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Abstract: The development of technology has strongly affected regional urbanization. With develop-
ment of mobile communication technology, intelligent devices have become increasingly widely used
in people’s lives. The application of big data in urban computing is multidimensional; it has been
involved in different fields, such as urban planning, network optimization, intelligent transportation,
energy consumption and so on. Data analysis becomes particularly important for wireless networks.
In this paper, a method for analyzing cellular traffic data was proposed. Firstly, a method to extract
trend components, periodic components and essential components from complex traffic time series
was proposed. Secondly, we introduced causality data mining. Different from traditional time series
causality analysis, the depth of causal mining was increased. We conducted causality verification
on different components of time series and the results showed that the causal relationship between
base stations is different in trend component, periodic component and essential component in urban
wireless network. This is crucial for urban planning and network management. Thirdly, DIC-ST:
a spatial temporal time series prediction based on decomposition and integration system with causal
structure learning was proposed by combining GCN. Final results showed that the proposed method
significantly improves the accuracy of cellular traffic prediction. At the same time, this method can
play a crucial role for urban computing in network management, intelligent transportation, base
station siting and energy consumption when combined with remote sensing map information.

Keywords: urban computing; cellular traffic; EMD; causal structure learning; GCN; smart city

1. Introduction

With the development of urbanization, a large number of people gather in the city,
while cities provide people with an environment for work, study and life; additionally,
problems such as traffic congestion and environmental degradation appear. Traditional
urban management schemes can no longer cope with this situation. In this context, the con-
cept of smart city came into being. Urban computing is a core technology in smart city
construction. Urban computing is a new cross field of urban planning, transportation,
energy, environment, economy and sociology based on computer science. The task of
urban computing is to first perceive and obtain all kinds of big data generated in the
city, and then analyze, process and display big data by using efficient data management
technology, advanced algorithms and novel visualization method, so as to solve many
problems and challenges existing in the city, such as traffic congestion, poor network qual-
ity, backward planning and so on. Urban computing based on mobile communication
data is an important means to promote urban intelligence. Compared with other data
sources, the advantage of wireless network data is to increase non-public transport users
information, such as private cars, bicycles in passenger flow analysis or real-time traffic
analysis. Urban planning can also be carried out in a more accurate and comprehensive
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way. Most importantly, with the increasing number of mobile users, mobile communication
has become an indispensable part of people’s life. The accurate analysis of wireless network
data is the basis for providing users with high-quality multimedia services, so as to ensure
the requirements of users for high precision and low delay in different application scenarios
such as automatic driving, telemedicine, AR, VR, etc. Urban computing is an emerging
discipline to improve the quality of people’s life in the city [1].

Wireless network data is divided into signaling data and billing data. Signaling data
can be divided into call detail record (CDR) and signal data, including user ID, base station
ID, longitude and latitude, etc. The billing data records the user’s service start and end
time, traffic volume and other information. The large amount of mobile data and long
observation cycle can be used to analyze the people footprint in cities on an unprecedented
scale [2,3]. In [4], authors described the research progress of wireless traffic in crowd
mobility, geographical zoning, urban planning, development and security and privacy. In
this paper, we use real wireless network data from an operator in China, and the data was
collected by 22 base stations in an area. Figure 1 showed the area where 22 base stations
are located. This data collects the traffic information of each base station in the region
for 100 days. The joint analysis of cellular traffic prediction and remote sensing map as
shown in Figure 1 can help us accurately sort out mobility of the city. The combination of
wireless network data and remote sensing data has many advantages; for traffic prediction,
because wireless network data is often the statistical value of regional data, these data are
not based on the road as vehicular traffic flow data. Combined with remote sensing map,
traffic congestion can be quickly located according to wireless network data. For wireless
network optimization, traditional network management requires manual positioning of
areas with poor network quality. Using remote sensing data for network management can
accurately optimize the network in a visual way. Wireless network data often appear in
big data analysis technology in a form of time series. Time series prediction is one of the
important research topics in the field of data analysis [5]. Time series prediction research
involves various fields, such as economy, society, energy, environment, climate and other
research fields [6–8].

