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Abstract: In the complex and dynamically varying underwater acoustic (UWA) channel, cooperative
communication can improve throughput for UWA sensor networks. In this paper, we design a
reasonable relay selection strategy for efficient cooperation with reinforcement learning (RL), con-
sidering the characteristics of UWA channel variation and long transmission delay. The proposed
scheme establishes effective state and reward expression to better reveal the relationship between RL
and UWA environment. Meanwhile, simulated annealing (SA) algorithm is integrated with RL to
improve the performance of relay selection, where exploration rate of RL is dynamically adapted by
SA optimization through the temperature decline rate. Furthermore, the fast reinforcement learning
(FRL) strategy with pre-training process is proposed for practical UWA network implementation.
The whole proposed SA-FRL scheme has been evaluated by both simulation and experimental data.
The simulation and experimental results show that the proposed relay selection scheme can converge
more quickly than classical RL and random selection with the increase of the number of iterations.
The reward, access delay and data rate of SA-FRL can converge at the highest value and are close to
the ideal optimum value. All in all, the proposed SA-FRL relay selection scheme can improve the
communication efficiency through the selection of the relay nodes with high link quality and low
access delay.

Keywords: cooperative communication; relay selection; reinforcement learning; underwater
acoustic networks

1. Introduction

Over the last two decades, the development of underwater acoustic (UWA) systems
for ocean monitoring has grown sharply. As a matter of fact, the demand of UWA data col-
lection has become more and more important for numerous research and industries fields,
such as renewable energies, underwater mining, offshore oil and gas [1–3]. However, the
ocean environment presents unprecedented challenges for UWA data collection including,
but not restricted to, limited communication distance, limited bandwidth, limited service
energy and dynamic channel conditions. In the complex and dynamic ocean environment,
the platforms or sensing nodes with intelligent learning capabilities have the potential to
learning optimum strategy for performance improvement.

The unique characteristics of UWA channel bring many limitations to data transmis-
sions. For example, the large frequency and distance dependent transmission attenua-
tion [4,5] will lead to the limited communication distances. At the same time, the temporal
and spatial variation characteristics [6–8] will make the data link lose the connectivity.
During the long-term deployment of UWA network, the link disconnection is highly likely
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to occur which results in transmission failure. Cooperative communication is a key technol-
ogy that can achieve reliable transmission, where the relay node can assist the failure nodes
to forward data to destination. One of the crucial issues in cooperative communication is
effective relay selection. This paper will explore how intelligent reinforcement learning
helps to enhance the performance of relay selection in UWA communication networks.

1.1. Related Work

Basic UWA communication networks establish two-way acoustic links between under-
water devices such as various sensors and autonomous underwater vehicles. The acoustic
network is then connected to a surface station which can be further connected to offshore
data center. The network design principles for each network layer have been discussed
in [9,10]. The authors explore potential applications and research directions for underwater
sensor networking [11], such as monitoring, navigation and localization [12]. In the early-
stage research, the design of UWA network is commonly performed in a layered structure,
typically including the physical layer, the data link layer and the network layer [9–11].
For higher layer protocol design and network performance evaluation, the physical layer
parameters are usually assumed to be ideal, even though the errors and special features of
UWA channel will affect network performance. In recent years, the imperfect feature in
physical layer has drawn more and more attention for practical applications. For example,
in the localization scenario, how the error sources influence the estimated localization
result has been analyzed in [13], where the error sources include the length of baseline,
the error in ranging, etc. In UWA adaptive communication, how the imperfect channel
state information affects the performance of multi-carrier adaptive modulation has been
analyzed by experimental data [14]. In this paper, the proposed cooperative relay selection
scheme will model the imperfect outdated channel state information to combine with the
reinforcement learning process, and will be evaluated by both simulation and experiment.

The UWA cooperative communication has the advantage that it is easily to be in-
tegrated with the existing system including both static [15] and mobile networks [16].
For integration with data collection network, Zhang et al. [17] proposed selective relay
cooperation protocol and dynamic node cooperative protocol for a practical underwater
data collection network, where UWA sensor nodes can cooperate with each other without
adding additional relay nodes. Several lake experiments with full protocol implementation
have demonstrated that the proposed protocols can significantly improve the network
performance. For dynamic UWA network with joined new nodes, Liao et al. [18] proposed
a network access mechanism, which allows nodes that have joined the network to help new
nodes access the network through multi-hop relay forwarding. In the relay path determina-
tion phase, they presented a relay path selection algorithm based on lifetime and energy
efficiency. This algorithm can significantly extend the network lifetime and improve energy
efficiency. For integration with physical layer modulation scheme, Doosti-Aref et al. [19]
investigated both optimal relay selection and power loading issues for UWA orthogo-
nal frequency division multiplexing (OFDM) cooperative transmission. They considered
amplify-and-forward (AF) relaying with perfect channel state information (CSI) in the
frequency selective Rician fading channel. The optimal relay selection and power allocation
problems are solved in two phase to minimize the bit error rate (BER) and maximize the
system capacity. For relay cooperation in linear UWA networks, Li et al. [20] researched the
relay deployment problem in two aspects: which conditions a relay should be deployed
and where to deploy it for the optimal performance. A closed-form expression for the
open distance and optimal placing position have been derived, and simulation results
demonstrate that properly introducing a relay can reduce the network energy consumption
almost without increasing the end-to-end delay. All the above UWA cooperation protocols
assume theoretical channel model or perfect channel state information for analysis.

The intelligent algorithms have the potential to learn optimum strategy for perfor-
mance improvement in complex UWA channels. Some research studies focus on UWA relay
selection by exploiting machine learning algorithms. For example, Li et al. [21] modeled
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relay selection as a contextual bandit problem, where the relay is selected based on one
bit of contextual communication environment information rather than a large amounts of
instantaneous or statistical CSI information. The proposed scheme has a stable performance
in complex UWA environment and simplifies the relay selection process for efficient cooper-
ative transmission. Zhao et al. [22] proposed a hierarchical adversarial multi-armed bandit
learning framework to improve adaptive relay decision. The proposed framework exploits
heuristic interactions between hierarchical frameworks to integrate reward estimation, in-
formation prediction, adaptive exploration and decision making within a holistic algorithm
to maximize learning efficiency. It enables cooperative communication networks with
greater stability and lower communication costs in complex and varying underwater envi-
ronments. The above two studies have shown the potential of artificial intelligence learning
for underwater systems. Different from bandits learning problem in [21,22], reinforcement
learning (RL) provides a general and powerful computational framework for sequential
decision making problem. RL can satisfy the optimization in actual sequential time varying
UWA channels, where the channel usually cannot be modeled into a linear pattern.

