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Abstract: Lunar craters and rilles are significant topographic features on the lunar surface that will
play an essential role in future research on space energy resources and geological evolution. However,
previous studies have shown low efficiency in detecting lunar impact craters and poor accuracy
in detecting lunar rilles. There is no complete automated identification method for lunar features
to explore space energy resources further. In this paper, we propose a new specific deep-learning
method called high-resolution global–local networks (HR-GLNet) to explore craters and rilles and
to discover space energy simultaneously. Based on the GLNet network, the ResNet structure in
the global branch is replaced by HRNet, and the residual network and FPN are the local branches.
Principal loss function and auxiliary loss function are used to aggregate global and local branches. In
experiments, the model, combined with transfer learning methods, can accurately detect lunar craters,
Mars craters, and lunar rilles. Compared with other networks, such as UNet, ERU-Net, HRNet, and
GLNet, GL-HRNet has a higher accuracy (88.7 ± 8.9) and recall rate (80.1 ± 2.7) in lunar impact
crater detection. In addition, the mean absolute error (MAE) of the GL-HRNet on global and local
branches is 0.0612 and 0.0429, which are better than the GLNet in terms of segmentation accuracy
and MAE. Finally, by analyzing the density distribution of lunar impact craters with a diameter of
less than 5 km, it was found that: (i) small impact craters in a local area of the lunar north pole and
highland (5◦–85◦E, 25◦–50◦S) show apparent high density, and (ii) the density of impact craters in the
Orientale Basin is not significantly different from that in the surrounding areas, which is the direction
for future geological research.

Keywords: crater detection; rilles detection; space energy resources; GL-HRNet; transfer learning;
density distribution

1. Introduction

With the rapid development of remote-sensing technology, researchers can quickly
obtain large-scale and high-resolution images of planets to explore and discover space
energy [1] and geological research [2]. The Moon is the closest natural body to the Earth
in space, and it is well studied compared to other celestial bodies. By exploring rilles and
impact craters on the Moon, we are more likely to find space energy because they have
been a hot research topic [3].

The surface of the Moon is distributed with dark cracks known as rilles [4]. In [5], the
Moon is rich in energy resources, such as helium-3, which is an efficient, clean, safe, and
cheap nuclear fusion resource. The availability of helium-3 on the Moon is much higher
than that on the Earth, and helium-3 has been proved to be abundant in the lunar stream [6].
The study of impact craters can be used to deduce geological age, to explore the existence
of water ice [7], and to select landing sites for lunar rovers [8], autonomous navigation [9],
and other tasks for deep space probes [10].
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To explore and discover space energy sources and study geological evolution, we
should first detect impact craters and rilles on the Moon’s surface. In the past, such
detection was usually made visually and manually. However, this time-consuming and
inaccurate approach requires the development of automated detection tools, particularly
deep learning methods, to detect impact craters and rilles on the Moon.

For example, The Lunar Selenographia published by Hevelius [11] mapped the lunar
impact craters. Pike [12] obtained 484 impact craters and their scale parameters through
Apollo stereo image data. However, with the acquisition of higher precision data, the
problem of low accuracy and manual recognition efficiency becomes more prominent. Tra-
ditional recognition methods based on Hough transform [13], feature matching [14], image
transformation segmentation [15], and quadratic curve fitting [16] have higher accuracy and
more pronounced effects. Nonetheless, the calculation process of this method is also com-
plicated and time-consuming, and further improvement is needed for global impact crater
detection. In recent years, with the advent of AlexNet [17] and the rapid development of
graphic processing unit (GPU) hardware, more researchers began to use the convolutional
neural network (CNN) in deep learning to solve the tasks of object detection and semantic
segmentation in computer vision. The method proposed by Silburt [18] applied the U-Net
network framework to detect impact craters in the whole Moon and obtained relatively
accurate detection results. DeLatte [19] built a Crater U-Net framework using Keras to
make the database more prominent and to have a more significant recognition. Still, the
accuracy of the detection needs to be improved. Yang [20] proposed a method based on
Chang ‘E-1 and Chang E-2 digital elevation data (DEM) and the digital orthophoto image
(DOM) and target detection framework R-FCN network to detect a total of 109,956 new
impact craters. On this basis, the paper also analyzed the geological age. In addition, Jia [21]
proposed an SCNeSt architecture with multipath representation and channel orientation of
self-calibrated convolution, providing higher detection and estimation accuracy for small
impact craters. Yang [22] designed an HRFPNet with a feature aggregation module (FAM)
to extract the context information of small craters while preserving the features of small
craters in deep convolution layers, and they built a dataset called Mars day crater detection
(MDCD) consisting of 500 images. Twelve-thousand of them are 729 × 729 pixels in size.
The development history of impact crater detection is shown in Figure 1:

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

 
Figure 1. The development timeline of impact crater detection. 