There are three methods for time series analysis and prediction: traditional statistical
models, artificial intelligence models and hybrid models. Due to the complexity and
randomness of cellular network data, wireless network traffic data can not be well analyzed
by the traditional model. However, although the traffic data in wireless network is complex,
it has its own unique characteristics, such as tidal, seasonality, etc. [9]. We proposed a
method to extract trend component, periodic component and essential component from
complex time series. Then, according to the idea of hybrid model, the decomposition
and integration the prediction scheme is adopted to predict three different components,
respectively, and finally three prediction results are combined into the final prediction
result. In the prediction of three components, we introduced causal data mining. Different
from the traditional temporal causal analysis, we increased the depth of causal mining, not
for causal verification of time series, but for different components of same time series. Final
results showed that in urban wireless networks, the causality correlation between base
stations is different in the trend component, periodic component and essential component.
This verification result is important for network management and construction. This deep
data mining can not only enhance the accuracy of prediction, but also play a role in urban
planing, citywide network construction and resource planning.

Causal structure learning was introduced to find the relationship between different
time series, and the purpose is to use the relationship between different time series for pre-
diction performance enhancement. The effectiveness of causality for time series prediction
has been confirmed in some studies [10,11]. In this paper, we proposed deep causal mining
for different components in time series. In the research of smart city, big data temporal spa-
tial analysis is an important part. We decomposed time series data into three components.
Each component plays a different role in urban computing. The trend component repre-
sents the overall number of users in the region. The research on the trend component can
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be used in base station construction, urban planning and so on. The periodic component
symbolizes the law of population flow and can be used for wireless network management
and traffic information monitoring. The essential component is the key to ensure the quality
of user service. We establish a temporal–spatial model for each component and introduce
causal structure learning into the model. For different components, the correlation between
regions in the city can be found, which can be used for data prediction and analysis in
urban computing.

Figure 1. Remote sensing map of data collection area.

As mentioned earlier, decomposition integration system and causal mining are com-
bined in this paper. System structure was shown in Figure 2. Traffic data of each base
station in the region is decomposed into multiple subsequences. The first integration step
is to clustering three components of data. Causal structure learning was used to deal
with each component of different regions separately. After causal structure for different
components was obtained, this structure can be used for time series prediction. The second
integration part is to combine the three prediction results into the final prediction result.
A spatial–temporal time series prediction based on decomposition and integration system
with causal structure learning (DIC-ST) was proposed. Actual data was used to verify the
algorithm and compare with other commonly used algorithms. The main contributions of
this paper are as follows:

1. Based on empirical mode decomposition (EMD), a time series clustering method based
on spectrum information and information entropy was proposed. This method can
extract the cellular network traffic data into three components: periodic component,
trend component and essential component.
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2. We propose a deep causal mining method for time series data. The traditional time
series causal analysis was directly applied to multiple time series, ignoring the different
components of time series. In our research, different components contained in time
series are used for causal structure learning, respectively. The final results show
that the causal structure of each component is different. This deep causal mining
helps to clearly sort out the traffic relationship between regions and improve the
prediction performance.

3. In order to make wireless network data better used in urban computing research.
For cellular traffic data, we proposed a novel time series analysis method DIC-ST.
This method improved the accuracy of prediction, and it can serve the construction of
smart city from many aspects.

Figure 2. Structure of DIC-ST.

2. Related Works

Many cities are facing the challenges brought by rapid urbanization [12]. In recent
years, research on smart cities has attracted extensive attention. J. Liu et al. mentioned that
urban flow analysis is an important research content of smart city construction, in which
urban flow model analysis focuses on the continuous state of urban flow. How to mine, store
and reuse traffic patterns from urban multi-source heterogeneous big data is a challenge.
Therefore, they proposed a regional flow pattern knowledge mining network to mine and
store urban flow patterns. X. Pan et al. [13] indicated that wireless traffic can be used for
smart city research. They pointed out that smart cities need to make full use of information
technology to respond intelligently to all needs, including networks and urban services.
They proposed a differential evolution back propagation (DE-BP) neural network traffic
prediction model suitable for intelligent city network to predict network traffic. Similarly,
S. Jiang et al. [14] transformed ubiquitous mobile phone data into interpretable human
mobility patterns, taking Singapore as an example. Through the development of data
mining pipeline, the spatial distribution of residents’ travel patterns in different urban areas
was quantified. The ultimate goal was to help planners effectively acquire urban knowledge
from big data to target specific urban areas to improve future infrastructure and service
planning. V. Javidroozi [15] pointed out that in order to develop a smart city, it is necessary
to integrate all components of the city into a system. As a technology, urban computing can
solve the complexity of providing appropriate services to citizens through different urban
departments or systems, which promotes this. Similar to some other urban computing
studies [13,14,16], we also use wireless network data in urban computing research.