Reinforcement learning (RL) has been used to address the problem of maximizing
rewards or achieving specific goals by learning strategies during the interaction of an agent
with its environment. In UWA communication systems, some researchers have employed
RL to solve adaptive problems, such as adaptive data and image transmission [23,24], and
adaptive routing [25–27]. In terms of relay selection, Jadoon et al. [28] firstly proposed QL-
based relay selection algorithm (QL-RSA) in wireless sensor networks. QL-RSA defines the
relay nodes as the set of states and whether to select a new relay as the set of actions, which
requires less feedback information and provides each source a self-learning capability. QL-
RSA receives the feedback reward by learning AF cooperative environment in time-varying
Rayleigh fading channels to maximize the network throughput. In wireless sensor networks,
Su et al. [29] modeled the process of relay selection for cooperative communications as a
Markov decision process (MDP) and proposed a deep reinforcement learning based relay
selection scheme, where the channel state and relay nodes are defined as the state and
actions of RL, respectively. The best relay is selected from multiple relay nodes for better
performance of outage probability and system capacity. The above researches model
channel theoretically and assume the feedback is perfect for wireless cooperative sensor
networks [28,29]. For implementation RL based relay selection in UWA sensor networks,
Su et al. extended the scheme [29] to internet of underwater things (IoUT) network [30] with
additional power adjust strategy to maximize the end-to-end signal to noise ratio (SNR) of
the system. Han et al. [31] investigated reinforcement learning based joint relay selection
and power allocation in energy harvesting UWA cooperative networks. In the proposed
model, a joint state expression is presented to better reveal the relationship between learning
and environment, and a reward function that consists of channel capacity and energy
consumption is proposed for adjusting power strategy to balance instantaneous capacity
and long-term quality of service (QoS). Wang et al. [32] investigated the power allocation
problem in energy harvesting full duplex UWA cooperative relay network by reinforcement
learning. The relay adjusts transmission power by the battery level, harvested energy and
CSI to maximize the cumulative rate of the UWA network. In [30–32], the UWA channel
is simulated by integrated empirical formula and statistic model, and the relay selection
criteria is similar to wireless sensor networks, mainly by CSI. This paper will systemically
analyze how the specific phenomena of UWA affect relay selection criteria in Section 1.2,
will design an effective state and reward expression for UWA RL based relay selection with
the consideration of UWA propagation delay in Section 3.1.

In the above RL based UWA cooperation systems [28–32], the learning related param-
eters are static. We consider that the learning process is a dynamic process to explore the
possible actions for maximizing the reward. Accordingly, in the early stage of learning, the
intelligent agent of RL should explore the possible random actions with high possibility.
With the number of iterations increasing, the learning will turn to convergence gradually,
then the agent should explore random action with low possibility and exploit the previous
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learning results for relay selection. Herein, we employ simulated annealing (SA) algorithm
to adapt the exploration rate and greedy factor dynamically for better balance between
exploration and exploitation. The SA algorithm is one of best-known metaheuristic meth-
ods for addressing global optimization problems [33]. The SA algorithm is powerful to be
applied in diverse areas, and still attracts much attention in recent research, such as multi-
objective optimization problem [34] and federated learning problem [35]. The SA algorithm
simulates the cooling down process of solid annealing whose temperature decreases from
a high value. With the decrease of temperature, the global optimal solution is explored
randomly in the solution space according to the Metropolis criterion to avoid falling into
local optimum. For the routing problem, SA is combined into Q-routing algorithm which
has self-adaptive learning rate for dynamic exploration [36,37]. We utilize SA algorithm
to dynamically adjust the exploration rate and dynamic greedy factor for RL through the
temperature decline rate. The proposed algorithm can better balance the exploration and
exploitation process of reinforcement learning, and achieve better long-term performance
as the agent can learn the best action in both exploration and exploitation stage.

1.2. Motivations and Contributions

Principally, the signal attenuation from the source node to the destination node is
distance-dependent in both terrestrial electromagnetic and underwater acoustic networks.
Correspondingly, the SNR criteria based optimal relay usually has a shorter distance to the
source or destination node than other potential relays. However, the SNR based criteria may
not be effective without taking specific characteristics of UWA channel into consideration.
Low UWA speed leads to long propagation delay of UWA signals [38,39]. Considering the
long propagation delay together with the distance independent characteristics of UWA
channel, we will discuss how these phenomena affect the SNR based cooperative criteria.

• Shadow zones: In radio communications, the path of the radio wave is modeled as
straight line. In large scale underwater communication networks, the speed of sound
in seawater is not a constant, so the actual UWA propagation path is a curve where the
sound ray bends to the lower velocity layer of the water and leads to nonlinear sound
propagation [40]. As shown in Figure 1, the nonlinear UWA propagation will form
communication shadow zones and convergence zones. The sound rays will converge
to convergence zones, and the node in shadow zones can only receive few sound
rays. Assuming that potential relay node r1 and r2 are located among the source S and
destination D, and r1 is located in the convergence zone and r2 is located in the shadow
zone. By SNR based cooperative criteria, r1 will be chosen as optimal relay. However,
due to the nonlinear propagation of sound, the sound ray of r1 might transmit a longer
way which consumes more time for one-trip data transmission. The channel capacity
obtained from higher SNR may not compensate the longer propagation delay, and
finally leading to lower throughput.

• Underwater obstacles: Underwater random obstacles will interfere the signals be-
tween potential relay nodes and source/destination. For example, as shown in
Figure 2, potential relay node r2 is close to the destination node but there are fish
schools as obstacle, which results in worse channel condition than r1. While relay
node r1 is far away but there are no obstacles. By SNR only cooperative criteria, r1
might be chosen as optimal relay, while it is far away from destination. In this case,
there is no guarantee which relay node is better in the view of network throughput.
So we should take both channel quality and propagation delay into consideration.



Remote Sens. 2022, 14, 1417 5 of 27

Figure 1. Test results of nonlinear sound ray propagation in the Arctic region, (Urick [40]).
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Figure 2. The impact of obstacles and frequency selective fading on relay selection.

• Frequency selective fading: UWA channel is a typically frequency selective fading
channel with severe multi-path effect, where multi-path propagation can result from
signal reflections from surfaces, bottoms and water objects or bending along the axis
of the lowest sound speed. The signals from the source node propagate through
different paths to the destination node may result in the signal elimination on specific
frequency. The signal attenuation due to frequency-selective fading is independent
of distance, and it only depends on the signal frequency and the multi-path delay
difference between the multiple paths. For example, as shown in Figure 2, suppose
that the channels between S to r3 and r2 to D are in frequency selective fading, and r1
will be chosen as relay by SNR based criteria. Nevertheless, with longer propagation
delay, it is uncertain that r1 will have higher throughput than r3.

Different from radio network solutions, if above typical phenomena of the UWA chan-
nel are not considered, the best relay selection may not be effective in practical underwater
scenario. In this paper, we propose a RL based relay selection scheme for UWA networks
that takes both channel quality and transmission delay into consideration, which is more
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effective and applicable for UWA networks. Furthermore, the parameters of the learning
process for relay selection strategy will be dynamically optimized for less convergence
time and better convergence value. The main contributions of this paper are as follows:

• We propose a RL based relay selection strategy for UWA cooperative communication
with the knowledge of feedback CSI and transmission delays of relay nodes. Effective
state, action and reward expression have been formulated to better reveal the rela-
tionship between agent and environment. The combination of outdated CSI and the
system mutual information (MI) is defined as the state of RL. The selection of different
relay nodes is set as the action. The joint function of system MI and access delay is
established as the reward. The proposed scheme selects relay nodes with good link
quality and low access delay.

