690 v3 @ 2.60 GHz, with 512 GB RAM. The core SAR and InSAR pro-
cessing, which includes coregistration, multi-temporal backscatter and coherence matrix
computation, and geocoding lasted overall 2h21’. This was the pre-processing time re-
quired for the generation of all input features for the experimental setup cases from IV to
X. Additionally, the computation of the temporal decorrelation and the exponential fitting
(as in cases I to III) required 2h:42’, while the computation of backscatter textures (as in
case I]) lasted 26'. By avoiding the use of both textures and temporal decorrelation fitting
parameters, the overall computational time for this processing phase could be reduced by
3h8’, which corresponds to more than 57% of the overall processing time.

Non-Forested Region (NFR) Forest Water

[

@

(b)
Figure 7. Comparison of (a) the FROM-GLC reference map and (b) the prediction for case X from the

area in TS1jpg3. We selected three image patches of size 384 px x 384 px to perform a detailed visual
inspection for all the 10 cases under analysis.



Remote Sens. 2022, 14, 1381

16 of 21

FROM-GLC
Reference

S-2 NDVI

.

)

FROM-GLC
Reference

S$-2 RGB S$-2 NDVI

FROM-GLC
Reference

VIIT X X S-2 RGB S-2 NDVI

(0

Figure 8. Comparison of the proposed approaches for the three patches (a—c) defined in Figure 7.

5. Discussion

In Section 4, we showed that, by relying on the powerful learning capabilities of a
U-Net-like CNN model, it was possible to simplify the baseline short time series processing
and classification chain proposed in [23,24] while still achieving an even higher agreement
with the external reference map. We now draw a series of considerations on the proposed
approach, aiming at exploring further research perspectives and possibilities for land cover
classification using S-1 STS.

5.1. Class Assignment and Potential Confusion Sources

Firstly, we investigated the reasons for the occurrence of misclassifications in our
proposed approaches. To do so, we analyzed the confusion matrices, shown in Figure 9,
for the best-case scenario (i.e., case X in Table 4). Since our test set was extremely imbalanced
towards the Forest class, for a better visualization, we display two confusion matrices
normalized by the predicted and true classes, respectively. Thus, each confusion matrix
provides a different insight of how each class was misclassified. Figure 9a should be
interpreted columnwise only, and for the total predictions of each class, it shows the
proportion of the actual annotated samples. Analogously, Figure 9b must be analyzed per
row, and in this case, for the totality of samples belonging to each class, it provides the
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ratio of predictions made towards NFR, Forest, or Water. In this way, it should be noted
that the main diagonal in Figure 9a represents the classifier’s precision, while in Figure 9b,
it represents its recall. Moreover, we can see in the first case that 19% of the Water class
predictions actually belonged to the NFR class, which could be mainly explained by the fact
that smaller Amazon River branches might be only a single-pixel wide due to limitations
in the resolution of S-1 data. This was also the reason why most mispredictions happened
along their riverbanks.

NII:R Forlest Water
Predicted Class

(@)

1.0 1.0
g 0.8 i 0.8
=2 =2
a 06 & 0.6
© o
(@] 5 - (@] 2 -
Qg (O]
= 04 E5 0.4
_ -0.2 _ -0.2
8- 0.00 5 0.05
© ©
= =
-0.0 -0.0

N|':R For‘est Water
Predicted Class

(b)

Figure 9. Confusion matrices for the CNN scheme proposed in case X: (a) normalized by the
predicted class and (b) normalized by the true class.

This analysis was further explored in the normalized confusion matrices shown in
Figure 10, where we checked our predictions against the eight original FROM-GLC classes.
In this way, we can verify the robustness of our higher-level class grouping approach and
identify a posteriori patterns in the mispredictions. It can be seen that the Shrub and Wetland
classes represented the greatest sources of confusion. The Shrub class is characterized by
the presence of bushes or shorter trees, being often associated with the Forest class. This
aspect suggests that, similarly to X-Band [14], also C-Band InSAR data are sensitive to the
presence of sparse and low vegetation, which impacts the 5-1 multi-temporal coherence
through a fast decorrelation in time. Regarding the Wetland class, it is characterized by a
fast-changing nature, especially during the wet season, which might explain the network’s
poor performance when attempting to classify it.

1.0 1.0
Crop - 0.01 0.00 0.00 Crop 0.00
Forest-  0.10 0.94 0.04 0.8 Forest - 0.00 0.8
Grass 0.84 0.04 0.10 Grass 0.00
§ Shrub - 0.04 0.01 0.01 06 g Shrub 0.00 06
§ Wetland - 0.01 0.00 0.08 04 é Wetland SSSUEL 0.29 021 04
Water - 0.00 0.00 0.77 Water - 0.09 0.05 0.85
Imperv.-  0.01 0.00 0.00 -0.2 Imperv. 0.94 0.05 0.00 -0.2
Bareland - 0.00 0.00 0.00 Bareland 0.89 0.06 0.05
N#R For‘est Wa‘ter 0.0 NFR For‘est Walter 100

Predicted Class Predicted Class

(@ (b)

Figure 10. Confusion matrices normalized by (a) the predicted and (b) the true classes, considering
the original labels of the eight available FROM-GLC classes.
5.2. Impervious Areas and the Role of Short- and Long-Term Coherences

We saw in Section 2 the challenges of dealing with an imbalanced dataset, which led
us to define only three high-level classes of interest for mapping the Amazon Rainforest:
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NEFR, Forest, and Water. In Figure 11, we show the normalized histograms of each of these
classes for the average SAR backscatter, the interferometric coherences at different temporal
baselines, as well as the local incidence angle.