In general, most methods are not used for space energy discovery. They are designed 
to probe only craters, not Moon rilles, directly related to lunar energy discoveries. The 
high-resolution net (HRNet) model proposed by Chen [23] is a depth model for human 
pose estimation. Still, this model’s accuracy rate (83.7%) and recall rate (53.8) are low, re-
sulting in poor recognition performance. To further discover space energy accurately and 
efficiently, we designed a new specific deep-learning method called high-resolution 
global-local networks (HR-GLNet) to explore craters and rilles to discover space energy 
simultaneously. HR-GLNet can maintain high-resolution feature maps throughout the 
process and can obtain more accurate spatial information. Its multi-scale fusion strategy 
can also obtain richer high-resolution representations and make the predicted lunar fea-
tures more accurate. 

In summary, the contributions of this work are: 
1. To further promote lunar energy discovery, we propose a new machine-learning ap-

proach that automatically identifies craters and rilles simultaneously. 
2. We propose a new semantic segmentation method, GL-HRNet, which is superior to 

GLNet- and HRNet-based network structures in terms of segmentation accuracy and 
mean absolute error and can be easily used in other similar tasks. 

3. We also find something unique about the density distribution of craters throughout 
the Moon. There is a distinctive difference for a relatively small crater (1–5 km in 
diameter) between the density of impact craters on the lunar mare and the highland. 
Small craters on the lunar mare are deeper than those on the highlands. 
The rest of this article is organized as follows. Section 2 introduces the proposed 

method, global branch HRNet, and local branch ResUnet of the GL-HRNet and branch 
aggregation algorithm. Section 3 introduces the experimental data, evaluation indexes, 
and experimental conditions. In addition, Section 4 evaluates lunar rilles and impact cra-
ters and compares the proposed network with other existing networks. Finally, Section 5 
gives our conclusions and puts forward some opinions on the direction of future work. 

2. Materials and Methods 

Figure 1. The development timeline of impact crater detection.

In general, most methods are not used for space energy discovery. They are designed
to probe only craters, not Moon rilles, directly related to lunar energy discoveries. The



Remote Sens. 2022, 14, 1391 3 of 17

high-resolution net (HRNet) model proposed by Chen [23] is a depth model for human
pose estimation. Still, this model’s accuracy rate (83.7%) and recall rate (53.8) are low,
resulting in poor recognition performance. To further discover space energy accurately
and efficiently, we designed a new specific deep-learning method called high-resolution
global-local networks (HR-GLNet) to explore craters and rilles to discover space energy
simultaneously. HR-GLNet can maintain high-resolution feature maps throughout the
process and can obtain more accurate spatial information. Its multi-scale fusion strategy can
also obtain richer high-resolution representations and make the predicted lunar features
more accurate.

In summary, the contributions of this work are:

1. To further promote lunar energy discovery, we propose a new machine-learning
approach that automatically identifies craters and rilles simultaneously.

2. We propose a new semantic segmentation method, GL-HRNet, which is superior to
GLNet- and HRNet-based network structures in terms of segmentation accuracy and
mean absolute error and can be easily used in other similar tasks.

3. We also find something unique about the density distribution of craters throughout
the Moon. There is a distinctive difference for a relatively small crater (1–5 km in
diameter) between the density of impact craters on the lunar mare and the highland.
Small craters on the lunar mare are deeper than those on the highlands.

The rest of this article is organized as follows. Section 2 introduces the proposed
method, global branch HRNet, and local branch ResUnet of the GL-HRNet and branch
aggregation algorithm. Section 3 introduces the experimental data, evaluation indexes, and
experimental conditions. In addition, Section 4 evaluates lunar rilles and impact craters
and compares the proposed network with other existing networks. Finally, Section 5 gives
our conclusions and puts forward some opinions on the direction of future work.

2. Materials and Methods

By combining deep learning and transfer learning, we proposed the GL-HRNet for
lunar energy detection based on GLNet [24], HRNet [25], and UNet [26], as shown in
Figure 2. Firstly, projection, downsampling, and random clipping were carried out for
different remote-sensing data to make complex data fragmentary. Secondly, in the global
branch of GL-HRNet, the ResNet [27] in GLNet was adjusted to the HRNet, and the HRNet
and feature pyramid network (FPN) [28] were taken as the backbone network. In this way,
rich multi-scale information of craters and valleys was integrated while maintaining high-
resolution feature maps. In the local branch, ResUNet and FPN were used as the backbone
network to train the partial network independently without adopting the original feature
sharing strategy to eliminate the uncertainty caused by inadequately-learned feature maps
in the global branch. Finally, the primary loss function and the auxiliary loss function were
used to make the global branch’s segmentation graph and the local branch’s segmentation
output more accurate to the corresponding manual marking result, and the prediction
graph was the output.

