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Abstract: This article describes the development of a machine learning (ML)-based algorithm for
snowfall retrieval (Snow retrievaL ALgorithm fOr gpM–Cross Track, SLALOM-CT), exploiting ATMS
radiometer measurements and using the CloudSat CPR snowfall products as references. During a
preliminary analysis, different ML techniques (tree-based algorithms, shallow and convolutional
neural networks—NNs) were intercompared. A large dataset (three years) of coincident observations
from CPR and ATMS was used for training and testing the different techniques. The SLALOM-CT
algorithm is based on four independent modules for the detection of snowfall and supercooled
droplets, and for the estimation of snow water path and snowfall rate. Each module was designed
by choosing the best-performing ML approach through model selection and optimization. While
a convolutional NN was the most accurate for the snowfall detection module, a shallow NN was
selected for all other modules. SLALOM-CT showed a high degree of consistency with CPR. Moreover,
the results were almost independent of the background surface categorization and the observation
angle. The reliability of the SLALOM-CT estimates was also highlighted by the good results obtained
from a direct comparison with a reference algorithm (GPROF).

Keywords: neural networks; deep learning; machine learning; convolutional neural networks;
microwave radiometers; satellite precipitation retrieval; snowfall

1. Introduction

Snow is among the most important variables in the Earth’s climate. There are, in
fact, several important effects of falling snow (snowfall) and snow at the surface on the
climate system, as well as on the water cycle and the energy budget. The high albedo
of snow is a primary factor controlling the amount of solar radiation absorbed by the
Earth, affecting the surface energy balance as well as land–atmosphere interactions, and
considerably influencing the atmospheric circulation. It should also be noted that snow has
a primary role in the regional water cycle as the snow accumulated during the winter stores
a large amount of freshwater, while the melting snow provides water resources for the
ecosystem. Global monitoring of snowfall and snow cover is therefore of great relevance
for climate change studies, for sustainable management of water and food resources, for
understanding feedback mechanisms between hydrology and climate, and for forecasting
hazardous weather and natural disasters such as floods and avalanches [1–4].

It is important to take into account the fact that snowfall is the most frequent type of
precipitation in middle and high latitudes [5–7]; above 60–70 degrees it dominates over
liquid precipitation [8]. At these high latitudes it is difficult to obtain reliable surface-based
snowfall measurements due to the lack of dense networks of ground-based snow gauges
and/or radars [9], and also due to the complex topography and extreme climatic conditions.
Moreover, gauge-based measurements of snowfall, which are particularly challenging, can
be largely unreliable as they are prone to wind-induced under-catchment errors [4,10,11].
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These problems have highlighted the need to rely on satellite-based observations,
which currently represent the most promising method of obtaining long-term global snow-
fall and snow-cover measurements. Spaceborne microwave sensors have been found to be
particularly suitable for these purposes, unlike visible or infrared sensors which are used
to analyze only the cloud-top features [12,13].

Thanks to the ability of microwaves (MWs) to penetrate clouds, passive MW radiome-
ters have been widely used for snowfall detection [12,14–23]. In general, high-frequency
channels (above 80 GHz) are more sensitive to scattering from ice hydrometeors, while
lower-frequency channels (10–37 GHz) are more sensitive to surface emissivity [23–26].
Around this broad classification, several sensitivity studies have highlighted the potential
of various high-frequency radiometer channels. For example, Bennartz and Bauer [27]
investigated channels at 85, 150, and 183 GHz and highlighted the contribution of fre-
quencies around 150 GHz to snowfall detection in middle and high latitudes. They also
noted that channels near 85 and 183 GHz show potential for snow detection. Di Michele
and Bauer [28] found that high-frequency bands (95–100, 140–150, 187 GHz) are the most
suitable for the retrieval of snowfall over land and oceans. Skofronick-Jackson et al. [17]
analyzed the contribution of the 166 GHz channel in detecting falling snow over land. You
et al. [23] and Ebtehaj and Kummerow [22] highlighted the contribution of the combination
of low- (10–19 GHz) and high-frequency (89–166 GHz) channels in snowfall detection.
Edel et al. [29] analyzed the impact of measurements at 190.3 GHz and 183.3 ± 3 GHz for
snowfall detection in the Arctic region.

In addition, dual polarization channels at high frequency, available from spaceborne
conical scanning radiometers, have shown great potential for snowfall detection. Panegrossi
et al. [30] studied in detail the sensitivity of the Global Precipitation Measurement (GPM)
Microwave Imager (GMI) 166 GHz polarization difference for snowfall detection, showing
that the polarization difference responds to moderate and heavy snowfall events. Kongoli
et al. [31] examined the sensitivity of the 89 GHz and 166 GHz polarization differences to
the snowfall intensity and evaluated their use for snowfall detection.

A fundamental contribution to the global estimate of snowfall is made by spaceborne
active microwave sensors such as the Cloud Profiling Radar (CPR) on board CloudSat
and the Dual-Frequency Precipitation Radar (DPR) on board the Global Precipitation
Measurement-Core Observatory (GPM-CO). CPR (a 94 GHz nadir-looking radar) has
proved highly effective in detecting snowfall with high sensitivity (~ –28 to –30 dBZ) and
good orbital characteristics (sampling from 82◦N–82◦S latitudes) and has been widely used
in snowfall research [3,5,32–35]. DPR (Ku 13.6 GHz and Ka 35.5 GHz) is also used in snow
detection, although with different performances compared to CPR [2,36,37].

Despite the importance of falling snow and the considerable attention given by re-
searchers to satellite snowfall retrieval, this is still one of the most challenging tasks.
Compared to rainfall, snowfall retrieval from space is more challenging for several reasons
related to the complex and dynamic interactions between the snowfall scattering signal
and the surface. The non-spherical nature of ice particles and snowflakes, compared to
roughly spherical raindrops, results in much more complex radiative properties [3,23].
Compared to rainfall, graupel, or hail, the snowfall scattering signal (and related depres-
sion of brightness temperatures -BTs) is much weaker, and therefore is more easily obscured
by other contributions to the upwelling radiation (e.g., background surface or supercooled
liquid water emission). Changes in the surface emissivity due to snow accumulation on
the ground, snow wetness, and metamorphism, (altering the snow grain microstructure)
can significantly impact the passive microwave signal and its relation to snowfall [3,23,38].
Moreover, several studies have shown that the snowfall scattering signal tends to be masked
by the atmospheric water vapor and cloud liquid water emission in precipitating condi-
tions [21,39,40]. In the study conducted by Panegrossi et al. [30], the impact of the presence
of supercooled liquid water on the ability of GMI to observe snowfall at higher latitudes
was analyzed in detail. The study showed how the influence of supercooled droplets on
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the high-frequency channels’ BTs is significant, especially when found on the top of ice
cloud layers, and how their presence also affects the BTs’ polarization differences.

A field that is currently attracting the attention of researchers is the application of
machine learning (ML) techniques to Earth observation. These machine learning techniques
are widely applied in Earth observation because of their ability to approximate, to an
arbitrary degree of accuracy, complex nonlinear and imperfectly known functions such as
the relationships between satellite observations of the Earth and the state of the atmosphere
and the surface [41–51]. A fundamental characteristic of these techniques is that the training
process eliminates the need for a well-defined physical or numerical model that describes
the relationships between the input values and output results, allowing the identification
of these relationships during the learning phase. Interest in ML techniques is now also
growing for parameter estimation related to snow, thanks to the increased availability of
data, computational resources, and learning methods (e.g., deep learning).

Exploiting the potential of learning methods in both classification and regression
analysis, several studies have been carried out to estimate snowfall and other snow-related
parameters. Tedesco et al. [52] used the neural network approach in the retrieval of snow
water equivalent, and snow depth, based on Special Sensor Microwave Imager (SSM/I)
data. Tabari et al. [53] estimated snow depth and snow water equivalent using an improved
neural network model. More recently, Rysman et al. [15,54] developed a machine-learning-
based snowfall detection and retrieval algorithm for GMI (SLALOM) using CloudSat CPR
coincident snowfall observations as a reference. The SLALOM algorithm is composed of
random forest modules for the detection of snowfall and supercooled liquid clouds and
a snowfall rate estimation module based on a gradient boosting approach. This study
showed that the improvement in snowfall and high-latitude precipitation monitoring can
be driven by machine-learning-based algorithms, exploiting concerted observations of
active radars and passive microwave radiometers. Adhikari et al. [37] carried out a study
to detect and estimate snowfall based on NOAA-18 Microwave Humidity Sounder (MHS)
radiometer data, with CPR observations as a reference, using a random forest method.
Tsai et al. [55] used a random forest classifier to map the total and wet snow-cover extent
based on Sentinel–1 SAR radar data. Hicks and Notaros [56] described a method for the
classification of snowflakes based on convolutional neural networks. Roebber et al. [57]
presented a neural network approach to snowfall forecasting. Liu et al. [58] used a deep
neural network for retrieving snow depth over sea ice in the Arctic basin, based on Special
Sensor Microwave Imager and Sounder measurements.

The increasing number of operational cross-track scanning radiometers that will be
on board polar orbiting satellites in the future (e.g., the Advanced Technology Microwave
Sounder—ATMS—and the EUMETSAT Polar System program-Second Generation EPS-SG
Microwave Sounder—MWS) will require dedicated efforts to study the potential of these
radiometers to improve global snowfall monitoring. The goal of this paper is to present a
new algorithm for snowfall detection and retrieval applied to ATMS measurements based on
machine learning techniques (Snow retrievaL ALgorithm fOr gpM–Cross Track, SLALOM-CT).
As in SLALOM, developed for GMI, CloudSat CPR products are used as a reference. In recent
studies [15,30,48,54,59], the potential of the use of observational datasets built from coincident
passive and active MW satellite observations for the development of satellite precipitation
products has been shown. This approach differs from that based uniquely on simulations
(a cloud resolving model coupled with a radiative transfer model), which was for a long
time the only possible option for building a large, global cloud-radiation database [47,60–65].
The availability of the CPR observations has allowed the creation of observational databases,
thereby reducing the limitations deriving from the assumptions of the simulations (e.g., the
microphysical scheme of the cloud model, the emissivity of the background surface, and
the scattering properties of ice hydrometeors) [21,25,66]. CPR, and the 2C-SNOW-PROFILE
product in particular, has proven to be well suited to retrieving snowfall precipitation and
very light rainfall [36]. However, since 2011, CPR has operated in daylight only mode,
due to a battery anomaly, generating biases when CPR measurements are used to monitor
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global snowfall on relatively large time scales (daily or more), as recently investigated [67].
These effects, however, should not have a relevant impact on the results of this study, as
only instantaneous estimates of snowfall rates and snow water path are used. Moreover, a
recent study by Mroz et al. [68] compared several satellite-based snowfall estimates with the
Multi-Radar Multi-Sensor (MRMS) radar composite over the continental United States, and
the 2C-SNOW-PROFILE resulted in better agreement than any other product. These studies,
however, confirmed some well-known limitations of 2C-SNOW-PROFILE, in particular the
underestimation of the highest snowfall rates. Additionally, Mroz et al. [68] evidenced how
passive microwave (PMW) snowfall retrieval (GPROF and SLALOM) is strongly affected
by the presence of cloud liquid water. Moreover, Battaglia and Panegrossi [69], analyzing
the CPR passive signal in the W band, evidenced how supercooled water is frequent in
snowfall-producing clouds. Therefore, SLALOM-CT (as well as SLALOM) includes a
module for the detection of supercooled liquid water droplets.

The SLALOM-CT algorithm was developed within the EUMETSAT Satellite Appli-
cation Facility for Operational Hydrology and Water Management (H SAF) as part of the
development of an operational day–1 precipitation product for the EPS-SG MWS mission.

The paper is structured as follows. Section 2 describes the dataset, focusing on the
ATMS radiometer and the satellite product used in this research, together with a brief
description of the machine learning techniques compared. Then, in Section 3, the SLALOM-
CT algorithm architecture and the training procedure are described. Section 4 presents
the results of the algorithm testing phase, including the analysis of the model selection.
Moreover, in this section, the performances of each module composing SLALOM-CT are
analyzed, in relation to the environmental conditions, and the results compared with the
NASA GPM official ATMS product (GPROF-ATMS). Section 5 critically discusses the results
of this work in the context of the recent literature, and finally, Section 6 summarizes the
main results and draws the conclusions.