In the process of data processing, data mining based on a decomposition and integra-
tion system is proposed. EMD is used to decompose the original data. EMD is a technique
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of signal feature extraction, which can decompose time series data into finer-grained compo-
nents [17]. As a timing processing technology, EMD has been widely used. In [18], aiming
at the research of meteorological index prediction, the authors put forward three prediction
models: a hybrid prediction model based on residual prediction, a hybrid prediction model
based on EMD and a hybrid prediction model based on EMD and residual prediction.
The authors tested three models. The experimental results showed that prediction accu-
racy of three models was significantly improved compared with the traditional model.
The third model is a hybrid prediction method based on EMD and residual prediction,
and its prediction performance was the best. The reason was that EMD makes the original
sequence stable, and prediction performance of this model on stable data is generally good.
R. K. Jalli et al. [19] proposed a hybrid short-term wind speed prediction method based
on EMD and random vector function chain network. Firstly, the chaotic historical wind
speed data is decomposed into several IMFs by EMD. These IMFs are used in the proposed
prediction model. Finally, the effectiveness was confirmed. In [20], motivation of the
research is that IMF allows to calculate the meaningful Hilbert transform of non-stationary
data, from which the instantaneous time-frequency representation can be derived. Our
spatiotemporal intrinsic mode decomposition method uses spatial correlation to extend
the extraction of IMF from one-dimensional signals to multi-dimensional signals. It can be
seen that most studies put the subsequences decomposed of EMD into different models.
In this paper, after EMD decomposition, we integrated and extracted three components in
the timing. This step ensured that the characteristics of each subsequence are consistent,
so that the same prediction model can be used. At the same time, the complexity was
greatly reduced.

Three components extracted by decomposition and integration are used for causal
structure learning, respectively. Causal data mining has also been a research hotspot in
recent years. In the research of data association, the focus of research has gradually shifted
from correlation analysis to causality verification. In the real world, multivariate time series
(MTS) data are common in various fields. Existing methods assume that the value to be
predicted of a single variable is related to all other variables in MTS data. In [21], they
proposed a solution by using causality information as a priori knowledge. Moreover, they
proposed the framework that considers multivariate time series as a graph structure with
causality. A Papana et al. [22] mentioned that concept of Granger causality is increasingly
applied to the characterization of directional interaction in different applications. In or-
der to explain all the available information in multivariable time series, a multivariable
framework for estimating Granger causality is very important. In [23], Granger causality
analysis based on neural network was used for root cause diagnosis, which effectively
solved the problem that Granger causality analysis based on linear model can not process
nonlinear data. In [24], a human behavior event analysis and calculation model integrating
perceived causality was proposed. W. Tian designed and established a causal rule repre-
sentation method based on default logic. Research in [25] aimed to determine the causes
of air pollutants in surrounding cities that affect air quality. They proposed a compressed
sensing causality analysis method by combining Granger causality analysis and maximum
correlation entropy criterion to effectively identify the causality of air pollutants between
Beijing and surrounding cities.

Studies on time series has lasted for a long time, and many methods have been used
in urban computing, especially in traffic prediction. However, existing research has not
deeply explored the time series, especially combined with causality test. In this paper, three
components of cellular traffic data were extracted, respectively, causal structure learning
for three components was applied, and the application scenario of each component was
given. Finally, a prediction system based on decomposition integration and causal structure
learning was proposed.
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3. Materials and Methods
3.1. Data Description

With the development of technology and the expansion of telecom market, mobile data
detection system can collect network signaling and user’s service information extraction
and processing data mining and analysis provide operators with a very valuable data model.
In the current 5G commercialization era, facing the challenge of massive data, mobile data
detection system needs to be able to collect data properly to meet the service response
requirements and the application requirements of smart city. Data acquisition has always
been a means for operators to effectively optimize the network. Through optimization, key
indicators that directly affect users’ subjective experience such as connection rate, call drop
rate and voice quality can be improved, so as to provide users with reliable, stable and
high-quality network services for quality of life changes in smart city.