• We exploit the simulated annealing (SA) algorithm to improve the convergence per-
formance of UWA relay selection strategy. In the RL process, exploration rate is
dynamically adapted by SA optimization through the temperature decline rate. In
turn, the temperate decline rate will regulate the probability to accept the new solution
of Q-values. The proposed strategy can improve the convergence speed and value in
comparison with RL with constant exploration rate.

• We propose the fast reinforcement learning (FRL) scheme for implementation of the
proposed relay selection scheme in practical UWA networks. Before experimental
implementation, the similar simulated channel model will be utilized for pre-training
of SA-RL scheme. So the possible action in different channel state will be explored.
And then, the on-line RL stage will be implemented with the pre-trained parameters.
Evaluated by experimental data, it shows that the proposed FRL scheme can accelerate
the convergence and can improve data rate UWA network.

The remainder of this paper is organized as follows. Section 2 formulates the system
model and channel model in details. Section 3 models the UWA dynamic cooperative
problem by RL, and has proposed SA-FRL method for performance improvement. Section 4
presents the simulation and experimental results in comparison with other RL based UWA
relay selection methods. Section 5 provides a discussions. Finally, Section 6 concludes the
research work.

2. System Model
2.1. UWA Cooperative Communication System Model

In this paper, we consider an UWA sensors network as shown in Figure 3. The
sensor nodes are deployed underwater for sensing and transmitting important data to
the sea-surface destination node. The sensor nodes are equipped with UWA modem for
data transmission. As the sensor nodes are equipped with power limited battery, the
transmission power can not be too high for the consideration of network lifetime. At the
same time, the attenuation of UWA channel is severe and the loss of connectivity usually
happens. On this account, the relay nodes which are randomly distributed between source
and destination can help to forward the collected data to improve transmission quality
of service of whole system. In this paper, we consider an application scenario where a
source node S sends data to a destination node D and selects an optimal relay node ri for
cooperation, as shown in Figure 3.
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Figure 3. An UWA cooperative network system.

In this paper, time division multiple access (TDMA) protocol is employed to avoid
interference among the nodes. When the relay node forwards the information, it consumes
time or frequency resources, which will downgrade the spectrum efficiency. For example,
when the system selects M relay nodes for cooperation, only one efficient data packet has
been transmitted in M + 1 time slots. The idea of “opportunistic relay” [41] has proved that
the “best relay” cooperative strategy can also achieve full set gain compared to the strategy
of selecting multiple relays. The best relay strategy greatly reduces the system cooperative
overhead and still can realize relatively high throughput. Therefore in this paper, the data
is sent in time round, and one best relay is selected in one round. In the initialization round,
the source node broadcasts the data and one random relay node forwards the data. In the
normal round of data transmission, node S sends the data in the first time slot, and the
selected best relay forwards the data in the second time slot. In this way, the destination
node only needs to select and notify an optimal underwater relay node without calculating
and feeding back channel information of all relay nodes, which greatly scale down the
complexity of the system.

The relay modes for cooperative communication are usually divided into amplify-
and-forward (AF) and decode-and-forward (DF) according to how the relay nodes process
the overheard received signals. The AF mode amplifies and forwards the received signal
directly to the destination. While the DF mode decodes the received signal, re-encodes
the signal and then forwards it to destination [42,43]. The AF is simple to implement, but
the noise will also been amplified. The DF has no such drawback due to the decoding
and encoding operations at the relay node. Especially in UWA channel, the sources of
noise are complex, such as the wind waves noise, turbulence noise, shipping activity noise,
thermal noise, etc. The noise level is high, which is usually several tens of dB. When AF
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is employed, it will amplify the noise when amplify the whole received signal. Previous
studies in [17,44] have shown how DF can efficiently work in UWA communication and
network with experimental evaluation. So different from the previous UWA QL based
cooperation [30–32], the research focus of this paper is on the scenario that the relay nodes
employ the DF protocol for cooperation.

For DF system, the mutual information of the entire system when selecting relay i at
time round t can be expressed as

I(t) =
1
2

log2

(
1 + γSD

(t) + γri D
(t)
)

(1)

where γSD and γri D are the received SNRs to measure the channel quality.
γSD is the SNR of signals received by node D sent from node S in tth round of data

transmission, which can be expressed as

γSD
(t) =

PSGSD
(t)

σ2 (2)

where PS is the transmission power of the source node, and GSD
(t) represents the channel

gain of S-D communication link.
γri D is the SNR of signals received by D sent from node relay node ri in tth round,

which can be represented as

γri D
(t) =

PrGri D
(t)

σ2 (3)

where Pr is the transmission power of the relay node and Gri D
(t) represents the channel

gain of ri-D communication link.

2.2. UWA Channel Model

UWA systems have to be designed to operate in the complex underwater environment,
where the system geometry and channel conditions are varying during the deployment.
Especially for resources allocation system, it is crucial to have a relatively accurate channel
model for evaluation of the algorithms and protocols before experiment. Beam tracing
tools which use ray theory can provide deterministic channel impulsive response (CIR), but
they do not consider random channel variations, such as BELLHOP [45,46]. Some studies
have been conducted to statistically model the UWA channel. The relay selection schemes
in [30,31] have utilized the path loss function to model channel gain, Wenz noise model
to calculate the noise power level (NL), and fading coefficient that follows specific fading
distribution to simulate small scale fading. This type of method can simulate the received
SNR statistically.

In this paper, the time-varying UWA channel has been simulated in the view of physi-
cal layer with the consideration of both acoustic propagation loss and inevitable random
channel variations. The random UWA channel variations include location uncertainty of
transmitter/receiver, the motion of sea surface, and small-scale random scattering, etc.
The variations will affect not only the locally averaged received power, but also the in-
stantaneous fast varying channel response. The channel transfer function will be modeled
with acoustic propagation loss and channel variations, and then the gain contained in the
channel can be calculated accordingly [45].

The propagation path loss of UWA signal is related to carrier frequency f and trans-
mission distance d. The UWA propagation loss A(d, f ) can be calculated by the empirical
formula in reference [4] as

A(d, f ) = dkα( f )d (4)
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where dk stands for spreading loss and α( f )d stands for absorption loss in water. k is the
spreading factor. α( f ) is absorption coefficient which can be calculated by the Thorp’s
empirical formula in dB per kilometer as

10 lg[α( f )] = 0.11
f 2

1 + f 2 + 44
f 2

4100 + f 2 + 2.72× 10−4 f 2 + 0.003 (5)

where f is in KHz.
Due to the displacement of the transmitter/receiver in underwater environment, as

well as the changes in the sea surface height or the shape of seafloor, the system geometry
is varying. These factors cause the uncertain change of multi-path. Suppose that the pth
path has an average communication distance d̄p, and dp can be modeled as a variable that
follows Gaussian distribution. The channel transfer function is proportional to reflection
and inversely proportional to path loss. For pth path, the corresponding average channel
transfer function H̄p of pth path with average propagation distance d̄p can be expressed as

H̄p( f ) =
Γp√

A(d̄p, f )
=

Γp√(
d̄p
d̄0

)k
α( f )d̄p−d̄0

H̄0( f ) = h̄pH̄0( f ) (6)

where Γp is the cumulative reflection coefficient of the seabed and the sea surface. For
normalized expression to add all multi-paths together, normalized multi-path propagation
distance d̄0 is introduced. H̄0( f ) is the normalized reference channel transfer function
referred to d̄0. h̄p is the average gain of the normalized path.

