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Abstract: Snow cover plays a highly critical role in the global water cycle and energy exchange.
Accurate snow depth (SD) data are important for research on hydrologic processes, climate change,
and natural disaster prediction. However, existing passive microwave (PMW) SD products have
high uncertainty in Northeast China owing to their coarse spatial resolution. Surface environment
parameters should also be considered to reduce errors in existing SD products. Otherwise, it is
difficult to accurately capture snow spatiotemporal variations, especially in a complex environment
(e.g., mountain or forests areas). To improve the inversion accuracy and spatial resolution of existing
SD products in Northeast China, a multifactor SD downscaling model was developed by combining
PMW SD data from the AMSR2 sensor, optical snow cover extent data, and surface environmental
parameters to produce fine scale (500 m × 500 m) and high precision SD data. Validations at 98 ground
meteorological stations show that the developed model greatly improved the spatial resolution and
inversion accuracy of the raw AMSR2 SD product; its root-mean-square error (RMSE) reduced from
26.15 cm of the raw product to 7.58 cm, and the correlation coefficient (R) increased from 0.39 to
0.53. For other SD products (WESTDC and FY), the multifactor SD downscaling model still has good
applicability, it could further improve the performance of the WESTDC and FY SD products in time
and space and achieve better inversion accuracy than raw SD products. Furthermore, the proposed
model exhibited good agreement with the observed SD data in a field quadrat (3 km × 2 km) within
the fine scale, with an error ranging between −2 and 2 cm. Compared with the existing downscaling
methods, the proposed model presented the best performance.

Keywords: snow depth; Northeast China; downscaling model; passive microwave; machine learning

1. Introduction

Snow cover is a key part of the global water cycle and climate system [1], and it greatly
influences the surface temperature and radiation budget at a local and global scale owing to
its high reflectivity [2–4]. Furthermore, snow depth (SD) is one of the most crucial elements
for climate change, hydrological process research, and weather forecasting. Therefore,
reliable SD estimation is important for performing significative statistics on the trends
and variability in these studies [5–8]. As one of the major snow-covered regions in China,
Northeast China has sufficient snow resources; the changes of seasonal snow are directly
related to global climate change [9,10]. Moreover, Northeast China is also an essential
agricultural base in China. Snowmelt is a key supplementary water source for soil moisture
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and crop growth in the spring [11,12]. Therefore, studying snow is necessary for monitoring
climate environment changes and agricultural development in Northeast China.

The remote sensing technique is one of the most efficient methods for detecting sea-
sonal snow cover extent on the regional and even the global scale [3]. Compared with
optical remote sensing, passive microwave (PMW) remote sensing does not depend on
sunlight and weather conditions [9] and can penetrate snow layers and interact with the
snow particles; therefore, it is the most effective method for SD inversion [3,7]. In addition,
spaceborne PMW sensors have been developed since the 1970s, offering strong data re-
sources for studying seasonal snow change [13,14]. The emitted radiation from the earth’s
surface decreases as the snow thickness increases during snowpack accumulation [15]. To
this end, diverse empirical SD inversion algorithms have been presented over the past
several decades. The most commonly used SD retrieval algorithms were based on empirical
relationships between SD and PMW brightness temperature difference [13,16,17]. However,
many studies have shown that these empirical algorithms generate large uncertainties in
different regions owing to the empirical constants that are fixed [18–20]. Although more
advanced methods, such as theoretical snow layer radiative transfer models [21,22], were
proposed and produced more reliable results compared with the empirical SD inversion
algorithms, they largely depended on prior knowledge of the model parameters. This
fact is not favourable to large-scale SD information inversion. [23,24]. A data assimilation
technique for improving the accuracy of SD assessments was proposed by Pulliainen in
2006, and produced daily snow water equivalent (SWE) dataset over the Northern Hemi-
sphere based on the European Space Agency’s GlobSnow project. [25]. However, the new
GlobSnow product shows high uncertainties in Northeast China [9] and does not calculate
the SWE in mountainous areas [26].