2. Materials and Methods
2.1. ATMS Radiometer

ATMS is a total power cross-track scanning microwave radiometer on board the Suomi
National Polar-orbiting Partnership (NPP) satellite (and NOAA–20) with a swath of 2600
km and an angular span of ±52.77 relative to the nadir [70–73]. During each scan, the
Earth is viewed from 96 different angles, sampled every 1.11◦. ATMS has 22 channels,
ranging from 23 to 183 GHz, providing both temperature soundings from the surface to the
upper stratosphere (about 1 hPa, ~45 km) and humidity soundings from the surface to the
upper troposphere (about 200 hPa, ~15 km). In particular, ATMS channels 1–16 provide
measurements at microwave frequencies below 60 GHz and in an oxygen absorption band,
and channels 17–22 are located at higher microwave frequencies above 89 GHz and in
a water-vapor absorption band. The beamwidth changes with frequency and is 5.2◦ for
channels 1–2 (23.8–31.4 GHz), 2.2◦ for channels 3–16 (50.3–57.29 and 88.2 GHz), and 1.1◦

for channels 17–22 (165.5–183.3 GHz) (see Table 1 for further details). The corresponding
nadir resolutions are 74.78, 31.64, and 15.82 km, respectively. The outmost FOV sizes are
323.1 km × 141.8 km (cross-track × along-track), 136.7 km × 60.0 km, and 68.4 km ×
30.0 km, respectively.

2.2. Satellite Products: CloudSat 2C-SNOW-PROFILE, DARDAR, and GPROF

In this study, reference values for the snow water path (SWP) and snowfall rate
estimate (SRE) were obtained from the CloudSat snow profile product (2C-SNOW-PROFILE
v.05A; [74]). This product provides estimates of the vertical profile of falling snow, such
as snowfall rate, snow water content, and parameters of the snow size distribution. These
estimates were retrieved, using an optimal estimation method [75], from the CloudSat CPR
reflectivity profiles where snowfall was probable or certain (based on the classification of
the 2C-PRECIP CPR product) and only for dry snow (i.e., a liquid water fraction less than
10–15%).
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Table 1. Characteristics of ATMS channels (https://www.star.nesdis.noaa.gov/jpss/ATMS.php,
accessed on 2 February 2022).

Channel Center Frequency
(GHz)

EFOV
Cross-Track (deg)

EFOV
Along-Track (deg) Polarization

1 23.8 6.3 5.2 QV
2 31.4 6.3 5.2 QV
3 50.3 3.3 2.2 QH
4 51.76 3.3 2.2 QH
5 52.8 3.3 2.2 QH
6 53.596 ± 0.115 3.3 2.2 QH
7 54.4 3.3 2.2 QH
8 54.94 3.3 2.2 QH
9 55.5 3.3 2.2 QH
10 57.29 3.3 2.2 QH
11 57.29 ± 0.217 3.3 2.2 QH
12 57.294 ± 0.32 ± 0.048 3.3 2.2 QH
13 57.29 ± 0.32 ± 0.022 3.3 2.2 QH
14 57.29 ± 0.32 ± 0.010 3.3 2.2 QH
15 57.29 ± 0.32 ± 0.0045 3.3 2.2 QH
16 88.2 3.3 2.2 QV
17 165.5 2.2 1.1 QH
18 183.31 ± 7 2.2 1.1 QH
19 183.31 ± 4.5 2.2 1.1 QH
20 183.31 ± 3 2.2 1.1 QH
21 183.31 ± 1.8 2.2 1.1 QH
22 183.31 ± 1 2.2 1.1 QH

As a reference for the presence of supercooled liquid water droplets, the water phase
mask provided by the DARDAR (liDAR + raDAR) product [76] was used. DARDAR,
combining CPR radar and CALIOP lidar (on-board CALIPSO) observations, can estimate
the cloud water phase and also the ice water content and ice particle effective radius, with
a vertical resolution of 60 m and a horizontal resolution of 1.4 km (cross-track) × 1.7 km
(along-track).

The results of the comparison of SLALOM-CT and the GPROF-ATMS product snowfall
estimates (2AGPROFATMS) are also presented. GPROF is a physically based Bayesian
precipitation retrieval algorithm used to deliver the official NASA GPM L2 precipitation
products for all the GPM MW radiometer constellation including ATMS. It was originally
proposed by Kummerow and Giglio [77], and since then it has continuously evolved
towards a parametric approach that allows its use with different passive microwave sen-
sors [78–80]. For this verification study, the 2A GPROF V05C for ATMS product was used.

2.3. The Coincidence Database

The algorithm was developed by exploiting a large dataset of coincident observations
from a satellite-borne radar and radiometer (see Table 2). A coincidence dataset between
ATMS and CPR observations was created. While ATMS provides integrated information on
the surface and atmosphere characteristics of a large swath, CPR provides observations on
the whole atmospheric column but with a very narrow swath (revisiting time of 16 days for
a square of 100 km × 100 km). The current version of the coincident ATMS–CPR dataset
was built considering a three-year (2014–2016) period of coincident (within 15 min) CPR
reflectivity profiles and ATMS multichannel BT measurements.

Table 2. Characteristics of the ATMS–CPR dataset.

Period 16/01/2014–31/08/2016

Geographical area 82◦S–82◦N, 180◦W–180◦E

Number of database points 6.5 M

Number of database points with snowfall 1.1 M

Horizontal resolution (km) 15.8 × 15.8 (nadir) 30 × 68.4 (scan edge)

https://www.star.nesdis.noaa.gov/jpss/ATMS.php
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In the database only the coincidences between the Suomi National Polar-orbiting Part-
nership (SNPP) satellite and CPR were considered, but for future studies it is planned to
extend it by also considering the coincidences with the NOAA–20 satellite. The database
incorporates some variables (see Table 3) derived from the European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric model, which are used as ancillary inputs
in the SLALOM-CT algorithm. These data include analysis (every 12 h) and forecasts (every
3 h) collected from the Operational Archive of the Meteorological Archival and Retrieval
System (MARS). In detail, single-level variables were considered (near surface temperature—
T2m, total precipitable water—TPW, and freezing level height—FLH), together with vertical
profiles of temperature, and relative and absolute humidity (i.e., selected from 14 pres-
sure levels from 1000 to 1 hPa). The DARDAR-MASK product (from the Laboratoire
Atmosphères, Milieux, Observations Spatiales—LATMOS—and the Cloud Group of the
Department of Meteorology, University of Reading) was also used as a reference for the
presence of supercooled liquid droplets.

Table 3. List of variables in the ATMS–CPR dataset.

Variables in the Database Data Source

Latitude, Longitude (ATMS pixel) NOAA–ATMS Sensor Data Record Operational
ATMS BTs NOAA–ATMS Sensor Data Record Operational

Time of ATMS Pixel NOAA–ATMS Sensor Data Record Operational
ATMS Scan Angle NOAA–ATMS Sensor Data Record Operational

Supercooled Droplet DARDAR (raDAR/liDAR) LATMOS—Reading Univ.
Snowfall Rate 2C–SNOW–PROFILE (CloudSat CPR product)

Snow Water Path 2C–SNOW–PROFILE (CloudSat CPR product)
Surface height 2B–GEOPROF (CloudSat CPR product)

Near-Surface Temperature ECMWF Operational
Total Precipitable Water ECMWF Operational
Freezing-Level Height ECMWF Operational

Temperature Profile ECMWF Operational
Relative humidity Profile ECMWF Operational
Absolute humidity Profile ECMWF Operational

It is worth noting that for the application of deep learning techniques, the database
also includes information from the surrounding areas of each ATMS–CPR coincidence
pixel. Each dataset element is made not of isolated points (single pixels) but of matrices
(7 × 7 ATMS pixels “image”) around each ATMS–CPR coincidence pixel, as shown in
Figure 1.

The database was built considering the horizontal resolution of the ATMS high-
frequency channels (see Table 1). The CPR reflectivity profiles (and corresponding products,
including DARDAR) falling within each ATMS IFOV were averaged with a Gaussian
function approximating the ATMS antenna pattern (varying with the scan angle). Each
CPR–ATMS coincidence pixel is therefore composed of a mean CPR profile (and associated
products) associated with each ATMS BT vector. The ECMWF-model-derived variables
were included into the dataset by selecting the forecast time step nearest the ATMS pixel
and applying a bilinear interpolation in the horizontal plane. The dataset was further
selected by removing all corrupted data and applying an additional filter based on the
distance between each ATMS pixel and CPR, where all data with a minimum distance
between CPR and the ATMS IFOV center greater than 22 km were removed.

2.4. The Machine Learning Techniques
2.4.1. The Random Forest Approach

The random forest, introduced by Breiman [81,82], is an ensemble learning algorithm
that combines the ideas of “bootstrap aggregating (bagging)” and the “random subspace
method” to construct randomized decision trees. The ensemble bagging technique is based
on the use of multiple trees from random bootstrapped replicas of the learning dataset, in
order to considerably enhance the classification accuracy over a single decision tree.
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Each decision tree, trained in parallel, predicts an output, and each output is evaluated
in the final response of the random forest. For the classification problem, the selection of the
final output follows the majority voting system, and the output chosen by the majority of
the decision trees becomes the final output of the random forest. For the regression problem,
the final prediction is obtained by taking the mean of the output from various trees.
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case study occurring over northern China on 11 March 2015 (CPR orbit number 47170). On the top
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7 × 7 matrices of collocated ATMS BTs, and the ellipses represent ATMS BTs at 165 GHz. The bottom
panel (b) shows the corresponding vertical profile of the CPR reflectivity with the two ATMS pixels
considered, corresponding to the red and pink “X” in the top panel.

2.4.2. The Boosting Algorithms Approach

These ensemble algorithms are based on the boosting technique, which aims to obtain
a robust classification/regression model by combining the responses of multiple weak
learners. Weak learners are models that perform slightly better than random guessing; a
commonly used type of weak learning model is the decision tree. In this technique, each
sequential weak learner progressively learns from the classifications/regressions carried
out incorrectly by the previous ones. In this way, a strong overall model can be built. Each
weak learner is associated with a weight related to the total error in its prediction. The final
prediction is obtained by taking into account the responses of all the weak learners, but
each contributes with a different weight to the final decision.

AdaBoost was the first successful boosting algorithm, and the following boosting
methods are based on similar techniques, with some differences, such as in the definition
of the loss function to be optimized. Gradient boosting is a machine learning technique for
regression and classification problems, using a gradient descent procedure to minimize the
loss when adding trees.
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Robust boosting is a technique that allows a better average accuracy to be produced
in classification problems, with the result that it is more robust against label noise than
AdaBoost.

2.4.3. The Shallow Neural Network Approach

A neural network consists of a number of neurons arranged in different layers, ex-
changing information with each other. Each layer holds a number of neurons determined,
along with the number of layers, during the design of the network. Each node has its own
transfer function (or activation function) and receives, as input, a weighted sum of the
outputs of all the nodes of the previous layer. The output of the transfer function of each
node is sent to all nodes in the next layer (fully connected network). The estimation of the
weights of each neuron–neuron connection is performed in the NN training phase, during
which a training database, providing the network with the inputs and the expected output,
is used. The value of each weight is modified to reduce the error between the network and
the expected outputs. At the end of the training, the network can approximate complex
nonlinear and imperfectly known functions with an arbitrary degree of accuracy [83–85].
The final values of the weights connecting the neurons of the different layers store the
knowledge of the NN. A detailed description of the NN design process can be found in
Sanò et al. [86].

2.4.4. The Convolutional Neural Network Approach

The convolutional neural network (CNN), an important part of the deep learning
technique, has proven to be very effective in the recognition and classification of images.

A CNN typically has three kind of layers: convolutional layers, pooling layers, and
fully connected layers.

The convolutional layer is the main building block of the CNN and represents the
greatest computational load. The convolution operation uses multiple filters that scan
the entire image and extract features (feature map), preserving the corresponding spatial
information. The convolution layer also includes a nonlinear operation called ReLU
(rectified linear unit) which is used after each (linear) convolution operation for nonlinear
amplification. The pooling level, computed immediately after a convolutional level, is used
to reduce the size of the output of the convolutional level and to generate a condensed
set of feature maps. Max pooling and average pooling are the commonly used pooling
operations, but max pooling is the most common and is widely used. It consists of keeping
only the maximum values of the feature maps, significantly reducing their spatial sizes and
the processing effort in subsequent levels. The output of the convolutional and pooling
layers, containing the high-level features of the input image, is sent to the fully connected
layers, which constitute the last part of the CNN. The purpose of the fully connected layers,
where every neuron in the previous layer is connected to every neuron in the next layer,
is to use these features to provide the network output (e.g., the classification of the input
image into various classes) [49,87–90].