When mobile phone and the base station conduct service, multiple types of mobile
communication data with positioning information will be generated. These data include
both event records and service records. In cellular networks, the event types of mobile
communication data mainly include receiving calls, sending and receiving short messages,
connection of data links and so on. This information will be recorded with the user’s use
and every communication between the mobile phone and the base station, and the data
will be directly accessed to the server by base station. These data are stored in the base
station and are usually summarized and counted every hour. In this paper, 100 days of
data are used for method validation. The data structure of cellular network was shown
in Table 1. Real wireless network traffic was collected at 22 base stations in an urban area.
The traffic data analyzed in this paper is downlink traffic of the base station. According
to the longitude and latitude information of base stations, combined with Voronoi [26]
algorithm, we can obtain the approximate coverage of the base station. Among them,
the Voronoi algorithm was widely used in base station coverage area estimation [27–29].
On this basis, we applied wireless network data to the research of urban computing.
The coverage of 22 base stations is shown in Figure 3. Urban population analysis based on
mobile communication data is essentially a data mining process, which usually includes
data collection, data preprocessing, data mining and data visualization. Proposed method
for data mining in the following chapters will be introduced in detail.

Table 1. Comparison of prediction methods.

Timestamp eNodeB
ID

Average Number of
Users Conected to the

eNodeB

Maximum Number of
Users Conected to the

eNodeB

Uplink Traffic
(GB)

Downlink Traffic
(GB)

2019/7/1 0:00 1 77.872 145 0.8802 5.5389

2019/7/1 10:00 1 67.8724 124 0.7015 4.0745

...

2019/7/1 22:00 1 57.1325 115 0.5501 2.1941

2019/7/1 23:00 1 59.9522 130 0.1145 2.1351

...

2019/7/1 0:00 22 133.8174 973 1.3402 11.7154

2019/7/1 10:00 22 97.4827 780 1.0155 7.2151

...

2019/7/1 22:00 22 139.0239 859 0.9138 12.1186

2019/7/1 23:00 22 101.9206 619 0.6791 8.1094

...
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Figure 3. Coverage of base stations in the area.

3.2. Methods
3.2.1. Decomposition Integration System

In complex systems, time series often show the characteristics of multi-dimensional
data. These complex features make time series prediction difficult. A single model can no
longer meet the requirements of complex system analysis and prediction. In recent years,
hybrid models have attracted more attention. In this paper, we used different time series
analysis for three different components, and finally integrated the results. In decomposition
and integration system, multi-scale decomposition was used to process time series data,
so as to reduce the modeling difficulty of complex system and improve the analysis and
prediction performance of the model. Specifically, the decomposition integration method
decomposed the complex system into subsystems that are easy to analyze, which can
significantly reduce the difficulty of prediction and improve the analysis and prediction
performance of the model. The decomposition integration system in this paper included
three steps: empirical mode decomposition, preliminary integration based on K-nearest
neighbor (KNN) and prediction result integration.

Hilbert–Huang transform (HHT) is an empirical data analysis method. This method is
adaptive. HHT consists of two parts, empirical mode decomposition (EMD) and Hilbert
spectrum analysis (HSA) [30]. This technique is feasible for analyzing nonlinear and non-
stationary data [31]. To fully describe EMD, we first define the IMF. IMF in EMD algorithm
should meet two conditions [32]:

1. The number of extreme points (including local maximum points and local minimum
points) is equal to the number of zero crossings or the difference is 1.

2. At any point, the average value of the envelope of local maximum and local minimum
is 0. Different from the modal components in other decomposition methods, IMF is a
generalized harmonic function rather than a simple fixed function, and its amplitude
and frequency change with time.

EMD algorithm assumes that time series data generally contain multiple volatility
components, and different volatility functions can be solved through the column part of
the screening process and expressed by the IMF function [32]. EMD decomposition is
based on the following assumptions: there is at least one maximum and minimum in the
decomposed data. The local characteristic time scale is determined by the time interval
between levels. If the data has no extreme points but contains inflection points, the extreme
values can be obtained by one-order or multi-order differentiation.