Although PMW remote sensing technology has advantages in the inversion of snow
parameters, all existing SD products based on PWM have coarse spatial resolution, often
tens of kilometers [27]. In addition, a complex nonlinear relationship also exists between
the SD and surface environment parameters. It is difficult for existing SD products to
achieve satisfactory accuracy [28], especially in Northeast China, which has complex envi-
ronments. The interaction between rugged surface topography and atmospheric processes
leads to significant spatial variability in snow properties. Measurements at a point are often
non-representative of spatially averaged snow properties in mountainous areas [29,30]. Nu-
merous researchers put forward various SD downscaling algorithms to enhance the spatial
resolution of the existing SD products and inversion accuracy. For instance, Gao et al. [31]
developed cloud-free snow cover data and then derived subpixel SWE data by combining
the AMSR-E and MODIS systems. Mhawej et al. [32] used a weight factor based on snow
cover duration to account for the statistical distribution of snow and obtained subpixel
SWE data from AMSR-E SWE data. Yan et al. [33] obtained the downscaled SD data with
5 km × 5 km spatial resolution based on the snow cover probability model over the Ti-
betan Plateau. Although the spatial resolution of the existing SD or SWE products data
had improved considerably compared with raw products, many studies have illustrated
that complex environmental parameters could lead to large uncertainties in SD assess-
ment [11,34]. Wang et al. [35] and Wei et al. [36] reconstructed SD data using PMW data
and others related auxiliary data over the Tibetan Plateau, but the performance of their
algorithms has not been validated in Northeast China.

The progress has been made in downscaling the existing SD or SWE product by taking
advantage of high spatial resolution optical data, but owing to the complex nonlinear
relationship between SD and surface parameters, few algorithms considered both the
influence of spatial resolution and the complex environmental factors for SD inversion in
high-latitude regions. Over the last decade, machine learning (ML) has achieved amazing
success for evaluating surface characteristics based on remote sensing measurements data
at both the local and global scales [37], and it has great potential in modeling the complex
nonlinear relationships [38]. Therefore, in this study, a multifactor SD downscaling model
that considers both the influence of spatial resolution and the complex environmental fac-
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tors is developed based on a ML approach, which improved the accuracy while increasing
the coarse spatial resolution of the existing SD products. First, we used a methodology to
derive subpixel SD data by combining PMW SD product (25 km) and cloud-free snow cover
product (500 m). Subsequently, environmental factors, including geolocation, topographical
features, and land cover fraction were introduced, to reduce the impact of environmental
factors on the accuracy of SD estimations, and eventually to develop a multifactor SD
downscaling model that considers the influence of spatial resolution and the complex
environmental factors in Northeast China.

In this paper, Section 2 presents the study area and data. The methodology for the
development of the multifactor SD downscaling model is described in Section 3. The
feasibility study of the multifactor SD downscaling model, the validation with observed
SD datasets, and the comparison with existing general downscaling algorithms are demon-
strated in Section 4. Potential affecting factors are discussed in Section 5. Finally, Section 6
induces the conclusions of the study.

2. Study Area and Data
2.1. Study Area

Northeast China (121.819◦E–129.857◦E, 47.745◦N–53.175◦N), as shown in Figure 1a, is
one of the most important seasonal snow regions in the world, and it has abundant snow
resources. In addition, it is one of the four black soil regions in the world, maintaining the
global food supply [12]. Furthermore, the land cover types in Northeast China are complex,
the forest cover fraction exceeds 40% of the total area, posing a serious challenge to the
assessment of SD [39]. Many studies have discovered that variations in snow thickness
in Northeast China can have a considerable impact on climate change during the last few
decades [9,10]. As a result, reliable assessment of the SD in Northeast China is crucial for
assessing hydrologic processes, crop production, and ecosystems.

2.2. Ground Observations

In this study, December to March is regarded as snow season in Northeast China.
Three validation datasets are available for assessing the performance of the multifactor SD
downscaling model and are briefly introduced in Table 1.

Table 1. Three ground observation datasets.

Named Date Number of Samples Target

Ground
meteorological

stations

2013, 2015, 2017 24,000 Train model and test model
performance (test1)

2014, 2016, 2018 20,000 Temporal validation and
analysis (test2)

Snow route1 2017.12–2018.03 60 Spatial validation
and analysis (test3)Snow route2 2017.12–2018.03 102

Quadrat
observation 2018.01.23 17 Fine-scale validation

and analysis

2.2.1. Ground Meteorological Stations (Dataset 1)

Dataset 1 represents observed SD samples from ground meteorological stations during
January 2013 to March 2018. There are 98 ground meteorological stations in Northeast
China, as shown in Figure 1a, and they were obtained from the website at http://data.
cma.cn/en (Accessed on 18 July 2019, National Meteorological Information Centre, China
Meteorology Administration). A total of 24,000 independent SD observations were collected
during the snow season in 2013, 2015, and 2017; they were applied to train and test the
performance of the multifactor SD downscaling model. Furthermore, a total of 20,000
independent SD observations were collected during the snow season in 2014, 2016, and
2018; they were applied to estimate the accuracy of the proposed model in long time series.

http://data.cma.cn/en
http://data.cma.cn/en
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Figure 1. The study area is located in Northeast China. (a) The base map shows the elevation and
spatial distribution of ground meteorological stations, the two colored lines are the field snow survey
routes, and the black triangles represent snow observations within the quadrat. (b) Distributions of
SD samples along two snow routes, respectively.