Modeling the pth multi-path as a path with gain hp and delay τp, then the total channel
transfer function can be represented as

H( f ) = H̄0( f )∑
p

hpe−j2π f τp (7)

where τp can be expressed as a function of propagation speed c as τp = dp/c− t0, and t0 is
the normalized reference delay. The changes in path gain hp and path delay τp caused by
the temporal change of the position of the UWA node can be expressed as a function of the
path length which is expressed as dp = d̄p + ∆dp, where ∆dp is a random offset distance.
The path gain hp in Equation (7) can be characterized as a function of h̄p in Equation (6) as

hp = h̄p
1√(

1 + ∆dp
d̄p

)k
α

∆dp
0

(8)

where α0 is the normalized absorption coefficient.
For the further step, we consider the widely existed scattering in UWA channel, which

is caused by placement of scattering points within a scattering field. If scattering occurs
along a path, the path will be split to a number of micro-paths. Then the channel transfer
function can be expressed as

H( f ) = H̄0( f )∑
p

hpβp( f )e−j2π f τp (9)

where βp is a small-scale fading coefficient, which can be expressed as

βp( f ) =
1
hp

∑
i≥0

hp,ie
−j2π f δτp,i (10)



Remote Sens. 2022, 14, 1417 10 of 27

where hp,i is the random gain within the multi-path cluster, τp,i = τp + δτp,i is the random
delay within the multi-path cluster, hp,i and δp,i characterize the random scattering in the
UWA channel.

Finally, the instantaneous channel gain G̃(t) of time-varying UWA channel is ex-
pressed as

G̃(t) =
1
B

∫ f0+B

f0

|H( f , t)|2d f (11)

where H( f , t) is the total channel transfer function including both large and small scale
channel variations, which is related to the large-scale path propagation loss, interface
reflection, small-scale scattering and other factors.

2.3. UWA Channel with Long Transmission Delays

The speed of UWA propagation is only about 1500 m/s, which leads to large delay of
UWA signal during its transmission. The transmission delay of UWA communication is
five orders of magnitude higher than that of land-based radio communication. The impact
on UWA communication and network should not be ignored.

On one hand, the location of the relay nodes are different, so that their transmission
delays to the destination node are different either. According to the analysis in Section 1,
the nodes with better channel quality may not be able to reach the destination node with
the shortest access delay. From the perspective of system throughput, the channel quality
and access delay should be comprehensively considered. Define access delay of one round
in an UWA cooperative communication system as the sum of the transmission delay and
the packet duration. The total access delay TSri D from source node to the destination node
can be expressed as

TSri D = (TSri + Tp) + (Tri D + Tp) (12)

where TSri is the transmission delay from the source node to the relay node ri, Tri D is the
transmission delay from the relay node ri to the destination node, and Tp is the duration
of the data packet. The source node can know the channel status and transmission delay
information of each potential relay through the feedback of the destination node [47]. In RL
based UWA relay selection, the influence of access delay will be designed in the expression
of system reward.

On another hand, the relay selection is decided according to the UWA feedback CSI.
When the selected relay transmits data, it experiences a certain transmission delay after the
time of feedback. That is to say, the actual transmission is decided by the feedback CSI one
transmission round ago. The phenomenon of the outdated feedback CSI will be considered
in the state design of RL based UWA relay selection.

3. RL Based Relay Selection Method for UWA Cooperative Networks

With the description of system model, the system actions are discrete, which are
corresponding to the selection of different relay nodes. For a given system model, the UWA
relay selection process is comparable to the state transition process, where the agent selects
best relay based on the current system state and then obtains the next system state. The
system state in the next round is only related to current state and action, and is independent
of the other previous states and actions. Therefore, the relay selection process can be
modeled as Markov Decision Process.

Reinforcement learning can derive optimal strategy for MDP system through the
interactions with the environment by “attempt and failure” mechanism. The basic principle
is that if the chosen action receives a larger reward from the environment, the probability
that the agent adopting this action strategy in the future will increase. On the contrary,
when the less reward is obtained, the probability that the agent choosing the action will
be weakened.

Theoretical relay selection strategies often assume that the channel state information
is ideal. However, in the dynamically changed UWA channel, the channel state is time-
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and frequency- varying and with outdated property. Reinforcement learning can train
the best action strategy a according to the known channel state s and the corresponding
reward r, and finally obtain the best relay selection. RL relay selection can work without
prior channel knowledge and system model. And even with delayed imperfect CSI, it can
still train the action under specific available states, which reveals the relationship between
channel and actions.

3.1. RL Based Relay Selection for UWA Cooperative Communication

The objective of the proposed RL based relay selection for UWA cooperative commu-
nication is to select the potential relay node with high mutual information and low access
delay for the improvement of long-term network throughput. A framework of the RL
based UWA cooperative communication is shown in Figure 4, where the environment is
the UWA channel, the agent is the source node. The specific design of the states, actions
and rewards are as follows.

Action

(Relay selection)

State

（Outdated CSI and 

system MI）

Reward 

(System MI & Access delay)

Environment

(UWA channel)

Agent

(Source node)

(Next state)S

Figure 4. Framework of RL based UWA cooperative communication.

States: The state for reinforcement learning is combination of received feedback SNR
and system mutual information:

D(t) = [γ
(t−1)
SD , γ

(t−1)
ri D

, I(t−1)] (13)

where γ
(t−1)
SD and γ

(t−1)
ri D

represent the channel states of S-D and ri-D link in time round

t− 1, respectively. γ
(t)
SD and γ

(t)
ri D

are defined in Equations (2) and (3), and the channel gain

can be calculated as Section 2. I(t−1) represents the whole system state at times round t− 1
in mutual information. It should be noted that when the agent performs an action at time t
according to the state s(t), the SNR and mutual information are actually the feedback at
time t− 1. UWA system has to select the relay with the available outdated CSI.

Actions: The action is to select one of the N nodes as a relay

A = {a(t)} (14)

where {a(t)} ∈ A = {1, 2, . . . , i, . . . , N}. a(k) = i indicates that node i is selected as a relay
for cooperation in time round t.