2.1. Global Branch of GL-HRNet

Inspired by the HRNet [25], in this paper, HRNet and FPN were used as main trunks
to replace GLNet’s ResNet network. HRNet connects subnets from high resolution to
low resolution in parallel, repeatedly fusing multi-resolution features to generate reliable
high-resolution representations. Compared with the original ResNet network in GLNet, the
resolution of the feature map is improved, and the global context information is enriched.
In contrast, more detailed information is retained, improving segmentation efficiency. Its
structure is shown in Figure 3.
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Parallel multi-resolution subnets are constructed through parallel connections from
high-resolution subnets to low-resolution subnets. Each subnet contains multiple convolu-
tional sequences, and there is a down-sampling layer between adjacent subnets to halve
the resolution of feature maps. The high-resolution subnet is used as the first stage, and
the subnets from high resolution to low resolution are gradually added to form the new
stage. Then multiple resolution subnets are connected in parallel. The resolution of the
next phase of the parallel subnet consists of the resolution of the previous phase and the
resolution of the next phase. The network structure consists of four parallel subnets, as
shown in Figure 4.

Global branching introduces switching units across parallel subnets so that each subnet
receives information from other subnets multiple times. An example of an information
exchange unit is shown in Figure 4b, where stage 3 is divided into multiple switching blocks.
Each switching block consists of three parallel convolutional units and one switching unit.
The specific implementation of aggregation of feature information of different resolutions
by exchanging units in GL-HRNet is shown in Figure 5.

The exchange unit takes s response graph {X1, X2 . . . Xs,} as the input, each output
is aggregated from the response graph of the input, and the corresponding output is
{Y1, Y2 . . . , Ys}, where Yi and Xi have the exact resolution and dimension. The expression
from input to output is:

Yk =
s

∑
i=1

a(Xi, k) (1)

Each cross-stage switching unit has an additional output Ys+1, and

Ys+1 = a(Ys, s + 1) (2)
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a(Xi, k) represents changing the resolution of input Xi from i to k, which is realized by
down-sampling or up-sampling. The switching unit of the GL-HRNet global branch uses
3 × 3 convolution with a step size of 2 for down-sampling, while up-sampling is realized
by bilinear interpolation. If I = k, then a(Xi, k) represents the identity mapping, a(Xi, k) = Xi.
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2.2. Local Branch of GL-HRNet

Inspired by Unet [26] and ResNet [27], ResUNet is the backbone network in local
branches. Unlike the original network, the proposed improved network does not share
the feature map with the global branch depth. The global branch supplements the context
information that the local branch lacks and confuses the learning of its feature graph.
Therefore, independent training is adopted to improve the segmentation effect of local
branches. The network structure of local branches is shown in Figure 6.
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The FPN ResUnet network has an asymmetric structure and is an end-to-end model.
There are 44 convolutional layers in the network, and there are four down-sampling and
four up-sampling operations in total. There is no entire connection layer, and the output
characteristics of each layer have enhanced semantic information. The coding part of
the network is similar to the ResNet18 network, which can reduce the spatial dimension
of the input image through convolution, pooling, and other operations to extract high-
level features.

After each feature extraction with two residual structures, 2 × 2 maximum pooling
was used to reduce the spatial dimension, filter out some unimportant high-frequency
information, and reduce the spatial size of the feature map. To reduce the disappearance of
gradient, the ReLu function was used for all activation functions of the model. Each residual
structure contains a BN layer, and each batch is normalized to each level of characteristics
in the coding path so that the distribution of each level is relatively stable, which can make
the model have better robustness to a large extent, accelerate the convergence rate, and
improve the capacity of the model.

2.3. Branch Ensemble

Feature maps extracted from local and global branches can be divided into L layers,
represented by XL,I and XG,i, respectively, where i ∈ L, L = 4. The feature maps of the last
layer are connected along the dimensions, and the final segmentation map is obtained by
the aggregation layer f AGG, making it SAGG. In addition to the primary loss function of
SAGG, two auxiliary loss functions were adopted in this paper to make the segmentation
graphs of global branches SG,L and partial branches SL,L, respectively, which are closer to
the corresponding artificial marking results (Ground Truth, GT). This operation also makes
the training process more stable. As shown in Figure 7, the aggregation layer between the
two branches was set as f AGG, composed of 3 × 3 convolution, and the ensemble between
the feature maps of the two branches was realized.
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3. Experiments
3.1. Dataset

In this paper, four kinds of different data sets were used for experiments: lunar digital
elevation data SLDEM [29], Mars HRSC MOLA Blend DEM Global 200 m v2, Surface
crack [30], and an assembled dataset [23]. The SLDEM data have a resolution of 59 m and
span ±60◦ latitude (maximum longitude range). The global grayscale image was projected
by equiangular cylindrical projection with a resolution of 184,320 × 61,440 pixels and a
bit depth of 16 bits per pixel. According to Head [31] (D > 20 km) and Povilaitis [32],
5 km < D < 20 km of impact craters are needed to make the label data. The image data were
then clipped into 256 × 256 images at a 50% overlap rate, 30,000 3000 and 3000 images
were randomly selected and used for training, validation, and testing, respectively. The
experiment data have a different resolution range from 150 m/pixel to 5500 m/pixel.