2.2.2. Snow Routes (Dataset 2)

Dataset 2 represents observed SD samples from field snow survey routes during
December 2017 to March 2018, as shown in Figure 1b. The field snow survey experiment
was supported by the Chinese snow survey project [25]. Snow route 1 was carried out in
the Xiaoxing’an and Changbai Mountains, and a total of 60 snow samples were measured,
which were mainly distributed in farmlands and forests. Snow route 2, which included
102 snow samples, was located in northern Inner Mongolia. The route was dominated by
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grassland and farmland. Dataset 2 was used to prove the applicability of the proposed
model in space.

2.2.3. Observations within the Quadrat (Dataset 3)

Dataset 3 represents observed SD samples within grid cell. The black triangle in
Figure 1a shows snow observation samples within the quadrat with a spatial resolution
of 500 m, which were all distributed in farmland. There were 1–4 observations in each
subpixel, and the geolocation, elevation (m), and SD (cm) were recorded. Observations
within the quadrat help verify and analyze multifactor SD downscaling model in fine scale.

2.3. AMSR2 SD Product

The Advanced Microwave Scanning Radiometer 2 (AMSR2) instrument is a mul-
tifrequency (6, 7, 10, 18, 23, 36, and 89 GHz), dual-polarized (V, H) PMW radiometer
launched in May 2012. Owing to the attenuation of snowpack caused by the microwave
radiation from the snow and the underlying ground, the SD inversion algorithm based
on AMSR2 brightness temperature data was developed by Kelly in 2009 [40]. Currently,
the AMSR2 Level 3 SD product with the spatial resolution of the 25 km × 25 km has
become the international mainstream SD product and can be downloaded from the site at
https://gportal.jaxa.jp/gpr/ (Accessed on 22 August 2020). In this study, the descending
SD products were acquired during snow seasons for avoiding the impact of snowmelt in
daytime.

2.4. Daily Cloud-Free Snow Cover Data

In previous SD downscaling studies, it is necessary to establish the relationship be-
tween PMW SD data and optical snow cover extent data with high spatial resolution [41].
In this study, the daily cloud-free snow cover product with 500 m × 500 m resolution
was acquired from the website at http://www.ncdc.ac.cn (Accessed on 22 August 2020)
(the National Cryosphere Desert Data Center). The daily cloud-free snow cover product
developed by Hao et al. [42], the optimal threshold of the Normalized Difference Snow
Index (NDSI) was obtained for identifying snow cover under different land cover types,
and snow cover extend could be identified more accurately. The snow cover days in each
subpixel could be calculated based on the daily cloud-free snow cover data, which is a vital
procedure for deriving subpixel SD in PMW pixels.

2.5. Vegetation Fraction Data

Previous research has shown that the land cover fraction has potential impact on
SD inversion based on PMW brightness temperature data [38]. Therefore, the MODIS
Vegetation Continuous Fields product (MOD44B) was used in this study, and which could
be obtained from the website at https://search.earthdata.nasa.gov (Accessed on 22 August
2020). It describes the percentage of covered by tree canopy, nontree vegetation, and non-
vegetation within a pixel with spatial resolution of 250 m. To match the cloud-free snow
cover product, the original MOD44B data was mosaicked and resampled to 500 m.

2.6. DEM Data

The digital elevation model (DEM) data with 90 m × 90 m spatial resolution was
obtained from the site at http://srtm.csi.cgiar.org (Accessed on 22 August 2020). First, the
original DEM data were mosaicked, and resampled with the nearest-neighbor interpolation
method to obtain elevation with a spatial resolution of 500 m. Subsequently, topographic
factors (elevation, slope, aspect, and roughness) were calculated based on DEM data for
eliminating the influence of topographic parameters on the SD inversion.

https://gportal.jaxa.jp/gpr/
http://www.ncdc.ac.cn
https://search.earthdata.nasa.gov
http://srtm.csi.cgiar.org
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3. Methodology
3.1. Machine Learning Algorithms

Machine learning (ML) has the advantage of modeling the complex nonlinear relation-
ships between the predictors and the response variable [43]. Three ML methods, including
multiple linear regression (MLR), support vector regression (SVR), and random forest (RF),
are assessed and compared in this study. They are implemented using the scikit-learn
package in Python. The characteristics of each ML algorithm are summarized below.