Traffic data set can be expressed as S = [S1, S2, ...Sn...SN ], where N is the number of
base stations in the region. In this paper, N = 22. For any Sn contained in S, we perform
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EMD empirical mode decomposition. The HHT based EMD process for traffic data is
as follows:

1. Identify all maximum and minimum values existing in Sn, which form upper envelope
MU and lower envelope ML;

2. The average value of envelopes can be expressed as m1, which is obtained by Formula (1):

m1(t) = (MU + ML)/2 (1)

3. The initial component h1 can be obtained by Formula (2):

h1(t) = Sn(t)−m1(t) (2)

4. Calculate the envelope average value m11 of h1;
5. h11 can be obtained according to m11, as shown in the Formula (3):

h11(t) = h1(t)−m11(t) (3)

6. After repeating the extraction process for K times, h1k becomes an IMF, which can be
expressed as:

h1k(t) = h1(k−1)(t)−m1k(t) (4)

which can be also expressed as:

c1(t) = h1k(t) (5)

7. Separate C1 from S, and the remaining data can be expressed as:

r1(t) = Sn(t)− c1(t) (6)

8. By repeating the same operations from step 1 to step 6, a plurality of decomposed
components c1(t), c2(t)...r1(t), r2(t)... can be obtained.

3.2.2. Components Extraction by Clustering

We integrate multiple IMFs for the first time by clustering. We hope to extract three
components from the original time series: trend component, periodic component and
essential component. Trend component has the smallest entropy, and the trend component
represents the overall growth or decline trend of the data. The essential component is the
main content of wireless network data. The purpose of communication is to transmit the
uncertainty of information. Therefore, wireless network data, especially traffic data, has
strong randomness, so the entropy of essential component is the highest. The periodic
component depends on the tidal characteristic of cellular traffic and has a certain law.
The information entropy of the periodic component is between the essential component
and the trend component. For any IMF cn, the information entropy is obtained by function 7.
Where P(cn(t)) is probability of cn(t).

H(cn) = −∑
t

P(cn(t))log2(P(cn(t))) (7)

At the same time, we notice that the frequencies of different components are also
different. The trend component is low-frequency, the essential component has the highest
frequency due to high randomness, and the periodic component is also between the two.
Based on the principle of filter, we choose the number of peak points in the spectrum as the
quantization index of frequency. For each IMF, the number of spectral peaks was obtained.
We can first calculate the corresponding modulus through Fourier transform as shown in
Functions (8) and (9), and then count the number of extreme points.
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Fn(ω) =
∫

cn(t)
−iωtdt (8)

Fn(ω) = |Fn(ω)| (9)

In order to realize the adaptive ability of clustering algorithm for three components of
different base station data and ensure the accuracy of clustering, KNN method was selected
to classify the scatter points (information entropy, peak number of spectrum), as shown in
Figure 4.

Figure 4. Data processing for KNN based clustering.

The coordinate points based on the number of peaks and information entropy in
KNN are expressed as: (I, P), where I represents the information entropy and P represents
the number of peaks in the spectrum. The distance between two points was defined
as Formula (10). Algorithm 1 presented components clustering process based on KNN.
In Algorithm 1, the value of K was set to 3, and three components are extracted: trend
component CT , periodic component CP and essential component CE.

ρ =
√(

Ii − Ij
)2

+
(

Pi − Pj
)2 (10)

Algorithm 1 Components Clustering.

1: INPUT: ci and K = 3
2: Stage 1 Coordinate generation
3: for i = 1 : n do
4: Information entropy calculation for ci according to Function (7) and save the result

in metrix I.
5: Count peak number Pi according to Functiona (8) and (9) and save the result in

metrix P.
6: end for
7: Stage 2 Clustering based on KNN
8: for i = 1 : n do
9: for j = 1 : n do

10: ∀Ii ∈ I, Ij ∈ I, Pi ∈ P, Pj ∈ P.
11: Distance calculation between (Ii, Pi) and

(
Ij, Pj

)
according to Function (10).

12: end for
13: end for
14: Sort the distance in ascending order.
15: Select K points with the smallest distance from the current point.
16: Determine the occurrence frequency of the category where the first K points are located.
17: Return the category with the highest frequency of the first K points as the classification

result of current point.
18: Merge time series of the same class.
19: OUTPUT: CT , CP and CE.
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3.2.3. Causal Structure Learning

Causal learning is a process of finding causal relationships in data structures. Rea-
soning about causal relationship between different time variables is easier than causal
reasoning without a time structure [33]. In the causality mining part, we obtained the
causal structure of three different components of the traffic data of each base station in the
region. At present, the commonly used causality test algorithms mainly include Granger
causality and transfer entropy. Granger causality is usually used in the context of linear
structural equation. Transfer entropy is a nonlinear extension of Granger causality [34,35].