Two convolutional network architectures, called VGG [91] and ResNet [92], were
selected for this analysis. The flowcharts of the specific VGG and ResNet architectures
tested are shown in Figures 2 and 3. In both architectures, ReLU operations were used as
transfer functions. A detailed description of the two convolutional network architectures
can be found in the above-mentioned references. We only wish to highlight that the two
chosen architectures differ in depth (i.e., the number of layers) and in the number of
convolutional layers (3 in VGG and 19 in ResNet). Moreover, ResNet is characterized by
the use of “residual blocks”, where the input and output of a sequence of two convolutional
layers are connected by a “shortcut connection” that has been shown to be very effective
for training very deep networks, avoiding degradation issues due to the depth [92].
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3. The Algorithm
3.1. General Description of the Algorithm

The SLALOM-CT algorithm inherits and improves upon the scheme of SLALOM,
developed for GMI. The SLALOM algorithm originally included three modules: one for
the detection of snowfall, one for the detection of supercooled water droplets, and one
for the estimation of the snow water path [15]. A fourth module for surface snowfall
rate estimation was added to the algorithm [54]. An important difference in SLALOM-
CT is related to this last module, which in the new version makes use only of the snow
water path estimate and of some ancillary variables (without the use of BTs). For the first
three modules, the two SLALOM versions share the same model-derived ancillary data
and exploit the channels of the respective radiometers (GMI and ATMS). An important
innovation in SLALOM-CT is the inclusion in the new algorithm of a surface classification
scheme for the detection and classification of snow cover and sea ice at the time of the
overpass [93]. The high-level algorithm flowchart is shown in Figure 4 and is composed of
three main blocks:

1. The input data block, which includes the pre-processing of BTs and ancillary variables
and the surface classification at the time of the overpass (self-standing module);

2. The classification block, which includes snowfall detection (SD) and supercooled
droplet detection (SCD) modules;

3. The estimate block, which includes one module for the retrieval of the snow water
path (SPE module) and one for the retrieval of the surface snowfall rate (SRE module).
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The algorithm takes as input the BTs from selected channels of the ATMS radiome-
ter, ancillary information regarding the thermodynamic state of the atmosphere (from
the ECMWF model operational forecast), and other variables regarding the state of the
background surface, as listed below:

– ATMS frequency channels’ BTs (channels 1–9, 16–22);
– ECMWF ancillary variables (see Table 3);
– Scan angle;
– Surface height;
– Dynamic surface map (from surface classification algorithm).
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Regarding the exploitation of the ECMWF-model-derived variables, analogously to
SLALOM [15], the two-dimensional variables T2m, TPW, FLH, and surface elevation were
used as input to the modules, while the first four principal components of temperature and
humidity (relative and absolute) profiles were used.

The dynamic surface map is based on the PESCA algorithm [93], which allows for
the detection and classification of frozen surfaces (sea ice and snow cover) at the time of
the satellite overpass. This algorithm is based on a single decision tree module based on
low-frequency ATMS BTs (23.8, 31.4, and 88.2 GHz channels) and some model-derived
variables (TPW and T2m). Over land, PESCA is able to discriminate between snow-free land
and four classes of snow-covered surfaces: Thin Snow and Deep Dry Snow are built from
seasonal snow and differ mainly in their thickness, and Perennial Snow and Polar Winter
Snow are found at higher latitudes (the first over the whole year and the latter mainly in
winter in central Greenland and Antarctica). Over the ocean, PESCA classifies the surfaces
into Ice-Free Ocean, Broken Sea Ice (where the satellite FOV is partially covered by sea ice),
New Year Ice (built from recently formed sea ice) and Multilayer Ice (thick and older sea
ice). The algorithm has shown very good performance within some environmental limits
(i.e., TPW < 10 kg m−2 and T2m < 280K). When these conditions are not met, the surface is
categorized as either “Land Uncertain” or “Ocean Uncertain”. A further class is defined as
Coastal Areas where the ATMS IFOV includes both land and ocean.

All the inputs feed the classification block consisting of the snowfall detection (SD)
and supercooled droplet detection (SCD) modules.

The BTs and the corresponding ancillary data for pixels that are classified as “snowfall”
by the SD module form the input of the snow water path estimation module (SPE). The SPE
output (snow water path in kg/m2) feeds the SRE module that produces snowfall rates
in mm/h.

The information on the presence of supercooled droplets, associated with the snow
water path and snow rate estimates, allows the conditions under which the retrieval is less
reliable to be identified. A supercooled droplet layer on top of a snow cloud can mask the
scattering signal of the snowflakes below [30].

3.2. Training and Optimization of the Machine Learning Modules

During the preliminary analysis of the algorithm’s performance, it was highlighted
that a relevant role in the surface snowfall rate estimation is played by the SD and the SPE
modules. Accordingly, the algorithm development mostly focused on the optimization of
the SD and SPE modules.

The SD and the SPE modules underwent an extensive intercomparison process be-
tween various machine learning techniques. In particular, for the SD module and SPE mod-
ule, a random forest, various gradient boosting algorithms (AdaBoost [94], RobustBoost [95]
and least-squares boosting [96]), a shallow neural network, and two convolutional network
architectures (VGG and ResNet) were tested.

The CPR–ATMS coincidence dataset, described in Section 2.3 and spanning 3 years
(2014–2016) was divided into two independent datasets: a training dataset (1 year long)
and a testing dataset (2 years long). The training and testing datasets were carefully quality
controlled and built following different criteria to take into account SD and SPE problems.
In particular, for the SPE only, observations with a surface snowfall rate greater than 0
mm/h were used in training and testing, while the SD training and testing were based on
all observations (with and without snowfall) with a FLH lower than 500 m. It has been
observed that only a negligible fraction of observations are associated with snowfall when
the FLH is beyond this threshold.

Another aspect to highlight in the building of the training and testing datasets is that
convolutional neural networks are suited for retrieval problems involving images, while
the other machine learning techniques tested in this research are pixel-based, i.e., each
pixel, independently of the relative position in the original observation, is treated as stand-
alone. In order to directly compare the results from the pixel-based and image-based ML
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techniques, the datasets are composed of several features (or input variables, or channels)
from a 7 × 7 image of adjacent pixels. The target variables (output of the ML algorithm)
are taken only from the central pixel of the 7 by 7 feature image. In the training and in the
application of the image-based convolutional networks, the full feature image is used as
input, while for the pixel-based ML techniques only the central pixel of each channel is used
as input. We should note that this approach could limit the potential of convolutional neural
networks for solving our problems; however, it allows a direct comparison of the pixel-
and image-based ML techniques and permits quantification of how the pixels surrounding
the central pixel can contribute to the solution of the retrieval problem.

Each ML technique was optimized during the training by varying several structural
and tuning parameters. This approach implied the training of a very large number of ML
algorithms. In particular, for random forest, the ensemble trees algorithms were trained by
optimizing the number of trees, the number of splits per tree, and the minimum leaf size,
while in the gradient boosting algorithm the number of training epochs, the number of
splits per tree, the initial learning rate, and the robust error goal (only for the RobustBoost
algorithm) were optimized.

The resulting optimized algorithms showed significant differences from each other.
The random forest algorithms are characterized by a relatively low number of very deep
trees (e.g., 200 trees composed of 10,000 splits in SPE). In contrast, the gradient boosting
algorithms are built with a very large number of very simple trees (e.g., 2000 trees with 5
splits each for the SPE). Moreover, in the training of the neural networks, both shallow and
deep, various structural parameters were optimized (i.e., number of layers and number of
perceptrons or weights), together with several training parameters (i.e., initial learning rate,
square gradient decay factor, and regularization-related parameters). During the training,
the mean squared error and cross entropy were used as loss functions for the regression
and classification networks, respectively, for both shallow and convolutional architectures.
The resulting optimized shallow neural networks were composed of two hidden layers
of 50 and 25 perceptrons for both SD and SPE. Finally, the structural characteristics of the
optimized VGG and ResNet convolutional networks are shown in Figures 2 and 3.

As already mentioned, the accuracy of the snowfall rate estimate strongly depends
on the quality and accuracy of the snow water path that feeds the snowfall rate estimate
module. In particular, it was noted that a relatively simple shallow neural network can
reproduce the CPR snowfall rate near to the surface very effectively if it is trained using the
CPR SWP and some ancillary environmental variables (T2m, TPW, surface elevation, and
the first four principal components of temperature and humidity—relative and absolute—
profiles). A two-hidden-layer (with 50 and 25 perceptrons) shallow neural network was
trained using the SWP derived from the CPR 2C-SNOW-PROFILE product and the pre-
viously cited environmental variables. This NN (called SRE-CPR) reproduces the CPR
snowfall rate near to the surface with an RMSE of 0.063 mm/h (corresponding to a coeffi-
cient of determination—R2—of 0.84). Therefore, if the SPE module reproduces the CPR
SWP adequately well, the SRE module can be based only on SWP and environmental
variables. Consequently, the development efforts were focused on the training of a very ef-
fective SPE module. The final SRE module consisted of a shallow neural network (identical
in structure to SRE-CPR) that uses as input the SWP derived from the SPE module (details
are reported in Section 4.2). Finally, the SCD module was composed of a shallow neural
network very similar to the one for the SD module (i.e., 50 and 25 perceptrons in the two
hidden layers).

For the training and optimization phases of the different ML modules, the “Statistics
and Machine Learning Toolbox” and the “Deep Learning Toolbox” of MATLAB 2021b
were used.
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4. Results
4.1. Intercomparison of Machine Learning Techniques

Table 4 shows the results for the intercomparison of the ML techniques used for the
SWP estimate in the test dataset (2014 and 2016). The analyzed statistics include the root
mean squared error (RMSE), the coefficient of determination (R2), the mean error (ME), the
Pearson’s correlation coefficient (Corr), and the number of trained parameters (N0). R2 is
defined as:

R2 = 1 − RSME2

STD2 (1)

where STD is the SWP standard deviation in the dataset. All ML techniques show a very
low mean error and a relatively high correlation. The RMSE is also limited. Two algorithms
(the two based on the simpler neural networks) outperformed the others. In particular, the
shallow neural network showed an RMSE of 0.050 kg/m2, corresponding to an R2 of 0.86,
our best result, while the VGG showed statistics quite similar to the shallow neural network
but slightly worse (RMSE of 0.055 km/m2 and R2 of 0.83). Both tested tree-based algorithms
(random forest and gradient boosting) showed worse performances. The ResNet algorithm
showed better results than the tree-based algorithms, but they were suboptimal with
respect to the simpler neural networks. N0, reported in the last line of Table 4 as a proxy to
quantify the complexity of the algorithms, indicates the number of tests, splits, or weights
of each algorithm. Some conclusions can be drawn from this analysis: (1) neural networks
show a higher capability for solving the problem of SPE than tree-based algorithms; (2) in
this case the image-based approach, which considers the pixels surrounding the central
pixel, makes no contribution to the solution, as the pixel-based shallow neural network
outperforms every other algorithm tested; (3) ResNet is too complex for the size of our
training dataset. Based on this analysis the shallow neural network algorithm was chosen
for the SPE module of SLALOM-CT

Table 4. SWP estimation statistics.

Random
Forest

Gradient
Boosting Shallow NN VGG ResNet

RMSE [kg/m2] 0.078 0.090 0.050 0.055 0.072

R2 0.667 0.553 0.861 0.834 0.714

ME [kg/m2] −3.66 × 10−3 −1.08 × 10−2 −1.59 × 10−5 −5.61 × 10−5 −1.2 × 10−3

Corr 0.86 0.83 0.93 0.92 0.87

N0 4 × 106 104 3 × 104 7 × 104 4 × 106

Table 5 shows a similar intercomparison between various models for snowfall detec-
tion in terms of the Heidke skill score (HSS), critical success index (CSI), probability of
detection (POD), and false alarm ratio (FAR), defined as:

HSS = 2(ad − bc)/[(a + c)(c + d) + (a + b)(b + d)] (2)

CSI = a/(a + b + c) (3)

POD = a/(a + c) (4)

FAR = b/(a + b) (5)

where a, b, c, and d are the numbers of hits, false positives, misses, and true negatives,
respectively. In addition, for the SD case, the neural networks outperform the tree-based
approaches. Moreover, the two simplest NNs show better results than ResNet; however,
VGG appears to be the best-performing algorithm (both in terms of HSS and CSI), proving
the positive contribution of the surrounding pixels to snowfall detection. Therefore, the
VGG architecture was selected for the SD module.
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Table 5. Snowfall detection statistics.

Random Forest RobustBoost AdaBoost Shallow NN VGG ResNet

HSS 0.62 0.61 0.61 0.66 0.68 0.64
CSI 0.67 0.66 0.66 0.69 0.70 0.67

POD 0.80 0.79 0.79 0.83 0.83 0.80
FAR 0.20 0.20 0.20 0.19 0.18 0.19

4.2. SLALOM-CT Algorithm Performance

After the selection of the best-performing ML approach for each module, as described
in Section 4.1, the results of each module were analyzed in detail, as described in this
section.