MLR is used to describe the simultaneous associations of several variables with
one continuous outcome. Many studies have shown that using MLR to construct the
relationship between SD and surface parameters can obtain good prediction results in the
Tibetan Plateau [35,36]. SVR is a class of supervised learning algorithms that have been
widely used in solving nonlinear problems [44]. The kernel function in SVR is important for
modeling complex nonlinear relationships. The linear kernel was adopted in this research.
RF is an ensemble model based on decision trees, it was developed by Breiman in 2001 [45]
and can make up a stronger predictor by composing the predictions from all weak learners
(decision trees). Before employing the RF model, the number of decision trees in the
ensemble (ntree) must typically be defined. In reference to Yang et al. [25], the values of the
ntree is set to 1000 in this study. Futhermore, others system parameters in RF model are set
to default.

3.2. Multifactor SD Downscaling Model Procedure

Many studies have revealed that there is a strong relationship between the snow cover
duration and the SD during a given year [33,46]. Mhawej et al. [32] proposed a spatiotem-
poral weighting factor that accounts for the statistical distribution of snow cover duration
to derive subpixel SD data within a PMW pixel. Since the snow cover data is available
at a 500 m spatial resolution, each PMW pixel (25 km × 25 km) is overlaid by 2500 pixels
representing the snow cover. Therefore, the subpixel SD data with 500 m × 500 m spatial
resolution is obtained by the following expression:

SDAMSR2 - SP =

 0, if the snow cover data has no snow
SDAMSR2 × 2500 × SDT

SDY
, else

(1)

where SDAMSR2 is the raw AMSR2 SD product with a spatial resolution of 25 km × 25 km;
SDT is the average snow cover duration per year for each snow cover pixel (500 m × 500 m);
and SDY is the sum of the total snow cover duration per year combined for each AMSR2
pixel. SDAMSR2 - SP presents the derived subpixel SD value (cm).

Many studies have also demonstrated that the accuracy of the PMW SD products
is not only related to their coarse spatial resolution but also to the variations in complex
environmental factors [34,35], which were considered in this study. The independent
variables of geolocation variables, topographical features and land cover fraction factors
are representative for expressing the complexity of a region [35,37], therefore, they were
used in this study. Based on the ML method, a complex nonlinear relationship between SD
and surface environmental factors can be developed. Thus, the multifactor SD downscaling
model that considers both the influence of spatial resolution and complex environmental
factors in Northeast China is expressed as follow:

DAMSR2−SP = f (SD AMSR2−SP , Geolocation, Topographical features, Land cover fraction) (2)

where the geolocation variables included the longitude and latitude factors in each ground
meteorological station; the topographical features included elevation, slope, aspect, and
surface roughness; the land cover fraction factors included the percentage of the tree canopy,
non-tree vegetation, and non-vegetation; f presents the ML methods; and DAMSR2−SP
presents the downscaled SD value (cm) by the multifactor SD downscaling model. Figure 2
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shows the multifactor SD downscaling model developed process as well as the evaluation
of the procedure. The following steps explain the flowchart.
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Step 1: Selection of independent variables. As introduced in the above section, geoloca-
tion variables (latitude and longitude), topographical features (elevation, slope, aspect, and
surface roughness), land cover fraction factors (the percentage of the tree canopy, non-tree
vegetation, and non-vegetation), and SDAMSR2−SP data were used as input variables.

Step 2: Construction of the model. The multifactor SD downscaling model was
constructed based on the ML. To determine a suitable model and selection rule for training
samples during the regression, we selected three ML models, including MLR, SVR, and RF.
For the selection rule, four combinations of independent variables were selected to train
three ML models. Therefore, a total of 12 training models were generated in this study.
Table 2 presents a detailed description of them.

Step 3: Model comparison. The performance of the 12 training models was compre-
hensively assessed. Using the same dataset for both model training and validation can
produce over-optimistic assessments of model performance. The evaluation rule should
ensure that the data used to verify models is distinct from the data used to train models.
In this study, we applied 10-fold cross-validation (CV) strategies to test the performance
of 12 regression models for SD inversion in Northeast China. We also implemented other
SD observation data that are completely independent of the training dataset to provide a
comprehensive comparison of the 12 regression models in time and space. The detailed
results are shown in Table 2.



Remote Sens. 2022, 14, 1480 8 of 20

Table 2. A detailed error statistics of the 12 models based on three regression models with four
combinations in three test datasets.