Rewards: According to the analysis in Sections 1.2 and 2.3, We define the reward as a
function of system mutual information and total access delay when selecting a relay

r(t) = β1 × ln(I(t)) − β2 × TDri D − ρ× u (15)

where β1 is the proportional coefficients of mutual information, and concavity view of loga-
rithmic function can well capture the system utility for data analysis. β2 is the proportional
coefficients of access delay, and ρ is the scale coefficient of energy consumption factor u.
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In the UWA cooperative network, when the selected relay node has the higher mutual
information, the system will achieve higher rewards and throughput. The cumulative
reward of the system with RL can be expressed as

r(0) + ζr(1) + ζr(2) + · · · =
M

∑
t=0

ζr(t) (16)

where r(t) is the immediate reward of tth round, ζ is the discount factor and M is the
total number of iterations of RL. The smaller the ζ value is, the more immediate reward is
considered. The greater the ζ value is, the more future reward is considered. The objective
of RL based dynamic cooperation is to select the optimal relay node to reach the maximum
amount of data during the long-term network deployment.

State-action Q function: The Q-table is used in the RL algorithm to store the maximum
future expectation reward that can be obtained by taking different actions in each state. The
agent will use the ε-greedy algorithm to select the relay node with the maximum Q-value
for cooperative communicate at the current moment. The Q-value update function for
iteration is

Q
(

s(t), a(t)
)
← (1− σ)Q

(
s(t), a(t)

)
+ σ[r(t) + ζV(s(t+1))] (17)

V(s(t)) = max
a∈{1,2,···,N}

Q(s(t), a(t)) (18)

where σ ∈ (0, 1] is the learning rate, which represents the speed of updating Q-value.
V-table stores the maximum Q-value in each state.

3.2. SA Optimized RL Relay Selection Strategy

According to the values in Q-table, optimal relay can be selected by ε-greedy algo-
rithm to avoid being trapped in a local maximum. The ε-greedy selection strategy can be
expressed as

π(s
∣∣a′) = { arg max Q

(
s(t), a′

)
, probability 1− ε

random action, probability ε
(19)

where ε is the greedy factor. In state s, the ε-greedy algorithm selects the action corre-
sponding to the maximum Q-value with probability 1− ε, and selects random action with
probability ε. ε is an invariant constant in classical ε-greedy algorithm.

For invariant constant ε, even when the rewards turn to be stable, the selection strategy
will still explore other possible actions with probability ε, which will cause the reward
to fluctuate. Therefore, this paper exploits the thought of SA algorithm to optimize the
strategy of relay selection dynamically. The agent will fully explore all of the actions at
the beginning of RL with a high value ε. With the number of iteration rounds increasing
and reward converges to be stabilized, the value of ε will decrease, which indicates that the
agent will explore random action with lower probability.

In this paper, the action selection strategy is optimized by Metropolis criterion based
SA algorithm. The greedy factor ε is related to the exploration rate, and it can be dynami-
cally adapted by SA optimization through the temperature decline rate. Meanwhile, the
temperate decline rate will regulate the probability to accept the new solution of Q-values.
In each round, the new solutions of Q-value will be generated by RL, and whether to accept
new solution is determined by Metropolis criterion under certain temperature. The greedy
factor ε of RL is corresponding to the temperate in SA algorithm, and ε is gradually reduced
to the lowest temperature until the end of iteration.

The flowchart of SA-RL algorithm is shown as Figure 5, and the specific implementa-
tion steps are described as follows.
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Step 1: Initialize the solution Q0, V and temperate T0. The elements of initial Q-table
are set to 0. For each state, V is defined as Equation (19). The initial temperature for SA is
set to 1.

Step 2: In t time round, calculate a new solution Qnew by RL algorithm.
Step 3: Implement Metropolis criterion to decide whether to accept the new solution

under temperature Tt of SA. Define ∆E = V − Qnew, which represents the difference
between the maximum value V in the current state and the generated new Q-value Qnew.
If ∆E ≤ 0, then the new solution will be accepted. If ∆E ≥ 0, the new solution will be
accepted with a probability given by Pr(∆E) = exp(−∆E/KTt), where K is Boltzmann
constant, and usually can be set to 1.

Step 4: Cooling schedule. The cooling schedule represents the procedure to reduce
the temperature as the convergence is reached, which means the agent will explore the
random action with lower probability. In this paper, the temperature reduces according
to Tt+1 = λTt, where λ is the cooling rate which decides the decreasing speed of the
temperature. The value of cooling rate is less than 1. In SA-RL, the temperature is set to be
greedy factor.

Step 5: If the stop criteria is met, stop the algorithm, or else go to Step 2. The termi-
nation condition is set to stop the algorithm when the temperature reaches the minimum
value or the algorithm reaches the number of iterations. In this paper, the algorithm will be
terminated when the number of iterations reaches the scheduled number.

Begin

Initialize solution 

and temperature

Caculate Qnew 

ΔE=V-Qnew

ΔE<0？

Update parameters

Q=Qnew, V=Qmax

Meet the stop 

criteria? 

End

Cooling 

schedule
N

Y

Y                                    N

Accept new solution by 

Metropolis criterion

Figure 5. Flowchart of the SA-RL algorithm.

3.3. Fast Reinforcement Learning Scheme

The RL algorithms used in literature [30–32] initialize the Q-table to a full zero matrix
during parameter initialization for UWA relay selection. For implementation of the pro-
posed relay selection scheme in practical UWA networks, it is reasonable to pre-train the
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SA-RL scheme before experimental implementation. The simulated or channel with similar
settings, or the pretest data can be utilized for training. It helps to explore possible actions
in certain state.

Herein, a fast reinforcement learning scheme is proposed with the consideration of
actual field implementations. It includes two stages: pre-training stage and on-line learning
stage. In the parameter pre-training stage, the training data is obtained by simulation in a
similar UWA channel scenario. Through the training, a pre-trained Q∗ table is obtained. In
the on-line learning stage, the Q-table matrix is initialized to Q∗. In each iteration round,
the agent will update Q-table by SA-RL algorithm. As the proposed SA-FRL scheme has
explored possible actions in the first stage, it can better exploit the exploration results in the
second stage for performance improvement.

The pseudocode of the SA-FRL algorithm for UWA cooperative communication net-
works is shown as Algorithm 1.

Algorithm 1: SA-FRL algorithm.
1. STAGE1: Pre-training stage
2. Initialize σ, ζ, ε, λ, K, s(0), Q∗(s, a) = 0, V∗(s) = 0.
3. for episode=1:Max_episode do
4. for t = 1, 2, 3, . . . , M, do
5. Take action a(t) according the latest Q-table.
6. The destination node obtain γ

(t)
sd , γ

(t)
rd , I(t).

7. Calculate r(t) via(16).
8. Calculate Qnew(s(t), a(t)) via(18).
9. Calculate the difference V(s(t))−Qnew(s(t), a(t)).
10. if V(s(t)) < Qnew(s(t), a(t))
11. Q(s(t), a(t)) = Qnew(s(t), a(t)).
12. else
13. p = exp(−(V(s(t))−Qnew(s(t), a(t)))/Kε).
14. n = rand.
15. if p < n
16. Q(s(t), a(t)) = Q(s(t), a(t)).
17. else
18. Q(s(t), a(t)) = Qnew(s(t), a(t)).
19. end if
20. end if
21. Update V(s(t)) via(19).
22. s(t+1) = [γ

(t)
sd , γ

(t)
rd , I(t)].