Similarly, Mars HRSC MOLA Blend DEM Global 200 m v2 has a resolution of 200 m
across latitude ±90◦ (maximum longitude range). This global grayscale image is an iso-
metric cylindrical projection with a resolution of 106,694 × 53,347 pixels and a bit depth of
16 bits per pixel. According to Robbins and Hynek [33], D > 4 km of craters are needed to
make the label data, and they need cropped to 256× 256 pixels to detect Mars impact craters.
The whole image was also cropped with a 50% overlap, and 30,000 3000 and 3000 images
are randomly selected and used for training, validation, and testing, respectively. The
experiment data have a different resolution range from 400 m/pixel to 12.8 km/pixel.

There are currently no valley annotation data set on the surface of the Moon, inspired
by [30] pavement crack detection. Thus, we chose to include pavement crack in the concrete,
membrane, and crack-tile as the training data set. Because cracks on the surface of the
concrete have different characteristics and these images and valley image characteristics are
similar to the Moon rilles, feature similarity is high. For surface crack data, 200 images were
selected from the Crack500 data set, including 50 images of thin-film cracks, 50 concrete
cracks, and 100 images of cracked bricks. All images were randomly sorted, and 160 images
were selected for training, 20 images for validation, and 20 images for testing.

The assembled data set, referred to as the data set of [23], was carefully selected from
the online library published by NASA and the national astronomical observatories of China,
and it screened 44 clear images of impact craters and Moon rilles from 1000 images. The
image size was 256 × 256 pixels. To prevent the over-fitting problem of the limited sample
of the inefficient data set, the specific data set was trained by fine-tuning the pre-training
weights obtained from the lunar digital elevation model and the surface crack data set
with a relatively small learning rate of ten epochs. To test the recognition effect of Moon
rilles, the data set randomly shuffled all images, 35 of which were selected for training and
the remaining nine for testing. The different types of data sets are shown in Table 1 and
Figure 8.

Table 1. Four different types of data sets for training, validation, and testing.

Data Set
Type Samples

Crater Rille Train Validation Test

Moon DEM
√

× 30,000 10,000 10,000
Mars DEM

√
× 30,000 10,000 10,000

Surface crack ×
√

160 20 20
Assembled data set

√ √
35 - 9

3.2. Evaluation Metrics

Computer configuration in the experiment was comprised of two NVIDIA TITAN
GPUs with 24 Gb of memory, a Ubuntu18.04 operating system, Cuda10.0, Cudnn7.5, and
Opencv3.5.6, and it used Keras framework for training.

The precision-recall (P-R) curve and average precision (AP) values were used in this
experiment to objectively test the accuracy of the target detection algorithm.
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P =
NTP

NTP + NFP
(3)

where NTP is the number of correctly detected crater targets in the formula, and NFP is the
number of mis-detected targets. The recall in the P-R curve represents the missed detection
rate of the algorithm:

R =
NTP

NTP + NFN
(4)

where NFN is the missed meteorite crater target.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

The assembled data set, referred to as the data set of [23], was carefully selected from 
the online library published by NASA and the national astronomical observatories of 
China, and it screened 44 clear images of impact craters and Moon rilles from 1000 images. 
The image size was 256 × 256 pixels. To prevent the over-fitting problem of the limited 
sample of the inefficient data set, the specific data set was trained by fine-tuning the pre-
training weights obtained from the lunar digital elevation model and the surface crack 
data set with a relatively small learning rate of ten epochs. To test the recognition effect of 
Moon rilles, the data set randomly shuffled all images, 35 of which were selected for train-
ing and the remaining nine for testing. The different types of data sets are shown in Table 
1 and Figure 8. 

Table 1. Four different types of data sets for training, validation, and testing. 

Data set 
Type Samples 

Crater Rille Train Validation Test 
Moon DEM √ × 30,000 10,000 10,000 
Mars DEM √ × 30,000 10,000 10,000 

Surface crack × √ 160 20 20 
Assembled data set √ √ 35 - 9 

Origin 

image 

    

Groud 

truth 

    

 Moon DEM dataset   Mars DEM dataset Surface crack Assembled dataset 
 
 

Figure 8. The four different types of data sets in the experiment. 