Name Independent Variable Regression
Models

Test1 (10-Fold CV) Test2 (Dataset 1) Test3 (Dataset 2)
Note

RMSE
(cm)

BIAS
(cm) R RMSE

(cm)
BIAS
(cm) R RMSE

(cm)
BIAS
(cm) R

M1 SDAMSR2-SP

MLR 11.92 −0.03 0.35 8.05 −1.48 0.41 9.99 −3.73 0.38

Geolocation: lat, lon;
Topographical features:

Elevation, Slope,
Aspect, Roughness;
Land cover fraction:
Percent_Tree_Cover,
Percent_NonTree_

Vegetation,
Percent_NonVegetated

SVR 9.92 −1.01 0.36 8.01 −0.74 0.41 10.75 −8.31 0.36
RF 9.13 −0.16 0.38 8.04 −1.33 0.42 9.16 −2.24 0.41

M2 SDAMSR2-SP + Geolocation
MLR 11.21 −0.11 0.39 8.03 −1.68 0.43 9.48 −3.63 0.44
SVR 9.47 −1.05 0.39 7.93 −0.84 0.43 10.40 −8.22 0.43
RF 7.24 0.08 0.64 7.75 −1.12 0.49 8.87 −1.42 0.48

M3
SDAMSR2-SP + Geolocation +

Topographical features

MLR 11.08 −0.02 0.42 7.83 −1.68 0.48 9.24 −3.61 0.45
SVR 9.20 −0.83 0.42 7.80 −1.06 0.48 10.14 −8.14 0.44
RF 7.32 0.17 0.68 7.58 1.15 0.53 8.63 −2.16 0.52

M4
SDAMSR2-SP + Geolocation +

Topographical features +
Land cover fraction

MLR 10.98 −0.13 0.42 7.81 −1.78 0.48 9.31 −3.63 0.44
SVR 9.36 −0.60 0.43 7.86 −1.08 0.47 10.20 −8.26 0.43
RF 7.34 −0.03 0.69 7.58 −1.17 0.53 8.60 −2.18 0.52

Step 4: Identification and validation of the best performance models. From the compar-
ison results of the 12 models, we could select the model that exhibits the best performance
and consider it as the final multifactor SD downscaling model. Then, the reconstructed SD
data that considers both the influence of spatial resolution and the complex environmental
factors was compared with the raw SD product and the general downscaling method. In ad-
dition, we applied quadrat observation data to analyze the performance of the multifactor
SD downscaling model in fine scale. These detailed processes are found in Sections 4 and 5.

3.3. Accuracy Evaluation

We utilized a total of 24,000 observations selected from ground meteorological stations
in 2013, 2015, and 2017 for training models and evaluated them using the 10-fold CV method.
Subsequently, we implemented other SD observation data (20,000 samples) that were
completely independent of the training dataset to provide a comprehensive comparison of
the 12 regression models in time and space and finally determine the model that exhibits
the best performance. The RMSE, Bias, and R were selected to evaluate the model accuracy
in this paper, their criteria are as follows:

RMSE =

√√√√ N

∑
i=1

(SD 0−SDx)
2/N (3)

Bias =
N

∑
i=1

(SD 0−SDx)/N (4)

R =

N
∑

i=1
(SD 0 − SD0)(SD x − SDx

)
√

N
∑

i=1
(SD 0 − SD0

)2 N
∑

i=1
(SD x − SDx

)2
(5)

where SD0 and SDx represent the observed SD and the retrieved SD, respectively, and N is
the number of samples used for evaluation.

4. Results
4.1. Selection of Optimal Models

Changing the number of input independent variables affects the regression model
performance [47]. Comparing the validation results of four combinations (M1, M2, M3, and
M4) in Table 2, we noticed that the overall accuracy of each regression model improved
as the number of input independent variables increased. A notably decreased trend
in the value of the RMSE for all models under the M1, M2, and M3 combinations was
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observed, as shown in Figure 3. The results showed that the spatiotemporal accuracy of
SD inversion obviously improved when the geolocation factors and topographical features
were considered. The M4 combination at Table 2, however, did not demonstrate that the
regression model performs well as the number of input independent variables increases.
The use of land cover fraction did not greatly affect the three regression models. The metrics
shown in Table 2 indicated that the model performances in M4 exhibited a similar accuracy
level compared with the validation results in M3. In summary, the independent variables
in M3 were the most appropriate combination for the input of the regression model of
this study.
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The three ML methods were able to produce a high correlation with ground observed
SD in spatiotemporal prediction. As shown in Figure 3 shows, the R exceeds 0.3 for
each ML model in four combinations. A detailed comparison results from Table 2, we
could notice that the MLR and SVR regression model performed unsatisfactorily with four
combinations using three validation datasets; it was more obvious in Figure 3 that the
SVR and MLR regression model had a high value of RMSE in four combinations. The RF
regression model considerably outperformed the other two regression models (MLR and
SVR). Results demonstrated the potential of the RF-based regression model to represent
the complex relationship between SD and other surface environmental factors. In addition,
the good consistency between the retrieved SD and the observed SD confirmed that the
proposed model can effectively describe SD spatial variations in fine scale. In general,
the RF model proved to be the best regression model to train samples in this study. As
shown in Table 2, the RF model in M3 had the highest SD inversion accuracy; its RMSE
values were 7.32 cm, 7.58 cm, and 7.67 cm in three validation datasets (test1, test2, and
test3), respectively. Finally, we selected the RF regression model in the M3 combination to
construct a multifactor SD downscaling model, denoted as DAMSR2−SP.