4.2.1. SWP Estimate (SPE)

The intercomparison between ML algorithms for SPE, described in Section 4.1, showed
that the best statistical scores were obtained for the pixel-based shallow neural network
model, which was therefore chosen for the SPE module. Figure 5 shows the comparison
between the reference SWP derived from CloudSat CPR (2C-SNOW-PROFILE) and that
estimated by applying the shallow neural network to the two-year test dataset. The figure
shows the same comparison on linear and logarithmic scales. It is evident that the trained
algorithm gives optimal estimates, with reduced bias and dispersion, for relatively high
values of SWP (for SWP > 0.2 kg/m2), while for SWP values lower than 10−1 kg/m2 the
dispersion increases (see also Table 4, Shallow NN column, for the statistical scores). The
sensitivity threshold of the algorithm, due also to the ATMS radiometer characteristics, is
located around SWP values of 10−2 kg/m2.

1 
 

 
  Figure 5. Comparison of SWP from CloudSat CPR and ATMS in test dataset. Both panels show

density scatterplots, on linear (a) and logarithmic (b) scales.

4.2.2. Snowfall Detection (SD)

Figure 6 shows the analysis of the test results for the optimal algorithm trained for
the SD module. The chosen algorithm was VGG (image-based model), and the output
of the algorithm is a continuous index, representing the probability of a snowfall rate
greater than 0 mm/h in the central pixel of the 7–by–7–pixel scene. Figure 6 shows the
POD, FAR, and HSS values of the SD algorithm, depending on the probability threshold
used to define snow/no snow applied to both the training and test datasets. It is evident
from this figure that the optimal probability threshold in terms of HSS is 0.5 (where the
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HSS has a maximum equal to 0.68, see also Table 5, VGG column), and that the results are
robust in the application to both test and training datasets. From Figure 6, it is also possible
to appreciate how the choice of a lower (higher) threshold implies a higher (lower) POD
and FAR.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 31 
 

 

 
Figure 6. Snow rate detection statistics. Statistical indexes (POD, FAR, and HSS) for the SD module 
applied to test and training datasets. 

4.2.3. Snowfall Rate Estimate (SRE) 
Figure 7 shows the comparison between the SRE module applied to the test dataset 

and CPR, on linear (left panel) and logarithmic (right panel) scales. The estimate is coher-
ent with the CPR reference, with small bias and dispersion (see also Table 6); the sensitiv-
ity limit of the SRE module of the SLALOM-CT algorithm is around 10−2 mm/h. As already 
mentioned in Section 3.2, the SRE module is built from a two-hidden-layer shallow NN 
with 50 and 25 perceptrons. 

 
Figure 7. Snowfall rate estimate scatterplot. Both panels show density scatterplots, on linear (a) and 
logarithmic (b) scales. 

Table 6. Error statistics of the SRE module. 

 SRE SRE-CPR 
RMSE [kg/m2] 0.089 0.063 

R2 0.68 0.84 
ME [kg/m2] 2.10 × 10−4 −1.24 × 10−4 

Corr 0.83 0.92 

4.2.4. Supercooled Water Detection (SCD) 

Figure 6. Snow rate detection statistics. Statistical indexes (POD, FAR, and HSS) for the SD module
applied to test and training datasets.

4.2.3. Snowfall Rate Estimate (SRE)

Figure 7 shows the comparison between the SRE module applied to the test dataset
and CPR, on linear (left panel) and logarithmic (right panel) scales. The estimate is coherent
with the CPR reference, with small bias and dispersion (see also Table 6); the sensitivity
limit of the SRE module of the SLALOM-CT algorithm is around 10−2 mm/h. As already
mentioned in Section 3.2, the SRE module is built from a two-hidden-layer shallow NN
with 50 and 25 perceptrons. 
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Table 6. Error statistics of the SRE module.

SRE SRE-CPR

RMSE [mm/h] 0.089 0.063
R2 0.68 0.84

ME [mm/h] 2.10 × 10−4 −1.24 × 10−4

Corr 0.83 0.92

4.2.4. Supercooled Water Detection (SCD)

The supercooled droplet detection module (SCD) is based on a shallow NN (with 50
and 25 perceptrons in the two hidden layers) and was trained by combining the DARDAR
binary flags indicating the presence or absence of supercooled droplets within the ATMS
IFOV. In particular, the supercooled liquid water fraction was calculated as the fraction of
positive DARDAR flags within the ATMS IFOV. Figure 8 presents the behavior of the POD,
FAR, and CSI indexes as a function of the supercooled water fraction in the ATMS IFOV.
The supercooled fraction threshold that can be optimally detected by the SCD module has
been defined as the one that maximizes the HSS. Table 7 provides the optimal threshold
and corresponding statistical scores of the SCD module.
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Table 7. Error statistics of the SCD module.

SCD MODULE

Supercooled fraction threshold 0.19
HSS 0.70
POD 0.88
FAR 0.19

4.3. Sensitivity Analysis

In order to define the limits of applicability of the SLALOM-CT algorithm, its sensi-
tivity to several variables was analyzed. Figure 9 shows a summary of the main results.
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The left panels of Figure 9 show the statistics of the SD module, while the right panels
refer to the SRE module. The error statistics are reported considering POD and FAR or
RMSE and ME for the SD and SRE modules, respectively. Figure 9 also shows the number
of observations (left panels, reported on the right green axes) and the mean value of the
snowfall rate (right panels). The first sensitivity test on the performance of the SLALOM-CT
algorithm was carried out considering different viewing angles (to account for the ATMS
scan geometry) (top panels Figure 9a,b). In the dataset, the viewing angle is not uniformly
populated, as the low angles are sampled more frequently. Moreover, the viewing angle
impacts both the resolution of the ATMS IFOV (changing also with the channel frequency),
which influences the mean snowfall rate associated with each ATMS IFOV and the polar-
ization of each channel. Despite that, the error statistics do not show a relevant dependence
on the observation angle for detecting and estimating snowfall: POD and ME are quite
constant and RMSE behaves in agreement with the mean snowfall value, while the FAR
shows slightly higher values for angles over 35◦. The second pair of panels (Figure 9c,d)
underlines the sensitivity of the algorithm to the supercooled liquid water fraction. In this
case, the algorithm, and the SD module in particular, is very sensitive to the presence of
supercooled droplets, as the FAR increases from about 0.1 without supercooled droplets
to about 0.7 for a supercooled fraction equal to 1. The ME and POD also show some
dependence on the presence of supercooled droplets, while the RMSE seems to follow the
behavior of the mean snowfall rate. It is interesting to note that the surface snowfall rate
decreases as the supercooled water fraction increases. This has been noted in several studies
(e.g., Rysman et al. [15]), and could be due to both the nature of snowfall-producing clouds,
including supercooled liquid droplets, and to the CPR W-band attenuation in the pres-
ence of liquid water, which is not properly taken into account in the 2C-SNOW-PROFILE
product used as a reference [69]. Moreover, as noted in previous studies [22,30,38], in the
presence of supercooled water over a radiatively cold background surface, the emission
signal of the water droplets might dominate over the scattering signal of snowflakes. The
SLALOM-CT algorithm seems to be able to correctly interpret the BTs in the presence
of supercooled droplets, except for the very light snowfall rates found for supercooled
water fractions > 0.8. Panels Figure 9e,f show the sensitivity to atmospheric water-vapor
content, expressed in terms of TPW. In this case, the SD algorithm seems to be negatively
impacted by both very dry conditions (particularly for TPW < 0.4 kg/m2) and very moist
conditions (i.e., TPW > 20 kg/m2). It should be noted that very dry conditions are often
associated with very light snowfall rates (see panel Figure 9f), and the larger contribution
of the extremely variable frozen background surface (see also [93]) to the upwelling BT
makes snowfall detection very challenging. On the other hand, in very moist conditions
the water-vapor emission tends to mask the snowfall scattering signal. The last two panels
(Figure 9g,h) show the algorithm sensitivity to the snow-cover depth derived from the
ERA-5 reanalysis. These tests were performed in order to verify the presence of blind
regions for SLALOM-CT (well-defined conditions which, if present, do not allow snowfall
detection and retrieval). Takbiri et al. [97] showed that snow-cover depth, concurrently
with liquid water (probably supercooled), impacts the upwelling BT and can completely
mask the signal related to snowfall. The main result of this analysis is that none of the
considered statistical indexes showed any particular sensitivity to snow-cover depth (while
the presence of liquid water strongly impacts the detection of snowfall, as seen in panels
Figure 9c,d). We can assume that SLALOM-CT neural network approaches allow us to
partially solve the complex relations between the variable emissivity of snow cover and the
radiative effect of ice and liquid clouds.
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Figure 9. Sensitivity of the snowfall detection and surface snowfall rate estimate (SD and SRE
modules) for different variables. Left panels show the statistics for the detection of snowfall (POD,
FAR, and number of dataset observations), right panels present similar statistics considering RMSE,
mean error, and mean value of snowfall rate. Panels from top to bottom show the sensitivity of
the statistical indexes with respect to the observation angle (a,b), supercooled fraction (c,d), total
precipitable water (e,f), and snow-cover depth (g,h).

Figure 10 shows the SRE module error analysis as a function of the surface type
categorized by the PESCA algorithm [93]. Given that the surface types correspond, in most
cases, to different environmental conditions (e.g., thin snow is detected in warmer/moister
situations at lower latitudes than perennial or polar winter snow), it was necessary to
normalize the RMSE by dividing it by the mean snowfall rate, calculating the fractional
standard error percentage (FSE%):

FSE% =
RMSE

Mean SRE
(6)
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where the FSE% for a given snowfall rate bin is the RMSE divided by the mean value of the
reference, both calculated within the bin. The SLALOM-CT performance does not show
large differences across the different PESCA surface types. Larger differences are evidenced
in the right panel of Figure 10, showing in detail the FSE% for snowfall rates higher than 0.1
mm/h (mostly above 0.4 mm/h), where some differences can be noted. The error is higher
for the Perennial Snow and Land Uncertain (land where the water-vapor conditions are
unfavorable for detecting snow cover) surface types, while the smaller errors correspond
to ice-free ocean. The analysis of the geographical distribution of the error statistics (not
shown), showed that some regions were more problematic. In particular, some coastal areas
of Greenland and Antarctica showed higher RMSE values (around 0.2 mm/h). Table 8
shows the detection statistics based on the PESCA surface classes, without taking into
account the snowfall rate regimes. SLALOM-CT could effectively detect snowfall over all
surfaces; however, the best performances were achieved over snow-free land and ice-free
ocean, probably due to the more uniform emissivity over these surfaces. Over land uncertain,
detection was more difficult, causing a high false alarm rate (32%). Over the other surfaces,
the performances were relatively good with a POD around 80% and a FAR less than or
equal to 20%. The analysis of the geographical distribution of the error statistics (not shown)
evidenced lower detection capabilities (POD < 0.75) in the inner region of Greenland and
Antarctica, together with Chukchi and the Beaufort Sea in the Arctic Ocean, and high false
alarm rates (FAR > 0.5) in some internal regions of Antarctica. 

3 

 
Figure 10. FSE% of snowfall rate as function of PESCA surface classification. (a) shows the full range
of CPR snowfall rates, (b) highlights the FSE% obtained for the most intense snowfall rates values.

Table 8. Snowfall detection statistics for PESCA surface classifications.

POD FAR HSS

Ocean Uncertain 0.83 0.16 0.67
Ocean Ice Free 0.92 0.11 0.75
Ocean New Ice 0.79 0.22 0.64

Ocean Broken Ice 0.86 0.19 0.58
Ocean Multilayer Ice 0.79 0.20 0.63

Land Uncertain 0.76 0.32 0.57
Land Snow Free 0.80 0.23 0.73
Perennial Snow 0.72 0.22 0.63

Polar Winter Snow 0.74 0.21 0.63
Deep Dry Snow 0.79 0.19 0.63

Thin Snow 0.84 0.17 0.68
Coast 0.82 0.20 0.65
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4.4. Comparison with GPROF

To obtain a further evaluation of the performance of SLALOM-CT, we compared the
estimates of this algorithm with those of the Goddard profiling algorithm (GPROF, version
05C), which is in operational use at NASA’s Precipitation Processing System (PPS).

In order to make the estimates of SLALOM-CT and GPROF comparable, some condi-
tions were set in the retrieval procedure. In particular, no precipitation thresholds were set
for either algorithm. In fact, unlike SLALOM-CT, which uses a preliminary “detection” of
precipitation, GPROF has a different approach and provides in the output, for each pixel, a
precipitation probability flag [79]. Furthermore, the surface classes identified by GPROF
were used in the evaluation of the statistical indexes [79,98]. Finally, this comparison
was performed only for observations associated with a GPROF frozen precipitation value
greater than 85% and an FLH lower than 500 m.