Due to the complexity of urban wireless network data, causal learning method
based on transfer entropy was selected to process three components of each base station.
Formula (11) gave the calculation method of transfer entropy, where l is lag.

TCi→Cj = H
(

Ci(t) | Cit−1:t−l

)
− H

(
Ci(t) | Cit−1:t−l , Cjt−1:t−l

)
(11)

In which,

H(Ci(t)) = −∑
t

P(Ci(t)log2P(Ci(t))). (12)

The definition of causality judgment standard was given by Formula (13), where true
represents that time series Ci will affect the change of time series Cj. False means that the
historical data of Ci has no impact on time series Cj.

TCi→Cj

TCj→Ci

=

{
true ≥ 1
f alse < 1 (13)

After the extraction in the previous step, three components of the traffic of each base
station were obtained. Causal structure learning was used to obtain the spatial correlation
of each component. As shown in Algorithm 2, spatial causal structure of three components
can be found. For three components, their causality graph can be expressed as: DT , DP and
DE. The adjacency matrix based on causality graph can be expressed as: AT , AP and AE.

3.2.4. Prediction Models

Multivariate time series analysis considers multiple time series at the same time.
Multivariate time series research is much more complex than univariate time series research,
but in real life, decision-making or prediction often involves multiple related factors or
variables. It is valuable to understand the relationship between these factors and give
accurate prediction results of these variables. The purpose of multivariate time series
analysis is to study the dynamic relationship between variables and improve the accuracy
of prediction [36]. In this paper, for the prediction of different components obtained by
the clustering part, we obtain the relationship between data of each base station by causal
structure learning. Next, we make multivariate time series prediction based on causal
structure learning for three components.

Graph convolution network (GCN) was used for time series prediction [37–39]. Unlike
CNN, the input of GCN is graph structured data. CNN can obtain local spatial features,
GCN which can process arbitrary graph structure data has attracted extensive attention [40].
In the application of GCN, graph embedding was applied to the prediction model. In re-
cent years, embedding technology has attracted great attention in the field of machine
learning and deep learning. Among them, the purpose of graph embedding is to use low
dimensional and real value vectors to represent the nodes in graph and the relationship
between nodes. Graph shows a two-dimensional relationship, while time series is one-
dimensional data. Therefore, it is necessary to convert the graph into an embedded graph.
Obtaining complex spatial correlation is a key problem in time series prediction. Most
studies on spatial dependence in GCN for time series prediction are based on geographical
distribution [40–42].
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Algorithm 2 Causal Structure Learning.

1: Stage 1 Causality Construction
2: INPUT: C = [C1, C2...CN ] and N
3: ∀Ci ∈ C, Cj ∈ C
4: for i = 1 : N do
5: for j = 1 : N do
6: Trasfer entropy calculation between node Ci and node Cj according to

Function (11).
7: if TCi→Cj ≥ 1 then
8: Create a directed edge from node i to node j.
9: end if

10: end for
11: end for
12: Stage 2 Causality Optimization
13: for i = 1 : n do
14: for j = 1 : n do
15: for k = 1 : n do
16: if TCi→Ck ≥ 1&&TCj→Ck ≥ 1&&TCi→Cj ≥ TCi→Ck then
17: Delete the directed edge between node i and node k.
18: elseDelete the directed edge between node i and node j.
19: end if
20: end for
21: end for
22: end for
23: OUTPUT: Causality Graph D.

In this paper, causal graph obtained by causal structure learning can not only describe
the geographical attributes of data, but also imply the causal relationship between data.
Structure of GCN in this paper is shown in Figure 5. When predicting each component
of traffic of each area, we embed the structure of causality into the model. Causality
graph can be expressed in the form of matrix. We assumed that each node in GCN
represents the component time series of a base station, such as xtrend

22 in Expression (14),
where 22 represents time series of trend component of the 22nd base station. A T ∗ 22
matrix was used as input of GCN, where T is the length of time series. Matrices of three
components were shown in Expressions (14)–(16).