4.2. Downscaling Results with the Multifactor SD Downscaling Model

While many studies indicated that it was difficult to discuss the fine-scale spatial
variations of SD based on the PMW SD products, a significant advantage of the proposed
multifactor SD downscaling model used in this study was that it considered the coarse
spatial resolution of the PMW SD product. Figure 4(b1) shows the high-resolution SD
distribution map (500 m × 500 m) based on the multifactor SD downscaling model on
23 January 2018 in Northeast China. The corresponding raw AMSR2 SD distribution
map (25 km × 25 km) is demonstrated in Figure 4(a1). From a visual perspective, the SD
maps exhibited similar spatial distribution patterns for both the high-resolution and coarse-
resolution in Northeast China. The main difference between these two SD distribution maps
was shown in the area surrounded by the red circle in Figure 4(a1,b1), with maximum and
minimum differences of 30 and −5 cm, respectively. In addition, to test the performance
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of the multifactor SD downscaling model on a fine scale, a field quadrat (3 km × 2 km)
observation experiment was designed on 23 January 2018 in Northeast China. As shown in
Figure 4, the black triangles represent snow observation samples within the quadrat with a
spatial resolution of 500 m. All snow observation samples were distributed in farmland,
and a total of 17 grid cells were observed in this study. There were 1–4 SD observations per
grid cell, and the observed SD within each grid cell were averaged to represent the ground
truth SD. Figure 5 shows the comparison results between the retrieved SD and the observed
SD. We conclude that the retrieved SD based on the multifactor SD downscaling model is in
good agreement with the observed SD, and the error was distributed between −2 cm and
2 cm. The comparison results implied that the multifactor SD downscaling model could not
only improve the raw PMW SD data spatial resolution but also better describe the subpixel
spatial variations of SD (Figure 5), which is impossible for the existing PMW SD products.
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4.3. Temporal Validation with Meteorological Station Dataset

The downscaled SD based on the multifactor SD downscaling model was evaluated
using a ground meteorological station dataset during the snow season in 2014, 2016, and
2018. Meanwhile, to demonstrate the performance of the multifactor SD downscaling
model, we also compared it with the general SD downscaling method in this study. As
shown in Equation (6), the general SD downscaling model is based on the multifactor linear
regression method that was proposed by Wei et al. in the Tibetan Plateau [36]. However, its
performance had not been validated in Northeast China. Therefore, referring to the research
of Wei et al. [36], the coefficients in Equation (6) in Northeast China were optimized and
finally obtained the regression equation, as shown in Equation (7), denoted as the general
SD downscaling model. Furthermore, to ensure a fair comparison between the raw AMSR2
SD products with coarse resolution and the downscaled SD data with finer scale, the raw
AMSR2 SD product was resampled with a spatial resolution of 500 m × 500 m.
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y = β0 + β1X1 + β2X2 + β3X3 + . . . + βiXi + µ (6)

where y is the observed SD at the meteorological stations; X1, X2, X3 Xi are snow character-
istics and environmental factors; β0, β1, β2, βi are the model coefficients corresponding to
the factors; µ is the error.

Dgeneral = 5.43X1 + 2.31X2 − 1.12X3 + 0.99X4 − 0.89X5 − 0.05X6 + 0.59X7 + 12.68 (7)

where X1–X7 are the AMSR2 SD products (cm) with the spatial resolution of 500 m × 500 m,
snow cover days (d), latitude (◦), longitude (◦), slope (◦), roughness (cm), and elevation
(m), respectively.
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Figure 6 shows the color density scatterplots of retrieved SD against observed SD
for all investigated SD products. (a), (b), and (c) in Figure 6 represent the raw AMSR2
SD product, the downscaled SD based on Equation (7), and the downscaled SD based
on proposed model in this study, respectively. The result of the raw AMSR2 SD product
tends to be overestimated in terms of bias by 18 cm, with an RMSE of 26.15 cm (Figure 6a).
Followed by the general SD downscaling model (Figure 6b), with the RMSE, bias, and
R being 9.15 cm, 1.78 cm, and 0.40, respectively, the results showed that the general SD
downscaling method can indeed improve the accuracy of the raw AMSR2 SD product
in Northeast China. However, the multifactor SD downscaling model developed in this
study achieved the best performance in terms of SD assessment. The RMSE decreased from
26.15 cm of the original product to 7.58 cm, whereas the R increased from 0.39 to 53. A
more detailed overview of error statistics is presented in Table 3.