It should be noted that in this comparison, carried out over a two-year period (2014
and 2016), we used, as a reference, the Cloudsat 2C-SNOW-PROFILE product used in
the SLALOM-CT training phase. In contrast, GPROF uses, as reference products for
precipitation detection and estimation, the Multi-Radar/Multi-Sensor system (MRMS) over
snow-covered surfaces, the 2B-CMB level-2 GMI/DPR combined over ocean and sea ice,
and the 2A-DPR (Ku band) over land. Table 9 shows the results of this analysis.

Table 9. Snowfall rate detection and estimation statistics. SN refers to snow-covered surfaces, LA to
snow-free land, and OC to ocean and sea ice.

GPROF SN SLALOM-CT SN GPROF OC SLALOM-CT OC GPROF LA SLALOM-CT LA

RMSE
[mm/h] 0.18 0.10 0.24 0.09 0.24 0.10

ME [mm/h] 0.006 0.002 −0.006 −0.002 0.090 −0.01
Corr 0.55 0.80 0.04 0.84 0.47 0.79
POD 0.20 0.76 0.28 0.86 0.23 0.80
FAR 0.55 0.22 0.44 0.15 0.39 0.22
HSS 0.05 0.63 0.03 0.68 0.21 0.71

The first two columns on the left refer to the comparison between SLALOM-CT and
GPROF under the conditions for which GPROF uses MRMS for snowfall detection and
estimation (snow-covered surfaces). The next two pairs of columns refer to the comparison
over ocean and land where GPROF uses the 2B-CMB level-2 GMI DPR and 2A-DPR
products, respectively.

The table shows that the values of the statistical indexes for SLALOM-CT are largely
better than those for GPROF over all surfaces. Particularly relevant are the differences in
the correlation values (Corr): 0.55 vs. 0.80, 0.04 vs. 0.84, and 0.47 vs. 0.79 for GPROF vs.
SLALOM-CT for snow, ocean, and land, respectively. Similarly, the values of the POD
indexes for GPROF are always lower than those of SLALOM-CT (0.20–0.28 vs. 0.76–0.86),
and the values of the FAR are always greater (0.39–0.55 vs. 0.15–0.22). Even more marked
are the differences in the values of the HSS index.

Figure 11 shows the behavior of FSE%, that is, the ratio between RMSE and the mean
“true” value, as a function of the CPR snowfall rate (mm/h). The comparison of FSE%
highlights the good performance of SLALOM-CT. In particular, the FSE% of SLALOM-CT
is always lower than that of GPROF over the whole range of values of the snowfall rate
examined.
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5. Discussion

The SLALOM-CT algorithm was trained using the CloudSat CPR 2C-SNOW-PROFILE
product as a reference. CPR suffers from several sources of error and uncertainties when
used for the retrieval of snowfall rates. In general, the remote sensing of snowfall remains
challenging because the radiative properties of snow inside clouds are strictly related
to the complex shapes of snowflakes [3,66,99,100], made by aggregations of different
pristine crystals with various habits and sizes. CPR, as a spaceborne radar, suffers from
additional limitations such as the contamination of the signal by the ground clutter [101,102],
attenuation saturation of the reflectivity signal for heavy snowfall events [3,103], and limited
coverage. Finally, CPR has worked in daylight-only mode since 2011, operating only during
the “daily section” of the orbit. However, recently, Mroz et al. [68] carried out an extensive
comparison of the 2C-SNOW-PROFILE CPR product with the MRMS ground-based radar
network product over the contiguous US (CONUS), demonstrating that despite all the
limitations, CPR assures satisfying results in terms of snowfall detection (POD 0.78 and
FAR 0.25) and estimation (RMSE 0.71 mm/h and ME −0.19 mm/h), agreeing far better than
any other spaceborne snowfall product with the ground-based radar network. Moreover,
CPR is currently the only available instrument capable of measuring snowfall globally
(as DPR reaches 65◦ in latitude) and coherently, as ground-based snowfall measurements
are rare, sparse, and often not well intercalibrated. Even if the SLALOM-CT algorithm
achieved perfect training, it would reproduce the CPR snowfall retrievals faithfully but
would be prone to CPR limitations, one of the most relevant being the considerable snowfall
rate underestimation. However, some of the CPR limitations, such as the limited swath
and the daylight-only mode observations, are potentially overcome by the SLALOM-CT
algorithm. An additional uncertainty of SLALOM-CT arises from the dataset of coincident
observations from CPR and ATMS that was used in the training phase; in particular, the
narrow swath of CPR compared to ATMS could introduce further uncertainties in the
SLALOM-CT retrieval estimates.

In the training of SLALOM-CT, we firstly carried out a systematic model selection,
comparing different pixel-based and image-based machine learning algorithms. The analy-
sis focused on two specific problems: the detection of the snowfall rate areas (SD module)
and the estimate of the snow water path (SPE module). The results of this intercomparison
paved the way for a number of considerations. First, the performances of NNs are system-
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atically better than those of decision tree algorithms (random forests and gradient boosting)
for both SD and SWP estimation problems. This result is not necessarily generalizable to
other radiometers, as it is strictly related to the specific characteristics (in terms of size
and signal-to-noise ratio) of the dataset used and to the channels and viewing geometry
of the radiometer considered. However, for ATMS snowfall retrieval, NNs seem to be
more promising than ensemble trees. Therefore, the NN approach was chosen for the
SCD and SR modules, with only a limited testing of different approaches (not shown
here). A second result arises from the comparison of pixel-based and image-based neural
networks. The convolutional neural networks that were chosen for this study take as input
a 7 × 7-pixel image for each input variable (i.e., 16 BTs and 18 ancillary variables), and
produce the output (for the estimate or classification) in the central pixel of the image.
These architectures are therefore similar to the pixel-based networks and allow a direct
comparison of the pixel- and image-based approaches. In particular, the main differences
between the pixel- and image-based NN results should come from the contribution that
the pixels surrounding the central pixel can provide to the solution of the given problem.
In the framework of precipitation retrievals from PMW sensors, the use of information
from surrounding pixels has already been explored by some authors. The convolutional
NN approach to this problem is, however, completely different, as the optimization of
convolutional weights that are trained to recognize and extract specific features from the
BT image is far more sophisticated and promising.

For our applications, some examples of features that we can extract from BTs are
gradients and convex or concave shapes, together with combinations of these (including
their variability with the channel frequency). Another point that is important to stress is that
the NNs tested differ in their depth or complexity. One main result in the model selection is
that, in our case, there is a limit to the complexity of the model that can successfully solve a
given problem, and this limit is set by the size of the training dataset and by the noise level
associated with the variables in it. In our case, the shallow pixel-based network was the
most efficient model for the SPE problem, while the relatively simple VGG model was the
most suitable for the SD problem. Evidently, in this second case, the contribution provided
by the surrounding pixels was substantial. Moreover, ResNet (deeper and more complex
than VGG) gave a worse performance than the simpler networks due to the limited size
of the dataset. However, the fact that all results from NNs are quite similar supports the
hypothesis that all the algorithms trained reached the maximum level of accuracy, strictly
related to the noise level.

The SLALOM-CT algorithm produced very good results, which is satisfying given the
complexity of the remote sensing of snow. The quality of these results was also highlighted
by the comparison with a reference algorithm (the NASA GPM official PMW precipitation
retrieval algorithm, GPROF). SLALOM-CT was compared with GPROF using CPR as a
reference, showing smaller errors and far better detection capability. This was confirmed
also by comparing SLALOM-CT with GPROF over snow-covered surfaces, where GPROF
uses, as precipitation information in the a priori database, the MRMS precipitation rate.
With regard to this comparison and in particular to the results of GPROF, it should be
mentioned that in some studies on the quality assessment of GPROF-GMI V05 snowfall rate
estimates, some issues were also noted. In an assessment carried out over southern Finland,
a very low ability to detect shallow snowfall events was found for GPROF-GMI [104].
Moreover, in a study on intense lake-effect snow events over the lower US Great Lakes
region, Milani et al. [105] found that GPROF-GMI misses and/or underestimates intense
(and shallow) lake-effect snowfall. Skofronick-Jackson et al. [2] also provided additional
evidence of the GPROF-GMI shallow convective snowfall detection limitations. The results
of GPROF-GMI are not directly comparable to those of this work, because of the many
differences between the two radiometers. Moreover, a fair comparison of SLALOM-CT
and GPROF-ATMS should be based on a reference dataset not used in the training or as
a priori information in either of the two algorithms. However, the Mroz et al. study [68],
where an extensive validation of SLALOM and GPROF (for GMI) was carried out using the
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MRMS product, showed poorer results for GPROF, which evidently were not due to the
selection of the reference dataset. The different results found for SLALOM-CT and GPROF
can be attributed to the characteristics of the two algorithms, namely the input variables
used (GPROF ignores the ATMS 50–60 GHz channels and uses a daily snow-cover/sea ice
map and fewer model-derived variables) and the retrieval technique (Bayesian vs. machine
learning). Complex machine learning algorithms (such as those of SLALOM-CT) are able
to discriminate more efficiently between the subtle and complex signal of snowfall and
the variable and misleading contribution due to the background surface, environmental
conditions, and supercooled liquid water within the cloud. Moreover, recently, a set of
snowfall detection algorithms over ocean, sea ice, and coast, based on logistic regression for
ATMS was developed, using CPR as a reference [106]. This algorithm has good detection
capabilities (i.e., a POD and FAR equal to 79% and 35%, respectively, over ocean and
slightly worse values over sea-ice and coastal areas); however, SLALOM-CT shows better
performance over both ocean and coast (see Table 8), and also over sea ice (aggregated
statistics for the PESCA sea ice surfaces were 82%, 20%, and 63% for POD, FAR, and HSS,
respectively). These results confirm the ability of the machine-learning-based approaches
to learn and generalize the relations between the ATMS channels and the CPR snowfall
rates. However, in a recent study by Adhikari et al. [37], the RF-MHS algorithm was trained
using random forests for detecting and estimating snowfall rates from MHS BTs using CPR
as a reference. The performance of RF-MHS was worse than SLALOM-CT, in both detection
(POD of 0.55 and FAR of 0.45) and snowfall estimate statistics (RMSE of 0.23–0.40 mm/h,
correlation of 0.23–0.57). The disagreement in the results was probably related more to the
differences in the input used (MHS carries only five channels at high frequency, and the
authors use a very limited number of environmental variables) than to the machine learning
approach chosen. In fact, even comparing the ATMS RF snowfall detection statistics (see
Table 5) with those of RF-MHS, a large disagreement is still present.

In a recent study by Takbiri et al. [97], it was shown that the liquid water content
of clouds and the snow-cover depth impact the observed BT signals in high-frequency
channels and can mask the relatively small signal due to snowfall. In particular, the emis-
sion due to liquid water tends to enhance the BTs, while a deeper snow cover tends
to lower the surface emissivity, and these effects tend to mask the scattering signal
produced by snowflakes. The authors define some conditions in terms of snow depth
and LWP (i.e., a snow depth greater than 200 kg m−2 SWE and cloud LWP lower than
100–150 g m−2) as a blind zone, where the PMW cannot detect or estimate snowfall. In our
study, we observed that the presence of liquid water has a strong impact on the detection
of snowfall (increasing the rate of false alarms), while we did not notice any impact from
snow-cover depth. This may be due to the categorization of snow cover at the time of the
overpass that was performed by the PESCA algorithm and used as input in SLALOM-
CT. Another explanation could be that our algorithm can better discriminate the signal
produced by snowfall from those due to surface-related or atmospheric effects, compared
with the analysis carried out in [97], where the analysis focused on GMI high-frequency
window channels only (89 and 166 GHz). Moreover, our analysis showed that SLALOM-CT
error statistics were almost independent of the surface category, which strongly affects
the ground emissivity, as shown in Camplani et al. [93]. We can assume that the NN
modules within SLALOM-CT can exploit the categorization of the surface and use this
information to mitigate the issues deriving from the extremely variable emissivity of the
cold surfaces (snow cover and sea ice). It should also be highlighted that the SLALOM-
CT performance is not affected by the observation angle, even though the ATMS view
geometry, as a cross-track radiometer, is considerably more complex than conical scanners.
The viewing geometry affects both the geometrical thickness of the observed atmosphere
and the emission spectrum of the ground, with significant effects also in the polarization
of the signal emitted by the surface. The fact that SLALOM-CT error statistics seem to
be independent of the viewing geometry confirms that, during the training phase, the
observation angle (which is one of the SLALOM-CT inputs) was optimally exploited.
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6. Conclusions

A new ML-based algorithm named SLALOM-CT (Snow retrievaL ALgorithm fOr
gpM–Cross Track) was designed and developed using, for the training phase, coincident
ATMS and CPR observations. The algorithm is composed of independent modules for
the detection of snowfall (SD) and supercooled droplets (SCD), for the estimate of snow
water path (SPE) and of the snowfall rate (SRE). Each module was selected from several
optimized machine learning algorithms. The techniques that were compared to identify
the best performance were decision trees (random forests and gradient boosting) and NNs.
In particular, both shallow (pixel-based) and convolutional (image-based) networks were
analyzed, considering different levels of depth and complexity. The final SLALOM-CT
algorithm showed very good performance in the detection and estimation of snowfall
rates, especially when compared with state-of-the-art satellite products for the estimation
of precipitation (GPROF–ATMS). Particularly relevant is the substantial homogeneity of
the algorithm performance considering different radiometer viewing angles, snow-cover
depths, and surface categories.