Xtrend =
[

xtrend
1 , xtrend

2 ......xtrend
22

]T
(14)

Xperiodic =
[

xperiodic
1 , xperiodic

2 ......xperiodic
22

]T
(15)

Xessential =
[

xessential
1 , xessential

2 ......xessential
22

]T
(16)

Figure 5. GCN structure.
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A causal graph can be expressed in a form of matrix. A is the matrix symbolizing
causal structure. The spatial–causal-based adjacency matrix for any component can be
expressed as Expression (17). Where A1,22 represents the influence of the component of
traffic for the 1st base station on the component of traffic for the 22nd base station. If there

is a causal relationship between the two, that is
TC1→C22
TC22→C1

> 1, value of A1,22 in the matrix was

1, otherwise it was 0.

A =

 A1,1 ... A1,22
... ... ...

A22,1 ... A22,22

 (17)

Z = f (X, A) = σ
(

D−1/2 AD−1/2H(l)W(l)
)

(18)

D = ∑
j

Aij (19)

Formula (18) described expression of GCN. Where X is input data, D is degree matrix
of A, H is the feature of each layer, W is weight matrix, l is number of GCN layers,
and σ is the activation function. Z is the final output of the network. In our verification,
l was set to 2. Prediction results of three components can be obtained by GCN. In model
training, least square error was used as loss function and it can be given by Expression (20).
Finally, these results were combined into the final traffic forecast value, which was given
by Equation (21). Where Ztrend, Zperiodic and Zessential are the prediction results obtained by
GCN of three components, respectively.

L =
n

∑
i=1

(Ytrue −Yprediction)
2 (20)

Yprediction = Ztrend + Zperiodic + Zessential (21)

4. Results
4.1. Evaluation for Components Clustering

As described in Section 3.2.2, based on the time series processing framework of de-
composition and integration, a time series extraction method based on KNN was proposed.
Take traffic data collected by a base station in the area as an example, as shown in Figure 6.
After EMD decomposition, traffic data was decomposed into 10 IMFs as shown in Figure 7.

Figure 6. Sixty-two days of traffic of one base station.
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Figure 7. Multiple IMFs through EMD.

For traffic data of each base station in the area, multiple IMFs can be obtained after
EMD decomposition. Information entropy and the number of peaks in spectrum of these
IMFs were calculated, so that the scatter diagram based on entropy and spectrum can be
obtained. KNN based classification was used for these scatter diagrams, and final clustering
results are shown in Figure 8. Figure 8 shows the IMFs clustering results after the traffic
decomposition of the four base stations in the area. According to such clustering results,
IMFs of same category are integrated together to form a new component. Three components
in Figure 9 showed the final result of components extraction of traffic in Figure 6.

Figure 8. Clustering based on information entropy and frequency.

Figure 9. Three components after clustering.
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As can be seen from Figure 9, trend component of the traffic was relatively stable,
and there was no obvious increase or decrease trend for this base station. Periodic com-
ponent had typical tidal characteristics. Randomness of essential component was strong,
which is one of the key factors affecting the quality of network.

4.2. Evaluation for Causal Structure Learning

Figure 10 showed causality relationship between regions for three components. Causal-
ity of trend component combined with remote sensing map can provide guidance for urban
planning. We found that this urban area is developing to the southeast. For the periodic
component, the direction of causality was spread from center of the city to the periphery.
The causality of periodic component can be used for crowd flow prediction and traffic
management. The causality of essential component has no regularity. Wireless network is
the most frequently used in people’s daily life. Three components can be comprehensively
considered in network optimization and management. Deep causal data mining provided
data support for urban computing. At the same time, this causality will also be used for
subsequent prediction in order to improve the accuracy of prediction.

Figure 10. Causal graph for three components.

4.3. Prediction Performance

Through causal structure learning, causal structure graph of three components were
obtained. In order to apply this causality to prediction, we transformed prediction into
a graph to graph problem. The directed acyclic graph learned through causal structure
can be described by matrix, which is causal matrix. We put causal matrix into GCN as
adjacency matrix. When predicting the traffic through GCN, the ratio of training set to
test set was 3:1. The data of 10 days was used to predict. The batch size in GCN was set
to 128 and the number of iterations was 300. After obtaining prediction results of three
components, we finally integrated these results.