3.2. Evaluation Metrics 
Computer configuration in the experiment was comprised of two NVIDIA TITAN 

GPUs with 24 Gb of memory, a Ubuntu18.04 operating system, Cuda10.0, Cudnn7.5, and 
Opencv3.5.6, and it used Keras framework for training. 

The precision-recall (P-R) curve and average precision (AP) values were used in this 
experiment to objectively test the accuracy of the target detection algorithm. 

TP

TP FP

NP
N N

=
+

 (3)

Figure 8. The four different types of data sets in the experiment.

The F1 value is a statistical index used to measure the accuracy of the dichotomous
model. This index takes into account both the accuracy and recall rate of the classification
model. The F1 value can be defined as a weighted average of model accuracy and recall
rate as:

F1 = 2× PR
P + R

(5)

where P and R are the accuracy and recall rates, respectively.
The false-positive rate of crater identification in this paper is also called the discovery

rate (DR). The first discovery rate (DR1) was the ratio of newly discovered craters to all
known craters. The second discovery rate (DR2) was the ratio of newly discovered craters
to the number of all impact craters (recognized and unrecognized crates). They are defined
as follows:

DR1 =
NTP

NFP + NTP
(6)

DR2 =
NFP

NFP + NTP + NFN
(7)

The latitude error (Errorla), longitude error (Errorlo), and radius error (Errorr) of identi-
fying meteorite craters are, respectively, calculated by the following formula:

Errorla = 2×
abs(lap − lat)

rp + rt
(8)

Errorlo = 2×
abs(lop − lot)

rp + rt
(9)
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Errorr = 2×
abs(rp − rt)

rp + rt
(10)

where lop is the predicted longitude of the impact crater; lot is the corresponding actual
meteor crater longitude value; lap is the predicted latitude value of the crater; lat is the
corresponding real crater latitude value; rp is the predicted crater radius value; rt is the
corresponding real crater radius value.

3.3. Training Details

In training the convolutional neural network, it was necessary to set some of the
super parameters, the learning rate, the training iteration volume, and the selection of loss
function. The parameter settings are shown in Table 2.

Table 2. The model super parameters.

Learning
Rate

Training
Batches

Training
Wheels Objective Function Adam

Global branch 0.0001 100 100 Focal loss 0.9
Local branch 0.00002 100 100 Binary cross-entropy 0.999

The downsampled image of global branch input and the clipped image of local branch
input adopted 256 × 256-pixel size. The local branch of the adjacent overlap, cut out of the
subgraph, had a pixel to avoid the boundary of the convolution layer disappearing and
used the γ = 6 lord loss function and two auxiliary loss functions [34] to optimize the target.
The global branch adopted multilevel loss calculation, with each branch loss weight evenly
distributed to 1, and the local branch adopts binary cross-entropy loss function.

lossBCE = yi − yiti + log(1 + exp(−yi)) (11)

where yi is the label of pixel i in the prediction result of GL-HRNet, and ti is the label of
this pixel in the image truth value. Image loss is the sum of all pixel loss. If the difference
between the predicted image and the labeled image is large, the loss value will be large.

The mean absolute error was used as the evaluation standard during the experiment.
MAE is the average absolute value of the deviation between a single observed value and
the standard value. All individual differences have equal weight on the average value,
which can better reflect the actual situation of the predicted value error, and its expression
is shown as follows:

MAE(x, h) =
1
m

m

∑
i=1
|h(xi)− yi| (12)

where x is the input data set; m is the total amount of data in x; h is the prediction process;
h(xi) and yi are the predicted and typical values of the apex data, respectively.

4. Results and Discussion
4.1. Analysis of the Lunar Impact Crater Detection Results

This section experiments with different networks, including UNet [26], ResUnet [35],
GLNet [24], HRNet [23], and GL-HRNet. There were 30,000 training images, 3000 verifi-
cation images, and 3000 test images. The recognition results of the different networks are
shown in Figure 9:

As can be seen from Figure 9, the test data came from different latitudes, and the
recognition effects of the different models were different. The ResUnet, compared to U-Net,
added a residual module and recognized more craters. The HRNet found new craters
better than GLNet, but with less accuracy. The GL-HRNet also combined the advantages
of ResUnet and HRNet networks, which can detect smaller impact craters and perform
better for overlapping impact craters, closely related to the aggregation method. The
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experiments show that GL-HRNET was better than the global branch HRNet and the local
branch ResUnet.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 20 
 

 

The downsampled image of global branch input and the clipped image of local 
branch input adopted 256 × 256-pixel size. The local branch of the adjacent overlap, cut 
out of the subgraph, had a pixel to avoid the boundary of the convolution layer disap-
pearing and used the γ = 6 lord loss function and two auxiliary loss functions [34] to opti-
mize the target. The global branch adopted multilevel loss calculation, with each branch 
loss weight evenly distributed to 1, and the local branch adopts binary cross-entropy loss 
function. 

log(1 exp( ))-BCE i i i iloss y yt y= + −+  (11)

where yi is the label of pixel i in the prediction result of GL-HRNet, and ti is the label of 
this pixel in the image truth value. Image loss is the sum of all pixel loss. If the difference 
between the predicted image and the labeled image is large, the loss value will be large. 