23. if t ≥ M
24. go to 28.
25. else
26. εt+1 = λ× εt.
27. end if
28. end for
29. end for
30. Save Q∗;
31. STAGE2: On-line RL stage
32. Initialize Q(s, a) = Q∗, V(s) = 0.
33. for episode=1:Max_episode do
34. for t = 1, 2, 3, . . . , T, do
35. Select actions a(t) by ε strategies.
36. Repeat 7-27.
37. end for
38. end for

4. Numerical Results
4.1. Simulation Results
4.1.1. Simulation Setup

Simulations have been conducted to evaluate the performance of the proposed relay
selection scheme in UWA data collection networks. The simulated UWA network includes
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one source node, one destination node and four relay nodes, which are located in an area
with 3km diameter.

To generate more realistic CSI for reinforcement learning, the time-varying UWA chan-
nels are simulated as Section 2. The channels can be simulated by setting the geography and
environmental parameters, such as communication distance and depth, communication fre-
quency band, speed of sound, the variation of distance and height of transmitter/receiver,
sea surface/bottom, et al. This simulation method fully considers the actual signal transmis-
sion characteristics of physical layer, including large-scale path variation and small-scale
scattering [45]. According to this method, the time-varying channel impulsive response will
be generated, and the channel gain of the corresponding frequency band can be obtained
accordingly. The SNRs can be calculated by Equations (2) and (3), where the sound source
level (SL) can be set to a certain value, and the noise power level (NL) can be calculated by
Wenz model. To incorporate these parameters with the time-varying channel gain together,
the received SNR sequence can be calculated finally.

To mitigate the effect of frequency selective fading, the multi-carrier modulation has
been used for physical layer communication scheme. Specifically, OFDM is employed
where the number of subcarriers is set to 1024 and the frequency is 14–20 kHz. The settings
are matched with AquaSeNT OFDM modem, which are accordance with the experimental
setup which we will further used for evaluation.

The parameters of UWA environment for simulation are listed as Table 1. It can be
seen that parameters including the sound speed, the sea surface and bottom, the location of
transmitter/receiver, the scattering intra-paths are all time varying within defined variation
range. The topology in Figure 3 is used as an example for simulation in this paper. The
distance between the nodes can be generated randomly.

Table 1. Simulation parameters of UWA environment.

UWA Environment Parameters Value

Sound speed 1200–1500 m/s
Spreading factor 1.7
Surface height 100 m

Variation of surface height ±1 m
Transmitter/receiver height 25 m

Variation of transmitter/receiver height ±1 m
Channel distance [3, 2.5, 2.25, 1.75, 1.45] km

Variation of channel distance ±2 m
Number of intra-paths ±1 m

Mean of intra-path amplitudes 0.025
Variance of intra-path amplitudes 0.000001

Figure 6 has shown examples of the CIR with certain communication distance from
sensor nodes to destination node D for illustration. It can be seen that the multi-path delay
and amplitude keep varying during the simulation. From the sub-figures of Figure 6, it can
be seen that the longer communication distance leads to lower amplitude of CIR. The multi-
path structures of the five nodes are different. With the generated CSI, the corresponding
channel gain can be calculated. According to the generated time-varying CIRs, the range of
channel gains of S-D and ri-D are [−30, −28.5], [−28.8, −27.4], [−28.3, −26.7], [−27, −25.4],
[−26, −24.8], respectively.
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(a) (b)

(c) (d)

(e)

Figure 6. Channel impulse responses from sensors nodes to destination node. (a) Received CIR by D
sent from S, d = 3 km. (b) Received CIR by D sent from r1, d = 2.5 km. (c) Received CIR by D sent
from r2, d = 2.25 km. (d) Received CIR by D sent from r3, d = 1.75 km. (e) Received CIR by D sent
from r4, d = 1.45 km.
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For reinforcement learning, the CSI is quantized according to the CSI sequence to
construct a Q-table. The channel states of S-D and ri-D are uniformly quantized to 6 levels,
and the corresponding mutual information is also 6 levels. Thus the total number of states
is 63 = 216. There are 4 relay nodes in the simulated UWA network, so the size of Q-table
is 216 × 4. The propagation delay is calculated by distance and speed of sound in the
simulation. In the practical UWA network implementation, the delay can be obtained by
the message exchanges of sensor nodes. The simulation parameters for SA-RL algorithm
are set as Table 2.

Table 2. Simulation parameters of SA-RL.

Parameters of SA-RL

Max_episode Max episode of learning 10

M Rounds of learning per
episode 2000

σ Learning rate 0.9
ζ Discount factor 0.9
λ Cooling rate 0.996
K Constant 1

εmax Initial maximum greedy factor 1
εmin minimum greedy factor [0.05, 0]

4.1.2. Performance of SA-RL Relay Selection Scheme

The performance of the SA-RL UWA relay selection scheme with dynamic ε is simu-
lated and compared with RL scheme with invariant ε strategy. For SA-RL relay selection
strategy, the initial value of annealing temperature is set to εmax = 1, and then approaches
to minimum value. Two parameter settings, εmin = 0.05 and εmin = 0 have been simulated
for evaluation. For invariant ε comparison, the settings are ε = 0.2 and ε = 0.1. The random
relay selection is compared as a lower bound.

As shown in Figure 7, the proposed SA-RL relay selection can achieve optimal reward
after convergence, as the greedy factor is dynamically adapted. The fluctuation of reward
of SA-RL tends to be stabler than invariant ε strategy after convergence, because the greedy
factor is very small after convergence, which means the agent explores random action with
low probability.

In the first 800 rounds, the reward of SA-RL is lower than invariant ε. As in the early
stage of SA-RL, the numerical value of ε is high, which indicates that the agent will explore
the relay more randomly with higher probability ε as Equation (19).

With the iteration rounds increases, ε gets lower, and the probability of randomly
selection decreases. The reward keeps increasing and finally converges to the optimal value.
After convergence, the reward of SA-RL scheme with εmin = 0 is about 43% higher than
invariant ε = 0.1, 60% higher than invariant ε = 0.2, and 88% higher than random selection.
The reward of SA-RL with εmin = 0 is still increased by 21% in comparison with εmin = 0.05.

Figure 8 has shown the access delay performance of the proposed SA-RL algorithm.
The normalized access delay is defined as TSri D/ min{TSri D}. It can be seen that normalized
access delay of SA-RL scheme is close to the minimum and is most stable after convergence.
Compared with other invariant ε value strategies, the SA-RL dynamic ε strategy reduces
the access delay of the system by 2%, 4%, respectively. SA-RL reduces the access delay by
15% in comparison with random relay selection. From Figures 7 and 8, it is approved that
the proposed SA-RL has the highest reward and lowest access delay compared to classic
instant ε strategy. It should be noticed that, for classical RL with invariant ε, if ε is very
small at the beginning of training, it is easily to be trapped in local maximum.
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Figure 7. Comparison of rewards of RL with/without SA strategy.
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Figure 8. Comparison of access delay of RL with/without SA strategy.