This work is part of the development of precipitation retrieval algorithms for the new
EPS-SG satellites. In particular, the similarities between ATMS and MWS, which will be
on board the EPS-SG-A series of satellites, make SLALOM-CT the precursor of the day-1
MWS algorithm for snowfall retrieval. Further work related to this study will be to test the
potential of the convolutional neural networks for other radiometers, including conically
scanning radiometers and GMI in particular. In this context, some techniques developed for
transfer learning seem very promising. Moreover, the SLALOM-CT capabilities should be
verified with independent ground-based references such as radar networks and snow pits.
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Acronyms and Abbreviations

ATMS Advanced Technology Microwave Sounder MRMS Multi-Radar/Multi-Sensor System
BT Brightness Temperature MW Microwave
CALIOP Cloud-Aerosol Lidar with Orthogonal Polarisation ME Mean Error

CALIPSO
Cloud-Aerosol Lidar and Infrared

MWS Microwave Sounder
Pathfinder Satellite Observation

CNN
The convolutional

NASA
National Aeronautics and

neural network Space Administration
CPR Cloud Profiling Radar NN Neural Networks

CSI Critical Success Index NOAA
National Oceanic and
Atmospheric Administration

DARDAR liDAR + raDAR NPP National Polar-orbiting Partnership

DPR
Dual-Frequency

PESCA
Passive Microwave Empirical Cold

Precipitation Radar Surface Classification Algorithm

ECMWF
European Centre for Medium-Range

PMW Passive Microwave
Weather Forecasts

EFOV Effective Field of View POD Probability of Detection

EPS-SG
EUMETSAT Polar System

QH Quasi-Horizontal
programme—Second Generation

ERA-5 ECMWF Reanalysis 5th Generation QV Quasi-Vertical

EUMETSAT
European Organisation for the

ReLU Rectified Linear Unit
Exploitation of Meteorological Satellites

FAR False Alarm Ratio ResNet Residual Network
FOV Field Of View RMSE Root Mean Squared Error
FLH Freezing Level Height SAR Synthetic Aperture Radar
FSE% Fractional Standard Error% SCD Supercooled water Detection
GMI GPM Microwave Imager SD Snowfall Detection

GPM Global Precipitation Measurement SLALOM
Snow retrievaL
ALgorithm fOr gpM

GPM-CO
Global Precipitation

SLALOM-CT
Snow retrievaL ALgorithm

Measurement-Core Observatory fOr gpM-Cross Track

GPROF Goddard Profiling SNPP
Suomi National
Polar-orbiting Partnership

H SAF
Operational Hydrology and

SPE Snow Water Path Estimate
Water Management

HSS Heidke Skill Score SRE Snowfall Rate Estimate
IFOV Instantaneous Field Of View SSM/I Special Sensor Microwave Imager

LATMOS
Laboratoire Atmosphères, Milieux,

STD Standard Deviation
Observations Spatiales

LWP Liquid Water Path SWP Snow Water Path
MARS Meteorological Archival and Retrieval System T2m 2 m Temperature
ME Mean Error TPW Total Precipitable Water
ML Machine Learning VGG Visual Geometry Group

References
1. Cordisco, E.; Prigent, C.; Aires, F. Snow characterization at a global scale passive microwave satelite observations. J. Geophys. Res.

Atmos. 2006, 111, D19102. [CrossRef]
2. Skofronick-Jackson, G.; Kulie, M.; Milani, L.; Munchak, S.J.; Wood, N.; Levizzani, V. Satellite Estimation of Falling Snow: A Global

Precipitation Measurement (GPM) Core Observatory Perspective. J. Appl. Meteorol. Climatol. 2019, 58, 1429–1448. [CrossRef]
[PubMed]

3. Liu, G. Radar Snowfall Measurement. In Advances in Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67.
4. Vahedizade, S.; Ebtehaj, A.; You, Y.; Ringerud, S.E.; Turk, F.J. Passive Microwave Signatures and Retrieval of High-Latitude

Snowfall Over Open Oceans and Sea Ice: Insights from Coincidences of GPM and CloudSat Satellites. IEEE Trans. Geosci. Remote
Sens. 2021, 60, 4300913. [CrossRef]

5. Behrangi, A.; Christensen, M.; Richardson, M.; Lebsock, M.; Stephens, G.; Huffman, G.; Bolvin, D.; Adler, R.F.; Gardner, A.;
Lambrigtsen, B.; et al. Status of high-latitude precipitation estimates from observations and reanalyses. J. Geophys. Res. Atmos.
2016, 121, 4468–4486. [CrossRef] [PubMed]

http://doi.org/10.1029/2005JD006773
http://doi.org/10.1175/JAMC-D-18-0124.1
http://www.ncbi.nlm.nih.gov/pubmed/32655334
http://doi.org/10.1109/TGRS.2021.3071709
http://doi.org/10.1002/2015JD024546
http://www.ncbi.nlm.nih.gov/pubmed/30027024


Remote Sens. 2022, 14, 1467 26 of 29

6. Field, P.R.; Heymsfield, A.J. Importance of snow to global precipitation. Geophys. Res. Lett. 2015, 42, 9512–9520. [CrossRef]
7. Liu, G.; Curry, J.A. Precipitation characteristics in Greenland-Iceland-Norwegian Seas determined by using satellite microwave

data. J. Geophys. Res. Earth Surf. 1997, 102, 13987–13997. [CrossRef]
8. Levizzani, V.; Laviola, S.; Cattani, E. Detection and Measurement of Snowfall from Space. Remote Sens. 2011, 3, 145–166. [CrossRef]
9. Kidd, C.; Becker, A.; Huffman, G.; Muller, C.L.; Joe, P.; Skofronick-Jackson, G.; Kirschbaum, D. So, How Much of the Earth’s

Surface Is Covered by Rain Gauges? Bull. Am. Meteorol. Soc. 2017, 98, 69–78. [CrossRef]
10. Behrangi, A.; Gardner, A.; Reager, J.T.; Fisher, J.B.; Yang, D.; Huffman, G.J.; Adler, R.F. Using GRACE to Estitmate Snowfall

Accumulation and Assess Gauge Undercatch Corrections in High Latitudes. J. Clim. 2018, 31, 8689–8704. [CrossRef]
11. Panahi, M.; Behrangi, A. Comparative Analysis of Snowfall Accumulation and Gauge Undercatch Correction Factors from

Diverse Data Sets: In Situ, Satellite, and Reanalysis. Asia-Pac. J. Atmos. Sci. 2019, 56, 615–628. [CrossRef]
12. Kongoli, C.; Meng, H.; Dong, J.; Ferraro, R. A snowfall detection algorithm over land utilizing high-frequency passive microwave

measurements-Application to ATMS. J. Geophys. Res. Atmos. 2015, 120, 1918–1932. [CrossRef]
13. Kongoli, C.; Meng, H.; Dong, J.; Ferraro, R. A hybrid snowfall detection method from satellite passive microwave measurements

and global forecast weather models. Q. J. R. Meteorol. Soc. 2018, 144, 120–132. [CrossRef]
14. Kongoli, C.; Pellegrino, P.; Ferraro, R.; Grody, N.C.; Meng, H. A new snowfall detection algorithm over land using measurements

from the Advanced Microwave Sounding Unit (AMSU). Geophys. Res. Lett. 2003, 30. [CrossRef]
15. Rysman, J.-F.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S. SLALOM: An All-Surface Snow Water Path

Retrieval Algorithm for the GPM Microwave Imager. Remote Sens. 2018, 10, 1278. [CrossRef]
16. Skofronick-Jackson, G.; Hudak, D.; Petersen, W.; Nesbitt, S.; Chandrasekar, V.; Durden, S.; Gleicher, K.J.; Huang, G.-J.; Joe, P.;

Kollias, P.; et al. Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement’s Sake, Let
It Snow. Bull. Am. Meteorol. Soc. 2015, 96, 1719–1741. [CrossRef]

17. Skofronick-Jackson, G.M.; Johnson, B.T.; Munchak, S.J. Detection Thresholds of Falling Snow From Satellite-Borne Active and
Passive Sensors. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4177–4189. [CrossRef]

18. Noh, Y.-J.; Liu, G.; Seo, E.-K.; Wang, J.R.; Aonashi, K. Development of a snowfall retrieval algorithm at high microwave frequencies.
J. Geophys. Res. Atmos. 2006, 111, D22216. [CrossRef]

19. Grecu, M.; Olson, W.S. Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer
Observations. J. Appl. Meteorol. Climatol. 2008, 47, 1634–1650. [CrossRef]

20. Munchak, S.J.; Skofronick-Jackson, G. Evaluation of precipitation detection over various surfaces from passive microwave imagers
and sounders. Atmos. Res. 2013, 131, 81–94. [CrossRef]

21. Liu, G.; Seo, E.-K. Detecting snowfall over land by satellite high-frequency microwave observations: The lack of scattering
signature and a statistical approach. J. Geophys. Res. Atmos. 2013, 118, 1376–1387. [CrossRef]

22. Ebtehaj, A.M.; Kummerow, C.D. Microwave retrievals of terrestrial precipitation over snow-covered surfaces: A lesson from the
GPM satellite. Geophys. Res. Lett. 2017, 44, 6154–6162. [CrossRef]

23. You, Y.; Wang, N.-Y.; Ferraro, R.; Rudlosky, S. Quantifying the Snowfall Detection Performance of the GPM Microwave Imager
Channels over Land. J. Hydrometeorol. 2017, 18, 729–751. [CrossRef]

24. Kulie, M.S.; Bennartz, R.; Greenwald, T.J.; Chen, Y.; Weng, F. Uncertainties in Microwave Properties of Frozen Precipitation:
Implications for Remote Sensing and Data Assimilation. J. Atmos. Sci. 2010, 67, 3471–3487. [CrossRef]

25. Skofronick-Jackson, G.; Johnson, B.T. Surface and atmospheric contributions to passive microwave brightness temperatures for
falling snow events. J. Geophys. Res. Earth Surf. 2011, 116. [CrossRef]

26. Eriksson, P.; Jamali, M.; Mendrok, J.; Buehler, S.A. On the microwave optical properties of randomly oriented ice hydrometeors.
Atmos. Meas. Tech. 2015, 8, 1913–1933. [CrossRef]

27. Bennartz, R.; Bauer, P. Sensitivity of microwave radiances at 85-183 GHz to precipitating ice particles. Radio Sci. 2003, 38.
[CrossRef]

28. Di Michele, S.; Bauer, P. Passive microwave radiometer channel selection based on cloud and precipitation information content.
Q. J. R. Meteorol. Soc. 2006, 132, 1299–1323. [CrossRef]

29. Edel, L.; Rysman, J.-F.; Claud, C.; Palerme, C.; Genthon, C. Potential of Passive Microwave around 183 GHz for Snowfall Detection
in the Arctic. Remote Sens. 2019, 11, 2200. [CrossRef]

30. Panegrossi, G.; Rysman, J.-F.; Casella, D.; Marra, A.C.; Sanò, P.; Kulie, M.S. CloudSat-Based Assessment of GPM Microwave
Imager Snowfall Observation Capabilities. Remote Sens. 2017, 9, 1263. [CrossRef]

31. Kongoli, C.; Meng, H.; Dong, J.; Ferraro, R. Ground-based Assessment of Snowfall Detection over Land Using Polarimetric High
Frequency Microwave Measurements. Remote Sens. 2020, 12, 3441. [CrossRef]

32. Chen, S.; Hong, Y.; Kulie, M.; Behrangi, A.; Stepanian, P.M.; Cao, Q.; You, Y.; Zhang, J.; Hu, J.; Zhang, X. Comparison of snowfall
estimates from the NASA CloudSat Cloud Profiling Radar and NOAA/NSSL Multi-Radar Multi-Sensor System. J. Hydrol. 2016,
541, 862–872. [CrossRef]

33. Kulie, M.S.; Milani, L.; Wood, N.; Tushaus, S.A.; Bennartz, R.; L’Ecuyer, T. A Shallow Cumuliform Snowfall Census Using
Spaceborne Radar. J. Hydrometeorol. 2016, 17, 1261–1279. [CrossRef]