The mean absolute error was used as the evaluation standard during the experiment. 
MAE is the average absolute value of the deviation between a single observed value and 
the standard value. All individual differences have equal weight on the average value, 
which can better reflect the actual situation of the predicted value error, and its expression 
is shown as follows: 

( ) ( )
1

1,
m

i i
i

MAE x h h x y
m =

−=   (12)

where x is the input data set; m is the total amount of data in x; h is the prediction process; 
h(xi) and yi are the predicted and typical values of the apex data, respectively. 

4. Results and Discussion 

4.1 Analysis of the Lunar Impact Crater Detection Results 
This section experiments with different networks, including UNet [26], ResUnet [35], 

GLNet [24], HRNet [23], and GL-HRNet. There were 30,000 training images, 3000 verifi-
cation images, and 3000 test images. The recognition results of the different networks are 
shown in Figure 9: 

 

 

 

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 

 

 

 
(a) Ground truth (b) U-Net (c) ResUnet (d) GLNet (e) HRNet (f) GL-HRNet 

 

Figure 9. Crater detection results of different networks. (a) Ground-truth labels from the raw images; (b) the results of 
U-Net. (c) The recognition results of ResUnet. (d) The recognition results of GLNet. (e) The recognition results of HRNet. 
(f) The recognition results of our proposed GL-HRNet. Blue circles denote correctly-recognized craters. Green circles 
denote new craters, while red circles represent unrecognized craters. 

As can be seen from Figure , the test data came from different latitudes, and the recog-
nition effects of the different models were different. The ResUnet, compared to U-Net, 
added a residual module and recognized more craters. The HRNet found new craters bet-
ter than GLNet, but with less accuracy. The GL-HRNet also combined the advantages of 
ResUnet and HRNet networks, which can detect smaller impact craters and perform bet-
ter for overlapping impact craters, closely related to the aggregation method. The experi-
ments show that GL-HRNET was better than the global branch HRNet and the local 
branch ResUnet. 

 To further verify the algorithm’s performance, different models were tested using 
evaluation indexes on 3000 test images and 3000 validation images. The recognition re-
sults of each algorithm are shown in Table 3. 

Table 3. The detection results of different network models on the validation data set and test data 
set. (Bold in the table indicates the best results of this evaluation index.) 

Method Data Set Errorla (%) Errorlo (%) Errorra (%) Recall (%) F1 (%) Precision (%) DR1 (%) DR2 (%) 

UNet Val set 7.43 9.97 8.98 69.2 ± 3.3 59.8 ± 4.3 73.2 ± 8.9 12.3 ± 2.1 11.2 ± 1.1 
Test set 9.24 9.64 7.24 76.1 ± 2.3 62.8 ± 6.3 83.2 ± 10.9 13.3 ± 2.5 13.7 ± 2.1 

ResU-Net 
Val set 7.86 8.93 5.83 72.4 ± 3.2 73.2 ± 2.5 79.3 ± 4.7 18.7 ± 3.2 15.4 ± 3.1 
Test set 6.82 7.42 4.92 77.4 ± 2.4 77.2 ± 3.3 81.3 ± 7.6 18.7 ± 3.2 15.4 ± 3.1 

GLNet Val set 7.32 8.71 3.72 72.1 ± 5.8 71.5 ± 2.6 78.1 ± 2.9 14.3 ± 3.8 12.8 ± 1.6 
Test set 6.53 7.12 3.91 78.1 ± 3.8 77.5 ± 2.3 80.1 ± 5.9 17.3 ± 2.8 14.8 ± 3.2 

HRNet Val set 10.19 10.23 7.26 74.6 ± 4.3 79.1 ± 4.3 85.3 ± 6.2 17.1 ± 3.4 13.7 ± 2.7 
Test set 9.49 7.58 9.78 73.8 ± 2.5 76.4 ± 5.3 83.7 ± 9.5 16.3 ± 2.7 13.2 ± 2.1 

GL-HRNet 
Val set 6.15 7.94 4.84 78.1 ± 3.4 77.4 ± 2.7 84.7 ± 7.9 12.5 ± 1.7 13.4 ± 3.2 
Test set 5.89↓ 6.97↓ 3.68↓ 80.1 ± 2.7 79.4 ± 4.3 88.7 ± 8.9 19.3 ± 1.7 16.2 ± 3.2 

  

Figure 9. Crater detection results of different networks. (a) Ground-truth labels from the raw images;
(b) the results of U-Net. (c) The recognition results of ResUnet. (d) The recognition results of
GLNet. (e) The recognition results of HRNet. (f) The recognition results of our proposed GL-HRNet.
Blue circles denote correctly-recognized craters. Green circles denote new craters, while red circles
represent unrecognized craters.