Table 3. Error statistics for the comparison between retrieved SD and observed SD in this study.

Snow Product
Dataset 1 (Temporal) Dataset 2 (Spatial)

RMSE (cm) Bias (cm) R RMSE (cm) Bias (cm) R

AMSR2
Dgeneral-AMSR2

DAMSR2-SP

26.15 18.01 0.39 19.15 13.71 0.34
9.15 1.78 0.40 9.87 −2.63 0.36
7.58 1.15 0.53 8.63 −2.16 0.52
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Figure 6. The color–density scatterplots of the retrieved SD and the observed SD at ground
meteorological stations. (a–c) represent raw AMSR2 SD product, the downscaled SD based on
general SD downscaling model, and the downscaled SD based on multifactor SD downscaling
model, respectively.

4.4. Spatial Validation along the Snow Routes

Additionally, Figure 7 shows the scatter diagrams of the validation results against
snow routes. Statistics results are listed in Table 3. The raw AMSR2 SD product seriously
overestimated observed SD, having a bias of 13.71 cm, whereas the RMSE and R were
19.15 cm and 0.34, respectively. The general SD downscaling method based on Equation (7)
could further improve the accuracy of the raw AMSR2 SD product in snow routes, as shown
in Figure 7b, with the RMSE, bias, and R being 9.15 cm, 1.78 cm, and 0.40, respectively.
Compared with the raw AMSR2 SD product and the general downscaling method, the cor-
responding downscaled SD based on the multifactor SD downscaling model demonstrated
the best agreement with the in situ measurements, as shown in Figure 7c, with RMSE, Bias,
and R being 8.63 cm, −2.16 cm, and 0.52, respectively. These results confirmed that the
multifactor SD downscaling model that considers both the influence of spatial resolution
and complex environmental factors was more reliable than the PMW SD.
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5. Discussion
5.1. Regression Variable Importance

The estimation of the 12 models in Table 2 demonstrated that the remarkable perfor-
mance of the RF-based regression method in revealing the complex nonlinear relationship
between the observed SD and the surface environment parameters. The RF model can
provide the importance of each input parameter in the process of the established regression
model [25]. Figure 8 shows each variable’s averaged importance scores derived from all
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input parameters and their corresponding maximum and minimum values based on the
10-fold CV error estimation. The results indicate that the inclusion of complex environ-
mental variables has a very significant impact on the model performance. High scores
can be found for AMSR2SP that were obtained by Equation (1). Its averaged importance
scores exceeded 35. In addition, geographic location (latitude and longitude) help improve
the multifactor SD downscaling model’s spatiotemporal estimate. Compared with the
prediction results in the M1 combination in Table 2, the SD inversion accuracy in the M2
combination significantly improved in time and space with the introduction of geographic
information. Owing to the complex terrain in Northeast China (Figure 1a), the inclusion
of topographical features (e.g., elevation, slope, aspect, and roughness) further improved
the performance of the fitted models. The results in the M3 combination in Table 2 also
indicated that the topographical features helped improve the accuracy of SD inversion. The
land cover fraction weakly affected the accuracy of SD inversion; the maximum variable
importance score of the land cover fraction is less than 5 (Figure 8). Therefore, the addition
of land cover fraction does not significantly help for the performance of the proposed
model. This also explains why the prediction accuracy in M5 combination in Table 2 did
not further improve compared with the M4 combination in Table 2.
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5.2. Potential Errors of the Multifactor SD Downscaling Model

The accuracy of downscaled SD product is affected by the accuracy of original AMSR2
SD product. For a much coarser spatial resolution of AMSR2, the observed brightness
temperature may contain various information, such as underlying frozen ground rather
than snow properties, especially when the snowpack is shallow. Zhao et al. [48,49] have
proposed a combined model to consider the effects from mixed pixels of frozen ground,
snow and vegetation and the multilayer coherent effects from underlying soil layers. It was
argued that frozen soil may present a similar microwave emission characteristic to snow,
and uncertainties from frozen soil must be considered during the early stages of snowfall
or late snowmelt.