In order to verify impact of causal structure learning on prediction performance, BIC-
ST(no causality), which means prediction method based on decomposition integration
and GCN, was also used to predict traffic. ARIMA, as an algorithm often used for traffic
prediction [40–42] was also used for algorithm comparison. The prediction results of three
base stations in the area were used as examples as shown in Figures 11–13.

Furthermore, in order to more clearly describe performance of different algorithms,
RMSE and MAPE were calculated according to Formulas (21) and (22) for the results
obtained by different methods. The verification results are given in Table 2. Through these
results, it can be found that causal structure learning plays a role in improving prediction
performance. At the same time, proposed method can be well used for network traffic
prediction. In addition to this, Figure 14 showed training loss function versus training
iterations. It can be seen from the figure that when the number of iterations is 150, the curve
tends to be stable. When the number of iterations is close to 300, the loss function no
longer fluctuates.
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RMSE =

√
1
n

n

∑
i=1

(
Y′i −Yi

)2 (22)

MAPE =
100%

n

n

∑
i=1

∣∣(Y′i −Yi
)
/Yi
∣∣ (23)

Figure 11. Prediction performance comparison for base station 1.

Figure 12. Prediction performance comparison for base station 2.

Figure 13. Prediction performance comparison for base station 3.
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Table 2. Comparison of prediction methods.

Methods
Base Station 1 Base Station 2 Base Station 3

RMSE MAPE RMSE MAPE RMSE MAPE

DIC-ST 2.1952 43.5132 2.141 23.7567 1.9206 21.2691

DIC-ST (no causality) 3.5753 97.5417 2.3824 29.2335 2.4058 40.009

ARIMA 4.1138 104.2443 2.3028 46.5367 2.3538 25.2774

Figure 14. Training loss versus training iterations.

5. Discussion

KNN based on entropy and spectrum was used to cluster multiple IMFs obtained by
EMD. As can be seen from Figure 8, joint analysis of information entropy and spectrum
information ensured the accuracy of clustering. This time series extraction method con-
verted original traffic data into three components. Among them, trend component can
be used in urban planning and network construction. By combining with remote sensing
information, long-term mobility of people can be clearly obtained. The combination of
periodic component and remote sensing map is important for intelligent transportation
management. Compared with public transportation data, periodic component of wireless
network data can more clearly describe the short-term mobility of people. Research on
essential component can provide data support for wireless network management, so as to
provide users with better quality of service.

In this paper, causal structure learning was combined with time series decomposition.
This is the first deep causal mining of traffic data. Figure 10 showed different causal struc-
tures of three components. Causal structure of each component is different. For different
research fields in urban computing, this deep causal mining improved the availability of
data. This method has greater value than traditional data analysis methods.

Finally, graph neural network was selected and used for three components, respec-
tively, according to their respective spatial causal structure. The function of graph neural
network is to embed the spatial causal structure into prediction model in the form of graph.
Combined with actual network data, results showed that causal relationship between re-
gions can significantly improve the prediction performance. Proposed DIC-ST was valuable
in wireless network management and urban management.

6. Conclusions

Urban computing based on wireless network data is an important means of building
smart city, which can provide solutions for various applications of smart city. Data of
cellular network has randomness and structural difference. In this paper, traffic of cellular
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network was deeply mined based on causal structure learning, and DIC-ST, a method for
network traffic prediction, was proposed. After components extraction, three components
of cellular traffic can be used in different fields of urban computing. When these three
components were combined with causal structure learning, the prediction performance
was significantly improved. Combining base station coverage estimation with the remote
sensing map, the accurate prediction of traffic data can be applied to many aspects of urban
computing. The method proposed in this paper can be well applied to urban planning,
traffic management and network optimization. This is helpful for smart city construction
and improving the quality of life of urban residents.

Our future work will expand the scope of data acquisition. Big data analysis is mainly
reflected in the wide range of data sources and large amount of data. We hope to expand
data sources, such as weather, social networking information, etc. Urban computing based
on data fusion will be the focus of our research.
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Abbreviations
The following abbreviations are used in this manuscript:

MTS Multi Time Series
DIC-ST Spatial Temporal time series prediction based on Decomposition and Integration

system with Causal structure learning
EMD Empirical Mode Decomposition
HHT Hilbert–Huang transform
IMF Intrinsic Mode Function
KNN K-Nearest Neighbor
GCN Graph Convolution Network
ARIMA Autoregressive Integrated Moving Average mode
CDR Call Detail Record
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