To further verify the algorithm’s performance, different models were tested using
evaluation indexes on 3000 test images and 3000 validation images. The recognition results
of each algorithm are shown in Table 3.

For Table 3, in the test data set, the detection error rate of the GL-HRNet model we
proposed was lower than that of other models, in which the latitude error rate was 5.89%,
the longitude error rate was 6.97%, the radius error rate was 3.68%, and the detection ability
of the model was better. The accuracy rate and recall rate were also higher than those of
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Silburt’s UNet [18], reaching 88.7% and 80.1%, respectively. In addition, the F1 score of the
GL-HRNet model was slightly higher than that of the GLNet model, reaching 79.4%, which
is related to the high-resolution network characteristics. Compared with ResUnet, the DR1
(19.3 ± 1.7) and DR2 (16.2 ± 3.2) of the GL-HRNet model were higher, indicating that our
proposed network has a higher ability to identify new impact craters.

Table 3. The detection results of different network models on the validation data set and test data set.
(Bold in the table indicates the best results of this evaluation index.)

Method Data Set Errorla
(%)

Errorlo
(%)

Errorra
(%)

Recall
(%) F1 (%) Precision (%) DR1 (%) DR2 (%)

UNet Val set 7.43 9.97 8.98 69.2 ± 3.3 59.8 ± 4.3 73.2 ± 8.9 12.3 ± 2.1 11.2 ± 1.1
Test set 9.24 9.64 7.24 76.1 ± 2.3 62.8 ± 6.3 83.2 ± 10.9 13.3 ± 2.5 13.7 ± 2.1

ResU-Net Val set 7.86 8.93 5.83 72.4 ± 3.2 73.2 ± 2.5 79.3 ± 4.7 18.7 ± 3.2 15.4 ± 3.1
Test set 6.82 7.42 4.92 77.4 ± 2.4 77.2 ± 3.3 81.3 ± 7.6 18.7 ± 3.2 15.4 ± 3.1

GLNet Val set 7.32 8.71 3.72 72.1 ± 5.8 71.5 ± 2.6 78.1 ± 2.9 14.3 ± 3.8 12.8 ± 1.6
Test set 6.53 7.12 3.91 78.1 ± 3.8 77.5 ± 2.3 80.1 ± 5.9 17.3 ± 2.8 14.8 ± 3.2

HRNet Val set 10.19 10.23 7.26 74.6 ± 4.3 79.1 ± 4.3 85.3 ± 6.2 17.1 ± 3.4 13.7 ± 2.7
Test set 9.49 7.58 9.78 73.8 ± 2.5 76.4 ± 5.3 83.7 ± 9.5 16.3 ± 2.7 13.2 ± 2.1

GL-HRNet Val set 6.15 7.94 4.84 78.1 ± 3.4 77.4 ± 2.7 84.7 ± 7.9 12.5 ± 1.7 13.4 ± 3.2
Test set 5.89↓ 6.97↓ 3.68↓ 80.1 ± 2.7 79.4 ± 4.3 88.7 ± 8.9 19.3 ± 1.7 16.2 ± 3.2

On the global branch, GL-HRNet was compared with GLNet and HRNet. The com-
parison of mean absolute error and memory usage is shown in Table 4.

Table 4. Comparison of global branch experiments.

MAE GPU Memory/M

GLNet 0.0730 1980
GL-HRNet 0.0612 2432

On the local branch, GL-HRNet was compared with the network structure of feature
graph sharing in GLNet. The comparison of mean absolute error and memory usage is
shown in Table 5.

Table 5. Comparison of local branch experiments.

MAE GPU Memory/M

GLNet 0.0572 1900
GL-HRNet 0.0429 1854

In the global branch, MAE = 0.0612 of the GL-HRNet main structure was used in
this paper, and the mean absolute error was 0.01 lower than that of GLNet. As shown in
Figure 9, the segmentation result graph of GL-HRNet was also significantly better than
that of GLNet, proving that the structure proposed in this paper can perform impact crater
segmentation better in the global branch. In the local branch, the ResUNet network was
used to replace ResNet without integrating it into the global branch feature graph. The
mean absolute error (MAE = 0.0429) was lower, and the structure segmentation effect was
better without feature graph sharing.