4.1.3. Performance of SA-FRL Relay Selection

The following cases are considered for comparative analysis.

• Ideal optimum: as an upper bound, the ideal optimum supposed CSIs are perfectly
known, and the relay with maximum reward will be selected accordingly.

• SA-FRL, 1 → 0: simulated annealing optimized fast reinforcement learning relay
selection with dynamic ε from 1 to 0.

• SA-RL, 1→ 0: simulated annealing optimized reinforcement learning relay selection
with dynamic ε from 1 to 0.

• SA-RL, 1→ 0.05: simulated annealing optimized reinforcement learning relay selec-
tion with dynamic ε from 1 to 0.05.

• Random: the relay is selected randomly from the available relay set in each time
round.

As shown in Figure 9, the rewards of proposed scheme and other schemes have been
compared. It can be obviously seen that the proposed SA-FRL and SA-RL schemes have
much better reward than random relay selection scheme. After convergence, the rewards
of proposed schemes with different parameters are all over 80% better than random relay
selection.

Among the SA based learning schemes, SA-FRL with εmin = 0 has best convergence
performance. For convergence speed comparison, SA-FRL with εmin = 0 reaches conver-
gence after 500 transmissions rounds, while the SA-RL with εmin = 0 and SA-RL with
εmin = 0.05 schemes begin to converge to a stable strategy after 800 time rounds. By using
the fast learning strategy, the convergence speed has increased by 38% in comparison with
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the stratergy without pre-training. For convergence value comparison, With ε→ 0, both
SA-FRL and SA-RL will achieve the rewards that are near to ideal optimum solution, and
SF-FRL is still a little better than SA-RL.

The simulation results have shown that the proposed SA-FRL scheme has the fastest
convergence speed and the best learning reward. Even with outdated feedback, our
proposed scheme can achieve optimum reward, owing to the dynamic exploration strategy.
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Figure 9. Performance convergence of reward.

Figure 10 shows the convergence of normalized access delay with the iteration rounds
of relay selection. Three SA and RL based relay selection schemes can achieve the stable
convergence state with the increase of the number of signal transmissions. The normalized
access delay of three SA and RL based relay selection schemes are much less than random
strategy, and the access delay has been reduced about 15%.

The SA-FRL scheme with εmin = 0 can achieve the optimal stable state at the fastest
speed. With fast learning strategy, SA-FRL scheme with εmin = 0 begin to converge after
about 500 transmissions round, while the SA-RL with εmin = 0 and SA-RL schemes with
εmin = 0.05 begin to converge to a stable strategy after 800 time rounds. The proposed
SA-FRL scheme is pre-trained with similar scenarios, and it selects relay nodes with higher
reward and lower access delay in the initial learning process, so it has the fastest learning
speed and learning results. When ε→ 0, the minimum access delay can be achieved.
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Figure 10. Performance convergence of access delay.
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Figure 11 compares the data rates of three schemes, including SA-FRL considering
access delay, SA-RL considering access delay, SA-RL without considering access delay
(SNR based criteria in [30]), where εmin = 0. It can be seen from Figure 11 that regardless of
the access delay, the data transmission rate is about 2.9 bps/Hz with SNR based criteria.
When considering the access delay, the data transmission rate is about 3.45 bps/Hz after
convergence, which has 17% improvement. SA-FRL also has the best data rate and conver-
gence speed. In summary, the SA-FRL UWA relay selection scheme proposed in this paper
can select the relay node with high channel link quality while considering the access delay
of the relay node, and finally achieves the optimum data rate.

0 500 1000 1500 2000

Data transmission rounds

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

D
a

ta
 t

ra
n

s
m

is
s
io

n
 r

a
te

 (
b

p
s
/H

z
)

Ideal optimum with consideration of Tsrid

SA-FRL with consideration of Tsrid

SA-RL with consideration of Tsrid

SA-RL without consideration of Tsrid

Figure 11. Data transmission rate.

4.2. Experimental Results

To further prove the performance of proposed SA-RL and SA-FRL, our experimental
data measured in Mansfield Hollow Lake, Connecticut, USA in October 2014 is used for
evaluation [14]. There are four sensor nodes, including one node that works as destination
data center, one node works as source node and two nodes work as relay nodes. The source
node is 198 m away from the destination node. The relay node 1 and the relay node 2 are
78 m and 77 m away from the destination node, respectively. Relay nodes can overhear
the source node, and employ DF mode for cooperative communication. The depth of the
lake is about 3–5 m. The AquaSeNT OFDM modem is hanged about 1 m from the water
surface. The lake has a muddy bottom full of plants, and a lot of plankton. The sailing
of motor boats have brought additional interference during the lake test. It is a complex
time-varying UWA multi-path channel, and the CSIs from relay nodes to the destination
node are time variant.

With the experimental channel state information, three relay selection schemes have
been compared, including of SA-FRL, SA-RL and random relay selection, where εmin = 0.

Figure 12 has shown the rewards of the three schemes. It can be seen that both SA-FRL
and SA-RL schemes can achieve obviously better rewards than random relay selection. The
reward of SA-FRL is closer to the ideal optimum than RL after convergence, due to the
benefit of per-training. After convergence, the average reward of SA-FRL have improved by
52% and the average reward of SA-RL have improved by 50% in comparion with random
relay selection. At the same time, SA-FRL scheme takes fewer rounds to converge to a
relatively stable status. Figure 12 has shown that the SA-FRL scheme has faster learning
speed and better learning result than the SA-RL and random relay selection scheme.

Figure 13 has shown the performance of the access delay for these three schemes. The
SA-FRL scheme will turn to convergence with the least iteration rounds, and is closest to
the ideal optimum access delay. Later, the SA-RL scheme begins to converge to be stable
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with the continually increase of the number of signal transmissions, and the convergence
value is a little bit smaller than SA-FRL.
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Figure 12. Performance convergence of reward, experimental data.
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Figure 13. Performance convergence of access delay, experimental data.

Figure 14 has compared the data rate of three schemes including, SA-FRL considering
access delay, SA-RL considering access delay and traditional RL without considering access
delay (SNR based criteria). In the lake experiment, as the distances between nodes are
relatively close, the distinction of access delay is not obvious. Herein, the data rate of
SA-FRL and SA-RL have increased about 1%. Although the improvement is not great,
the performance curves already can converge to be close to ideal optimal value. This
observation is consistent with that from simulation results. In conclusion, the effectiveness
of the proposed scheme has been approved by lake experimental data.
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Figure 14. Data transmission rate, experimental data.

5. Discussion

The proposed reinforcement learning UWA cooperative scheme comprehensively
considers the physical layer channel characteristics to design the expression of RL for
improvement of network throughput. At the same time, the integration of simulated
annealing algorithm with reinforcement learning in the relay selection strategy and pre-
training of RL can help to accelerate the learning process and improve system performance.
The results and findings of this paper and the implications are discussed as follows.