34. Kulie, M.S.; Milani, L.; Wood, N.B.; L’Ecuyer, T.S. Global Snowfall Detection and Measurement. In Advances in Global Change
Research; Springer: Cham, Switzerland, 2020; Volume 69.

http://doi.org/10.1002/2015GL065497
http://doi.org/10.1029/96JD03090
http://doi.org/10.3390/rs3010145
http://doi.org/10.1175/BAMS-D-14-00283.1
http://doi.org/10.1175/JCLI-D-18-0163.1
http://doi.org/10.1007/s13143-019-00161-6
http://doi.org/10.1002/2014JD022427
http://doi.org/10.1002/qj.3270
http://doi.org/10.1029/2003GL017177
http://doi.org/10.3390/rs10081278
http://doi.org/10.1175/BAMS-D-13-00262.1
http://doi.org/10.1109/TGRS.2012.2227763
http://doi.org/10.1029/2005JD006826
http://doi.org/10.1175/2007JAMC1728.1
http://doi.org/10.1016/j.atmosres.2012.10.011
http://doi.org/10.1002/jgrd.50172
http://doi.org/10.1002/2017GL073451
http://doi.org/10.1175/JHM-D-16-0190.1
http://doi.org/10.1175/2010JAS3520.1
http://doi.org/10.1029/2010JD014438
http://doi.org/10.5194/amt-8-1913-2015
http://doi.org/10.1029/2002RS002626
http://doi.org/10.1256/qj.05.164
http://doi.org/10.3390/rs11192200
http://doi.org/10.3390/rs9121263
http://doi.org/10.3390/rs12203441
http://doi.org/10.1016/j.jhydrol.2016.07.047
http://doi.org/10.1175/JHM-D-15-0123.1


Remote Sens. 2022, 14, 1467 27 of 29

35. Hamada, A.; Iguchi, T.; Takayabu, Y.N. Snowfall Detection by Spaceborne Radars. In Advances in Global Change Research; Springer:
Cham, Switzerland, 2020; Volume 69.

36. Casella, D.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Johnson, B.T.; Kulie, M.S. Evaluation of the GPM-DPR snowfall
detection capability: Comparison with CloudSat-CPR. Atmos. Res. 2017, 197, 64–75. [CrossRef]

37. Adhikari, A.; Ehsani, M.R.; Song, Y.; Behrangi, A. Comparative Assessment of Snowfall Retrieval from Microwave Humidity
Sounders Using Machine Learning Methods. Earth Space Sci. 2020, 7, e2020EA001357. [CrossRef]

38. Takbiri, Z.; Ebtehaj, A.; Foufoula-Georgiou, E.; Kirstetter, P.-E.; Turk, F.J. A Prognostic Nested k-Nearest Approach for Microwave
Precipitation Phase Detection over Snow Cover. J. Hydrometeorol. 2019, 20, 251–274. [CrossRef]

39. Johnson, B.T.; Olson, W.S.; Skofronick-Jackson, G. The microwave properties of simulated melting precipitation particles:
Sensitivity to initial melting. Atmos. Meas. Tech. 2016, 9, 9–21. [CrossRef]

40. Wang, Y.; Liu, G.; Seo, E.-K.; Fu, Y. Liquid water in snowing clouds: Implications for satellite remote sensing of snowfall. Atmos.
Res. 2012, 131, 60–72. [CrossRef]

41. Liou, Y.-A.; Tzeng, Y.; Chen, K. A neural-network approach to radiometric sensing of land-surface parameters. IEEE Trans. Geosci.
Remote Sens. 1999, 37, 2718–2724. [CrossRef]

42. Aires, F.; Prigent, C.; Rossow, W.B.; Rothstein, M. A new neural network approach including first guess for retrieval of atmospheric
water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations. J.
Geophys. Res. Earth Surf. 2001, 106, 14887–14907. [CrossRef]

43. Boukabara, S.-A.; Krasnopolsky, V.; Penny, S.G.; Stewart, J.Q.; McGovern, A.; Hall, D.; Hoeve, J.E.T.; Hickey, J.; Huang, H.-L.A.;
Williams, J.K.; et al. Outlook for Exploiting Artificial Intelligence in the Earth and Environmental Sciences. Bull. Am. Meteorol. Soc.
2021, 102, E1016–E1032. [CrossRef]

44. Blackwell, W.J.; Chen, F.W. Neural Network Applications in High-Resolution Atmospheric Remote Sensing. Linc. Lab. J. 2005, 15,
299.

45. Surussavadee, C.; Staelin, D.H. Global Millimeter-Wave Precipitation Retrievals Trained With a Cloud-Resolving Numerical
Weather Prediction Model, Part I: Retrieval Design. IEEE Trans. Geosci. Remote Sens. 2007, 46, 99–108. [CrossRef]

46. Mahesh, C.; Prakash, S.; Sathiyamoorthy, V.; Gairola, R. Artificial neural network based microwave precipitation estimation using
scattering index and polarization corrected temperature. Atmos. Res. 2011, 102, 358–364. [CrossRef]

47. Sanò, P.; Panegrossi, G.; Casella, D.; Marra, A.C.; Di Paola, F.; Dietrich, S. The new Passive microwave Neural network Precipitation
Retrieval (PNPR) algorithm for the cross-track scanning ATMS radiometer: Description and verification study over Europe and
Africa using GPM and TRMM spaceborne radars. Atmos. Meas. Tech. 2016, 9, 5441–5460. [CrossRef]

48. Sanò, P.; Panegrossi, G.; Casella, D.; Marra, A.C.; D’Adderio, L.P.; Rysman, J.F.; Dietrich, S. The Passive Microwave Neural
Network Precipitation Retrieval (PNPR) Algorithm for the CONICAL Scanning Global Microwave Imager (GMI) Radiometer.
Remote Sens. 2018, 10, 1122. [CrossRef]

49. Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Tiede, D.; Aryal, J. Evaluation of Different Machine Learning
Methods and Deep-Learning Convolutional Neural Networks for Landslide Detection. Remote Sens. 2019, 11, 196. [CrossRef]

50. Prakash, N.; Manconi, A.; Loew, S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional
Machine Learning Models. Remote Sens. 2020, 12, 346. [CrossRef]

51. Boukabara, S.-A.; Krasnopolsky, V.; Stewart, J.Q.; Maddy, E.S.; Shahroudi, N.; Hoffman, R.N. Leveraging Modern Artificial
Intelligence for Remote Sensing and NWP: Benefits and Challenges. Bull. Am. Meteorol. Soc. 2019, 100, ES473–ES491. [CrossRef]

52. Tedesco, M.; Pulliainen, J.; Takala, M.; Hallikainen, M.; Pampaloni, P. Artificial neural network-based techniques for the retrieval
of SWE and snow depth from SSM/I data. Remote Sens. Environ. 2004, 90, 76–85. [CrossRef]

53. Tabari, H.; Marofi, S.; Abyaneh, H.Z.; Sharifi, M.R. Comparison of artificial neural network and combined models in estimating
spatial distribution of snow depth and snow water equivalent in Samsami basin of Iran. Neural Comput. Appl. 2009, 19, 625–635.
[CrossRef]

54. Rysman, J.; Panegrossi, G.; Sanò, P.; Marra, A.C.; Dietrich, S.; Milani, L.; Kulie, M.S.; Casella, D.; Camplani, A.; Claud, C.; et al.
Retrieving Surface Snowfall with the GPM Microwave Imager: A New Module for the SLALOM Algorithm. Geophys. Res. Lett.
2019, 46, 13593–13601. [CrossRef]

55. Tsai, Y.-L.S.; Dietz, A.; Oppelt, N.; Kuenzer, C. Wet and Dry Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas
with a Machine Learning Technique. Remote Sens. 2019, 11, 895. [CrossRef]

56. Hicks, A.; Notaroš, B.M. Method for Classification of Snowflakes Based on Images by a Multi-Angle Snowflake Camera Using
Convolutional Neural Networks. J. Atmos. Ocean. Technol. 2019, 36, 2267–2282. [CrossRef]

57. Roebber, P.J.; Butt, M.R.; Reinke, S.J.; Grafenauer, T.J. Real-Time Forecasting of Snowfall Using a Neural Network. Weather Forecast.
2007, 22, 676–684. [CrossRef]

58. Liu, J.; Zhang, Y.; Cheng, X.; Hu, Y. Retrieval of Snow Depth over Arctic Sea Ice Using a Deep Neural Network. Remote Sens. 2019,
11, 2864. [CrossRef]

59. Casella, D.; Amaral, L.M.C.D.; Dietrich, S.; Marra, A.C.; Sano, P.; Panegrossi, G. The Cloud Dynamics and Radiation Database
Algorithm for AMSR2: Exploitation of the GPM Observational Dataset for Operational Applications. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 2017, 10, 3985–4001. [CrossRef]

http://doi.org/10.1016/j.atmosres.2017.06.018
http://doi.org/10.1029/2020EA001357
http://doi.org/10.1175/JHM-D-18-0021.1
http://doi.org/10.5194/amt-9-9-2016
http://doi.org/10.1016/j.atmosres.2012.06.008
http://doi.org/10.1109/36.803419
http://doi.org/10.1029/2001JD900085
http://doi.org/10.1175/BAMS-D-20-0031.1
http://doi.org/10.1109/TGRS.2007.908302
http://doi.org/10.1016/j.atmosres.2011.09.003
http://doi.org/10.5194/amt-9-5441-2016
http://doi.org/10.3390/rs10071122
http://doi.org/10.3390/rs11020196
http://doi.org/10.3390/rs12030346
http://doi.org/10.1175/BAMS-D-18-0324.1
http://doi.org/10.1016/j.rse.2003.12.002
http://doi.org/10.1007/s00521-009-0320-9
http://doi.org/10.1029/2019GL084576
http://doi.org/10.3390/rs11080895
http://doi.org/10.1175/JTECH-D-19-0055.1
http://doi.org/10.1175/WAF1000.1
http://doi.org/10.3390/rs11232864
http://doi.org/10.1109/JSTARS.2017.2713485


Remote Sens. 2022, 14, 1467 28 of 29

60. Panegrossi, G.; Dietrich, S.; Marzano, F.S.; Mugnai, A.; Smith, E.A.; Xiang, X.; Tripoli, G.J.; Wang, P.K.; Baptista, J.P.V.P. Use of
Cloud Model Microphysics for Passive Microwave-Based Precipitation Retrieval: Significance of Consistency between Model and
Measurement Manifolds. J. Atmos. Sci. 1998, 55, 1644–1673. [CrossRef]

61. Di Michele, S.; Tassa, A.; Mugnai, A.; Marzano, F.; Bauer, P.; Baptista, J. Bayesian algorithm for microwave-based precipitation
retrieval: Description and application to TMI measurements over ocean. IEEE Trans. Geosci. Remote Sens. 2005, 43, 778–791.
[CrossRef]

62. Kummerow, C.; Hong, Y.; Olson, W.S.; Yang, S.; Adler, R.F.; Mccollum, J.; Ferraro, R.; Petty, G.; Shin, D.-B.; Wilheit, T.T. The
Evolution of the Goddard Profiling Algorithm (GPROF) for Rainfall Estimation from Passive Microwave Sensors. J. Appl. Meteorol.
2001, 40, 1801–1820. [CrossRef]

63. Casella, D.; Panegrossi, G.; Sanò, P.; Dietrich, S.; Mugnai, A.; Smith, E.A.; Tripoli, G.J.; Formenton, M.; Di Paola, F.; Leung, W.-Y.H.;
et al. Transitioning From CRD to CDRD in Bayesian Retrieval of Rainfall from Satellite Passive Microwave Measurements: Part 2.
Overcoming Database Profile Selection Ambiguity by Consideration of Meteorological Control on Microphysics. IEEE Trans.
Geosci. Remote Sens. 2013, 51, 4650–4671. [CrossRef]

64. Sano, P.; Casella, D.; Mugnai, A.; Schiavon, G.; Smith, E.A.; Tripoli, G.J. Transitioning from CRD to CDRD in bayesian retrieval of
rainfall from satellite passive microwave measurements: Part 1. Algorithm description and testing. IEEE Trans. Geosci. Remote
Sens. 2013, 51, 4119–4143. [CrossRef]

65. Sanò, P.; Casella, D.; Panegrossi, G.; Marra, A.C.; Petracca, M.; Dietrich, S. The Passive Microwave Neural Network Precipitation
Retrieval (PNPR) for the Cross-track Scanning ATMS Radiometer. In Proceedings of the 2015 EUMETSAT Meteorological Satellite
Conference, Toulouse, France, 21–25 September 2015.