4.2. Analysis of Mars Impact Craters and Moon Rilles Detection Results

To verify the robustness of the GL-HRNet model, based on transfer learning, the
trained lunar model was tested in the Mars data set. The size of the image sample is chosen
from a list of sizes from 512 to 16,384 pixels to provide a range of scales from 400m/pixel to
12.8km/pixel, and the detection results are shown in Figure 10:
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As shown in Figure 10, for Mars images with different resolutions, the model could
accurately identify impact craters on Mars, and more new impact craters could be found,
which lays a foundation for the next step of Mars data research and morphology analysis.
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To further verify the recognition effect of the GL-HRNet model on rilles, 160 Surface
crack images were trained, tested, and verified in the assembled data set using the method
of transfer learning. The recognition results are shown in Figure 11:
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Aeronautics and Space Administration (NASA) and China National Astronomical Observatory’s
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and rilles.

As can be seen from the recognition results in the figure, despite the insufficient
samples on the lunar surface, the crack model based on transfer learning training can
recognize impact craters and had an accurate recognition effect on the identification of the
lunar stream. Compared with other models, the GL-HRNet had broader applicability and a
more potent migration ability. However, it can also be seen that different data significantly
impacted the results, and high-resolution images are essential for future research.

4.3. Density Analysis of Lunar Impact Craters

The craters’ density is the number of craters per unit area. The distribution of impact
craters in the Moon is shown in Figure 12, which was a total of 176,534 impact craters,
among which the minimum diameter was 0.5 km and the maximum diameter was 860 km.
It can be found that there are many impact craters on the lunar surface, and they are
widely distributed.
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The density of impact craters with different diameters was analyzed to further study
the density distribution of lunar impact craters at different scales. The density diagram of
impact craters with diameters greater than 20 km is shown as Figure 13:
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As shown in Figure 13, the density of impact craters with diameters greater than
20 km in the Orientale Basin on the lunar surface was significantly different from that in
the surrounding areas, with high density. At the same time, the large craters in the western
region (165◦–150◦S, 25◦–35◦N) showed a high-density distribution. For impact craters with
a diameter of 5–20 km, their density map is shown in Figure 14:
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Figure 14. The density map of lunar impact craters (5 km < D < 20 km).

As can be seen from Figure 14, most craters are concentrated in the Orientale Basin,
and the western region (115◦W–125◦W, 10◦N–15◦N) showed apparent high density, similar
to the density distribution of those with diameters greater than 20 km. The density map of
impact craters with a diameter less than 5 km is shown in Figure 15:

For small craters less than 5 km in diameter, the following new findings were made:

(1) The difference boundary of impact crater density is highly consistent with the bound-
ary between lunar mare and highlands;

(2) Small impact craters at the North Pole and a local region of the Moon’s highlands
(5◦–85◦E, 25◦–50◦S) show significant density;

(3) Compared with the density of craters with diameters of more than 5 km, the density of
craters with diameters of 1 to 5 km in the Orientale Basin is not significantly different
from those in the surrounding area.
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5. Conclusions

In this paper, based on the combination of deep learning and transfer learning, a lunar
feature detection method (GL-HRNet) combining high-resolution features and improved
GLNet was used to further promote lunar energy discovery and geological research. In this
method, the ResNet in GLNet is adjusted to HRNet, and the HRNet and FPN are used as
the backbone network, which integrates rich multi-scale information of craters and valleys
while maintaining high-resolution feature maps. Secondly, ResUNet and FPN are used
as the backbone network in the local branch and are trained independently. The primary
loss function and auxiliary loss function aggregation are used to make the global branch’s
segmentation graph and the local branch’s segmentation output more accurate to the
corresponding manual labeling results. Compared with different CNN network structures,
GL-HRNet model has higher accuracy (88.7 ± 8.9) and recall rate (80.1 ± 2.7) and smaller
latitude and longitude error. In addition, the model has a good effect on the identification
of Mars impact craters, more new impact craters are found, and the robustness is higher
for the detection of Moon rilles. Finally, by analyzing the density distribution of lunar
impact craters with a diameter of less than 5 km, it was found that the density of small
impact craters in the North Pole and a local area of the lunar highlands (5◦–85◦E, 25◦–50◦S)
is obviously high. The density of impact craters in the Orientale Basin is not significantly
different from that in the surrounding areas.
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Abbreviations
The following abbreviations are used in this manuscript:

HR-GLNet High-resolution global-local networks
MAE Mean absolute error
GPU Graphics processing unit
CNN Convolutional neural network
DEM Digital elevation model
DOM Digital orthophoto map
FAM Feature aggregation module
RPN Region proposal network
MDCD Mars day crater detection
HR-Net High-resolution network
FPN Feature pyramid network
GT Ground truth
AP Average precision
DR Discovery rate
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