Yo 6-day Coherences
15 8
>10 Class 36 Class
@ NFR g NFR
éC) [ Forest 8 4 [ Forest
5 [ water [ Water
J 2
0 0
0.0 0.1 0.2 0.1 0.2 0.3 0.4

() (b)

18-day Coherences

8
8
6
2‘6 Class > Class
‘@ NFR ‘@ NFR
c c 4
84 \ [ Forest 8 [ Forest
1 Water | 1 Water
2 2 ‘
0 . 0 —
0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
(0) (d)
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6 3 inc
2‘4 | Class 2.2 /\/\,\ Class
2 NFR = NFR
8 1 Forest & \ [ Forest
2 [ Water 01 [ Water
/
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Figure 11. Normalized histograms of (a) the SAR backscatter, (b—e) the interferometric coherence at
different temporal baselines, and (f) the local incidence angle.

The distributions shown in Figure 11 confirmed that the backscatter information was
crucial for discriminating all three classes, given the clear separation among the different
distributions. Furthermore, the coherence stacks were overall more useful in this task for
the shortest temporal baseline, i.e., the 6 d coherences.

However, when moving to more heterogeneous areas, we could expect to redefine how
the classes are grouped together depending not only on the available number of samples,
but also on the application of interest. For instance, in more populated areas, a possible task
could be to monitor urban expansion. In this case, the Impervious class could be considered
as a separate one, as shown for the metropolitan area of Porto Velho in Figure 12. Indeed,
from the 6 d mean coherence in Figure 12c, one can appreciate how low-vegetated areas still
showed some degree of correlation with respect to forested ones, which, on the other hand,
were already severely decorrelated. From Figure 12d, the role of the long-term coherence at
the 24 d temporal baseline to discriminate urban settlements and human-made structures
becomes clear, which still showed high values of coherence thanks to the temporal stability
of the targets on the ground.
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Figure 12. Metropolitan area of Porto Velho, capital of the state of Rondénia, shown according
to: (a) the FROM-GLC thematic map, (b) average SAR backscatter, (c) 6 d coherence, and (d) 24 d
coherence. In this case, the long-term coherence is more suitable for the detection of impervious
(e.g., urban) areas.

6. Conclusions and Outlook

In this paper, we investigated the potential of deep learning for performing land cover
classification over forested areas with repeat-pass interferometric SAR data. In particular,
we combined openly available Sentinel-1 time series with short temporal baselines, together
with the learning capabilities of a U-Net-like convolutional neural network to map forests,
non-forested regions, and water surfaces in the Amazon Basin. The results of this study
showed that, by using the proposed deep learning model, we were able to skip two
computationally costly steps from the baseline processing chain—the texture estimation
and exponential model fitting—and still outperform the state-of-the-art shallow learning
classifiers for S-1 short time series. We obtained the best classification performance by
considering the full stack of coherence maps at different temporal baselines (from 6 d up
to 24 d) as input features to the CNN, together with the multi-temporal mean backscatter.
Nevertheless, a good overall performance was also obtained when considering coherence
stacks with a minimum temporal baseline of 12 d. The advantage of this last configuration
is that it can be utilized for monitoring forests at a global scale since Sentinel-1 InNSAR
data at a 6 d revisit time is only operationally available over Europe or dedicated test
sites. Furthermore, one of the greatest assets of our approach is the possibility to generate
accurate forest maps within a temporal baseline of less than a month, allowing for an
effective monitoring of rainforests. This aspect represents a significant improvement with
respect to current operational forest monitoring systems, which typically require much
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longer observation intervals for the generation of large-scale forest mapping products.
A monthly update will allow us to properly follow dynamic changes in forest coverage
caused, e.g., by deforestation and forest degradation phenomena. Moreover, by solely
relying on radar data, gap-free products can be regularly generated, overcoming the
limitation of optical sensors for the monitoring of cloudy regions, such as tropical forests.
The proposed framework is currently at a prototype stage and needs further developments
to be brought to an operational stage. Regarding this aspect, we will concentrate further
efforts on the understanding of how fast-changing seasonal effects within the Amazon
Basin (e.g., the dynamics of floods and droughts or vegetation phenology) could affect
our training and predictions over the course of a year. If this impact is shown to be
significant when testing the proposed approach over a longer period and on a larger scale,
our training strategy might have to be refined by including such information within the
ancillary reference data and fine-tuning the proposed CNN model.
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