For the design of state, action and reward for RL based relay selection, the long
propagation delay characteristic is considered in this paper. The joint reward expression
is established with system mutual information, access delay and energy consumption. In
research area of reinforcement learning based UWA relay selection, reference [30] firstly
considered mutual information as reward of RL. Furthermore, with the consideration
of energy consumption, reference [31] set channel capacity and energy consumption as
reward, and reference [32] set channel gain and battery level as state, and channel capacity
as reward. This paper additionally considers the long access delay characteristic of UWA
channel for RL system design. The transmission rate has been improved compared to
reference [30] as shown in Figures 11 and 14. As our proposed scheme jointly considers
channel quality and access delay, the node with higher channel quality and lower access
delay will be selected as relay, which will finally lead to optimal effective throughput. The
consideration of long propagation delay also can be employed in related UWA network
applications.

With the consideration of dynamic exploration of RL system, simulated annealing
algorithm is integrated to the relay selection strategy to better balance exploration and
exploitation of RL. In the early stage, the SA-RL relay selection will fully explore the
random actions. As shown in Figure 7, the reward is fluctuating and has small values
during the first 800 rounds. With the number of learning iteration increasing, the temperate
of SA is getting lower, so that the RL will explore random action with lower probability.
Specifically, when the minimum ε is set to 0, the exploration rate will approach to 0
after the training turns to convergence. The convergence results will approach to ideal
optimum as shown in the figures in Sections 4.1.3 and 4.2. In comparison with constant
ε-greedy strategy in [30–32], their curves fluctuate more severely after convergence than
our proposed dynamic exploration strategy. When constant ε is a small value, the constant
ε-greedy strategy is easily trapped into local optimum in complex environments. As SA-RL
can explore with higher temperature, it has the advantage of avoiding to be trapped in local
optimum. The integration of simulated annealing algorithm with reinforcement learning in
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the relay selection strategy can be adopted in various applications related to the underwater
acoustic communication and network applications.

As UWA environment is complex and there is no standard channel model for algorithm
evaluation, experiment is a persuasive evaluation method. Reinforcement learning has the
ability to learn from the interaction of environment and agent without any prior knowledge,
so the Q-table can be initialized with all zeros, such as in [24–32]. Considering practical
implementation, this paper has shown how the pre-training helps to improve the system
performance. From the simulation results in Figures 9 and 10, it can be observed that
the pre-training can accelerate the process of convergence, finally improve the long-term
system reward. The experimental results in Figures 12 and 13 also show the same results.

Then we will discuss how much per-trained computational burden is held for per-
formance improvement. The pre-training data set and test data set are 1:1 in Section 4. A
number of simulations with different number of training rounds are conducted for compar-
ison. The average values during the whole learning process are calculated. As shown in
Tables 3 and 4, the reward and access delay of SA-FRL relay selection with different number
of training rounds are compared, respectively. It can be seen that with the number of train-
ing rounds increasing, the reward is higher. After some rounds of training, the long-term
reward is close to an extremum value. The reward is approximately the extremum value at
about 1200, where the reward of SA-RL is converged to a stable value as shown in Figure 9.
It indicates that the amount of per-training data do not have to be as large as test data, the
computational burden is not heavy. Furthermore, even with limited number of training
rounds, e.g., 400, the pre-training still can provide obvious improvement compared to RL
without pre-training. Although the number of experimental data is limited, it still can be
observed from Tables 5 and 6, that the value is accessing to extremum value with more
training rounds. Even with small number of training, the reward still can be improved. So
we can conclude that the pre-training is effective for reinforcement learning and necessary
before practical system implementation.

Table 3. Reward of SA-FRL with different amount of pre-training data, simulated channel.

Number of Training
Rounds

Reward of SA-FRL
Relay Selection

Improvement (%)
Compared to SA-RL

Relay Selection

Improvement (%)
Compared to

Random Relay
Selection

400 −0.088 33% 80%
800 −0.085 35% 81%

1200 −0.078 40% 82%
1600 −0.078 40% 82%
2000 −0.078 40% 82%

Table 4. Normalized access delay of SA-FRL with different amount of pre-training data, simulated
channel.

Number of Training
Rounds

Normalized Access
Delay of SA-FRL
Relay Selection

Improvement (%)
Compared to SA-RL

Relay Selection

Improvement (%)
Compared to

Random Relay
Selection

400 1.017 1.9% 14.1%
800 1.016 2.1% 14.2%

1200 1.014 2.3% 14.4%
1600 1.013 2.4% 14.5%
2000 1.013 2.4% 14.5%
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Table 5. Reward of SA-FRL with different amount of pre-training data, experimental channel.

Number of Training
Rounds

Reward of SA-FRL
Relay Selection

Improvement (%)
Compared to SA-RL

Relay Selection

Improvement (%)
Compared to

Random Relay
Selection

200 −1.019 9.4% 46.5%
400 −0.996 11.6% 47.7%
600 −0.987 12.2% 48.1%
800 −0.977 13.2% 48.7%

1000 −0.972 13.7% 49%

Table 6. Normalized access delay of SA-FRL with different amount of pre-training data, experimental
channel.

Number of Training
Rounds

Normalized Access
Delay of SA-FRL
Relay Selection

Improvement (%)
Compared to SA-RL

Relay Selection

Improvement (%)
Compared to

Random Relay
Selection

200 1.000038 0.0032% 0.027%
400 1.000031 0.0039% 0.027%
600 1.000029 0.0042% 0.028%
800 1.000025 0.0046% 0.028%

1000 1.000024 0.0047% 0.028%

6. Conclusions

This paper has proposed a reinforcement learning based relay selection scheme for
UWA cooperative communication, where the unique characteristics of UWA channel have
been considered for the design of state and reward. Moreover, the action exploration
strategy is improved by integrating the simulated annealing algorithm with dynamic
greedy factor to speed up the learning process and convergence, and the fast reinforcement
learning scheme has been proposed for practical implementation. Both simulation and
experimental data have been used for system evaluation. Numerical results have revealed
that the proposed scheme can select the best cooperative relay with good channel quality
and low access delay for optimum data rate in comparison to the scheme without the
consideration of access delay. The SA exploration strategy can effectively improve the
convergence performance. The SA-RL and SA-FRL can improve the system reward and
reduce access delay in comparison with basic RL scheme. With pre-trained Q-table, SA-FRL
scheme has the fastest learning speed and the best learning result compared with other
schemes. The experimental results have shown the effectiveness of proposed scheme in the
actual UWA network.
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Abbreviations
The following abbreviations are used in this manuscript:

UWA Underwater acoustic
RL Reinforcement learning
SA Simulated annealing
FRL Fast reinforcement learning
OFDM Orthogonal frequency division multiplexing
DCC Dynamic coding cooperative
AF Amplify-and-forward
CSI Channel state information
BER Bit error rate
AI Artificial intelligence
QL-RSA QL-based relay selection algorithm
IoUT Internet of underwater things
SNR Signal to noise ratio
QoS Quality of service
TDMA Time division multiple access
DF Decode-and-forward
CIR channel impulsive response
MDP Markov decision process
SL Source power level
NL Noise power level
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