66. Kuo, K.-S.; Olson, W.S.; Johnson, B.T.; Grecu, M.; Tian, L.; Clune, T.L.; van Aartsen, B.H.; Heymsfield, A.J.; Liao, L.; Meneghini,
R. The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive
Database of Simulated Pristine Crystals and Aggregate Particles, and Their Scattering Properties. J. Appl. Meteorol. Climatol. 2016,
55, 691–708. [CrossRef]

67. Milani, L.; Wood, N. Biases in CloudSat Falling Snow Estimates Resulting from Daylight-Only Operations. Remote Sens. 2021, 13,
2041. [CrossRef]

68. Mroz, K.; Montopoli, M.; Battaglia, A.; Panegrossi, G.; Kirstetter, P.; Baldini, L. Cross-validation of active and passive microwave
snowfall products over the continental United States. J. Hydrometeorol. 2021, 22, 1297–1315. [CrossRef]

69. Battaglia, A.; Panegrossi, G. What Can We Learn from the CloudSat Radiometric Mode Observations of Snowfall over the Ice-Free
Ocean? Remote Sens. 2020, 12, 3285. [CrossRef]

70. Boukabara, S.-A.; Garrett, K.; Grassotti, C.; Iturbide-Sanchez, F.; Chen, W.; Jiang, Z.; Clough, S.A.; Zhan, X.; Liang, P.; Liu, Q.;
et al. A physical approach for a simultaneous retrieval of sounding, surface, hydrometeor, and cryospheric parameters from
SNPP/ATMS. J. Geophys. Res. Atmos. 2013, 118, 12–600. [CrossRef]

71. Weng, F.; Zou, X.; Wang, X.; Yang, S.; Goldberg, M.D. Introduction to Suomi national polar-orbiting partnership advanced
technology microwave sounder for numerical weather prediction and tropical cyclone applications. J. Geophys. Res. Atmos. 2012,
117, D19112. [CrossRef]

72. Goldberg, M.D.; Kilcoyne, H.; Cikanek, H.; Mehta, A. Joint Polar Satellite System: The United States next generation civilian
polar-orbiting environmental satellite system. J. Geophys. Res. Atmos. 2013, 118, 13463–13475. [CrossRef]

73. Zou, X.; Weng, F.; Zhang, B.; Lin, L.; Qin, Z.; Tallapragada, V. Impacts of assimilation of ATMS data in HWRF on track and
intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos. 2013, 118, 11558–11576. [CrossRef]

74. Wood, N.B.; L’Ecuyer, T.S.; Heymsfield, A.J.; Stephens, G.L.; Hudak, D.R.; Rodriguez, P. Estimating snow microphysical properties
using collocated multisensor observations. J. Geophys. Res. Atmos. 2014, 119, 8941–8961. [CrossRef]

75. Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics;
World Scientific: Singapore, 2000; Volume 2.

76. Ceccaldi, M.; Delanoë, J.; Hogan, R.J.; Pounder, N.L.; Protat, A.; Pelon, J. From CloudSat-CALIPSO to EarthCare: Evolution of
the DARDAR cloud classification and its comparison to airborne radar-lidar observations. J. Geophys. Res. Atmos. 2013, 118,
7962–7981. [CrossRef]

77. Kummerow, C.D.; Giglio, L. A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from
Space. Part I: Algorithm Description. J. Appl. Meteorol. 1994, 33, 3–18. [CrossRef]

78. Kidd, C.; Matsui, T.; Chern, J.; Mohr, K.; Kummerow, C.; Randel, D. Global Precipitation Estimates from Cross-Track Passive
Microwave Observations Using a Physically Based Retrieval Scheme. J. Hydrometeorol. 2015, 17, 383–400. [CrossRef]

79. Kummerow, C.D.; Randel, D.L.; Kulie, M.; Wang, N.-Y.; Ferraro, R.; Munchak, S.J.; Petkovic, V. The Evolution of the Goddard
Profiling Algorithm to a Fully Parametric Scheme. J. Atmos. Ocean. Technol. 2015, 32, 2265–2280. [CrossRef]

80. Randel, D.L.; Kummerow, C.D.; Ringerud, S. The Goddard Profiling (GPROF) Precipitation Retrieval Algorithm. In Advances in
Global Change Research; Springer: Cham, Switzerland, 2020; Volume 67.

81. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
82. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
83. Tapiador, F.J.; Kidd, C.; Hsu, K.-L.; Marzano, F. Neural networks in satellite rainfall estimation. Meteorol. Appl. 1999, 11, 83–91.

[CrossRef]
84. Haykin, S. Neural networks: A comprehensive foundation by Simon Haykin. Knowl. Eng. Rev. 1999, 13, 409–412.

http://doi.org/10.1175/1520-0469(1998)055&lt;1644:UOCMMF&gt;2.0.CO;2
http://doi.org/10.1109/TGRS.2005.844726
http://doi.org/10.1175/1520-0450(2001)040&lt;1801:TEOTGP&gt;2.0.CO;2
http://doi.org/10.1109/TGRS.2013.2258161
http://doi.org/10.1109/TGRS.2012.2227332
http://doi.org/10.1175/JAMC-D-15-0130.1
http://doi.org/10.3390/rs13112041
http://doi.org/10.1175/JHM-D-20-0222.1
http://doi.org/10.3390/rs12203285
http://doi.org/10.1002/2013JD020448
http://doi.org/10.1029/2012JD018144
http://doi.org/10.1002/2013JD020389
http://doi.org/10.1002/2013JD020405
http://doi.org/10.1002/2013JD021303
http://doi.org/10.1002/jgrd.50579
http://doi.org/10.1175/1520-0450(1994)033&lt;0003:APMTFE&gt;2.0.CO;2
http://doi.org/10.1175/JHM-D-15-0051.1
http://doi.org/10.1175/JTECH-D-15-0039.1
http://doi.org/10.1007/BF00058655
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1017/S1350482704001173


Remote Sens. 2022, 14, 1467 29 of 29

85. Lazri, M.; Ameur, S.; Brucker, J.M.; Testud, J.; Hamadache, B.; Hameg, S.; Ouallouche, F.; Mohia, Y. Identification of raining clouds
using a method based on optical and microphysical cloud properties from Meteosat second generation daytime and nighttime
data. Appl. Water Sci. 2013, 3, 1–11. [CrossRef]

86. Sanò, P.; Panegrossi, G.; Casella, D.; Di Paola, F.; Milani, L.; Mugnai, A.; Petracca, M.; Dietrich, S. The Passive microwave Neural
network Precipitation Retrieval (PNPR) algorithm for AMSU/MHS observations: Description and application to European case
studies. Atmos. Meas. Tech. 2015, 8, 837–857. [CrossRef]

87. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.-S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive
Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

88. Zhu, W.; Ma, Y.; Zhou, Y.; Benton, M.; Romagnoli, J. Deep Learning Based Soft Sensor and Its Application on a Pyrolysis Reactor
for Compositions Predictions of Gas Phase Components. Comput. Aided Chem. Eng. 2018, 44, 2245–2250. [CrossRef]

89. Wang, C.; Xu, J.; Tang, G.; Yang, Y.; Hong, Y. Infrared Precipitation Estimation Using Convolutional Neural Network. IEEE Trans.
Geosci. Remote Sens. 2020, 58, 8612–8625. [CrossRef]

90. Alkhelaiwi, M.; Boulila, W.; Ahmad, J.; Koubaa, A.; Driss, M. An Efficient Approach Based on Privacy-Preserving Deep Learning
for Satellite Image Classification. Remote Sens. 2021, 13, 2221. [CrossRef]

91. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
92. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Volume 2016. [CrossRef]
93. Camplani, A.; Casella, D.; Sanò, P.; Panegrossi, G. The Passive microwave Empirical cold Surface Classification Algorithm

(PESCA): Application to GMI and ATMS. J. Hydrometeorol. 2021, 22, 1727–1744. [CrossRef]
94. Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput.

Syst. Sci. 1997, 55, 119–139. [CrossRef]
95. Freund, Y. A more robust boosting algorithm. arXiv 2009, arXiv:0905.2138.
96. Hastie, T.J.; Tibshirani, R.; Friedman, J.H. The Elements of Statistical Learning, 2nd ed.; Springer: Cham, Switzerland, 2017; Volume 27.
97. Takbiri, Z.; Milani, L.; Guilloteau, C.; Foufoula-Georgiou, E. Quantitative Investigation of Radiometric Interactions between

Snowfall, Snow Cover, and Cloud Liquid Water over Land. Remote Sens. 2021, 13, 2641. [CrossRef]
98. Aires, F.; Prigent, C.; Bernardo, F.; Jiménez, C.; Saunders, R.; Brunel, P. A Tool to Estimate Land-Surface Emissivities at Microwave

frequencies (TELSEM) for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2011, 137, 690–699. [CrossRef]
99. Petty, G.W.; Huang, W. Microwave Backscatter and Extinction by Soft Ice Spheres and Complex Snow Aggregates. J. Atmos. Sci.

2010, 67, 769–787. [CrossRef]
100. Kneifel, S.; Leinonen, J.; Tyynelä, J.; Ori, D.; Battaglia, A. Scattering of Hydrometeors. Adv. Glob. Chang. Res. 2020, 67, 249–276.

[CrossRef]
101. Bennartz, R.; Fell, F.; Pettersen, C.; Shupe, M.D.; Schuettemeyer, D. Spatial and temporal variability of snowfall over Greenland

from CloudSat observations. Atmos. Chem. Phys. 2019, 19, 8101–8121. [CrossRef]
102. Palerme, C.; Claud, C.; Wood, N.B.; L’Ecuyer, T.; Genthon, C. How Does Ground Clutter Affect CloudSat Snowfall Retrievals

Over Ice Sheets? IEEE Geosci. Remote Sens. Lett. 2018, 16, 342–346. [CrossRef]
103. Cao, Q.; Hong, Y.; Chen, S.; Gourley, J.J. Snowfall Detectability of NASA’s CloudSat: The First Cross-Investigation of Its 2C-

Snow-Profile Product and National Multi-Sensor Mosaic QPE (NMQ) Snowfall Data. Prog. Electromagn. Res. 2014, 148, 55–61.
[CrossRef]

104. von Lerber, A.; Moisseev, D.; Marks, D.A.; Petersen, W.; Harri, A.-M.; Chandrasekar, V. Validation of GMI Snowfall Observations
by Using a Combination of Weather Radar and Surface Measurements. J. Appl. Meteorol. Climatol. 2018, 57, 797–820. [CrossRef]

105. Milani, L.; Kulie, M.S.; Casella, D.; Kirstetter, P.E.; Panegrossi, G.; Petkovic, V.; Ringerud, S.E.; Rysman, J.-F.; Sanò, P.; Wang, N.-Y.;
et al. Extreme Lake-Effect Snow from a GPM Microwave Imager Perspective: Observational Analysis and Precipitation Retrieval
Evaluation. J. Atmos. Ocean. Technol. 2021, 38, 293–311. [CrossRef]

106. You, Y.; Meng, H.; Dong, J.; Fan, Y.; Ferraro, R.R.; Gu, G.; Wang, L. A Snowfall Detection Algorithm for ATMS Over Ocean, Sea
Ice, and Coast. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1411–1420. [CrossRef]

http://doi.org/10.1007/s13201-013-0079-0
http://doi.org/10.5194/amt-8-837-2015
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1016/b978-0-444-64241-7.50369-4
http://doi.org/10.1109/TGRS.2020.2989183
http://doi.org/10.3390/rs13112221
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1175/JHM-D-20-0260.1
http://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.3390/rs13132641
http://doi.org/10.1002/qj.803
http://doi.org/10.1175/2009JAS3146.1
http://doi.org/10.1007/978-3-030-24568-9_15
http://doi.org/10.5194/acp-19-8101-2019
http://doi.org/10.1109/LGRS.2018.2875007
http://doi.org/10.2528/PIER14030405
http://doi.org/10.1175/JAMC-D-17-0176.1
http://doi.org/10.1175/JTECH-D-20-0064.1
http://doi.org/10.1109/JSTARS.2022.3140768

	Introduction 
	Materials and Methods 
	ATMS Radiometer 
	Satellite Products: CloudSat 2C-SNOW-PROFILE, DARDAR, and GPROF 
	The Coincidence Database 
	The Machine Learning Techniques 
	The Random Forest Approach 
	The Boosting Algorithms Approach 
	The Shallow Neural Network Approach 
	The Convolutional Neural Network Approach 


	The Algorithm 
	General Description of the Algorithm 
	Training and Optimization of the Machine Learning Modules 

	Results 
	Intercomparison of Machine Learning Techniques 
	SLALOM-CT Algorithm Performance 
	SWP Estimate (SPE) 
	Snowfall Detection (SD) 
	Snowfall Rate Estimate (SRE) 
	Supercooled Water Detection (SCD) 

	Sensitivity Analysis 
	Comparison with GPROF 

	Discussion 
	Conclusions 
	References