Although high SD inversion accuracy was achieved using the multifactor SD down-
scaling model in most cases, Figure 9 indicated that the proposed model in this study
still has potential errors for different observation SD. Overall, the RMSE values of the
multifactor SD downscaling model increase as the SD increases. For deep snow (>30 cm),
the multifactor SD downscaling model has bad inversion accuracy; its RMSE is up to
17.61 cm in Northeast China. This may be caused by saturation effects. The saturation
effect of SD is difficult to overcome by using PMW data [38]. Figure 10 shows that the
amount of deep snow was very small in the training datasets, which could explain why
the model did not do well predicting deep snow. However, compared with the original
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SD product and general downscaling model in Equation (7), the proposed model in this
study still had the highest accuracy. We noticed that there was a slight overestimate of
observed SD for all SD inversion models in shallow snow cover (SD < 10 cm), which may
be attributed to the following reasons. First, the radiation signal from the snowpack is very
weak for shallow snow, and the main source of the microwave energy is that from earth
surface in such cases [50]. Second, frequent freeze–thaw cycles in the late snow season led
to the growth of depth hoar in shallow snow [51], enhancing the scattering ability of the
snowpack. As a result, the radiation signal was not close to the sensor. The brightness
temperature difference was higher for shallow snowpack in this case, causing the model to
overestimate the actual SD.
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Figure 10. Histograms of SD observations from ground meteorological station dataset. (a) Training
samples and (b) validation samples. The mean values (black dashed lines) are equal to 11.68 cm and
10.98 cm, respectively.

Figure 11 shows the impact of different snow seasons on the multifactor SD downscal-
ing model. Overall, the monthly RMSE values of all SD assessment products and algorithms
gradually increased with the date and peaked in March, which may be attributed to the
following reasons. First, owing to the influence of snow cover metamorphism, snow grain
size and snow density in the snowpack will rapidly grow with the snowfall period. For
example, the snow grain size of new snow is less than 1 mm in December but more than
3 mm for old snow cover in March. Similarly, the snow density of new snow is less than
100 kg/m3 in December, but more than 150 kg/m3 for old snow cover in March [20]. The
evolution of snow cover affects the accuracy of PMW SD products and then affects the
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downscaling model. Second, the impact of the liquid water content in the snowpack.
We noticed in Figure 11 that the monthly mean observed SD gradually increased with
the snowfall duration, reaching a maximum in February. However, the SD decreased in
March, indicating that the snow began to melt at this time. PMW can interact with snow
particles and detect the volume scattering signal of snowpack when snow is dry. The
microwave signal changes dramatically owing to the increase of the liquid water fraction
in the snowpack [52], causing great uncertainty for current SD products based on PMW
signals, including our multifactor SD downscaling model.
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5.3. The Applicability of the Multifactor SD Downscaling Model in Other PMW SD Products

The multifactor SD downscaling model based on the AMSR2 SD product was eval-
uated in this study. However, different SD products demonstrated great spatiotemporal
differences. Thus, it is important to demonstrate the applicability of the multifactor SD
downscaling model in different SD products. Two additional PMW SD products, the
WESTDC SD product and the FY SD product, were used to demonstrate the performance
of the multifactor SD downscaling model for different SD products in time and space.
The WESTDC algorithm modified the coefficient of the Chang algorithm using ground
meteorological stations in China and introduced forest cover fractions to reduce the influ-
ence of forest canopy attenuation using a simple statistical method [16]. The WESTDC SD
product can be obtained from the website at http://data.tpdc.ac.cn (Accessed on 22 August
2020). The FY algorithm considered the problem of land mixed pixels and atmospheric
radiation [17]. For the snow distribution area of China, the daily FY SD dataset with a
spatial resolution of 25 km from 1980 to 2020 was provided by the National Cryosphere
Desert Data Center. (http://www.ncdc.ac.cn (Accessed on 22 August 2020)).

Figures 12 and 13 show that the raw WESTDC and FY products have better SD
inversion accuracy in terms of time and space than the AMSR2 SD product in Northeast
China. The FY SD product outperforms other operational satellite SD products considering
the influence of atmospheric radiation and mixed pixels. However, the conventional SD
inversion algorithms, including the WESTDC and FY products, are based on brightness
temperature differences that make it difficult to overcome the influence of the coarse spatial
resolution and complex surface parameters. We noticed that the proposed multifactor
SD downscaling model in this study can further improve the WESTDC and the FY SD
products in time and space and achieve better inversion accuracy than raw SD products
(Table 4). The results in Table 4 illustrate that the multifactor SD downscaling model still
has good applicability to other SD products. Therefore, it could be an effective method for
addressing the large errors of existing PMW SD products in special complex environment
areas in the future.
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Figure 12. The color–density scatterplots of the retrieved SD and the observed SD at ground me-
teorological stations. (a,c) represent the raw WESTDC SD product and the FY SD product, re-
spectively. (b,d) represent the corresponding downscaling results based on the multifactor SD
downscaling model.
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Figure 13. Scatter plots of retrieved SD and observed SD along the snow routes. (a,c) represent the
raw WESTDC SD product and the FY SD product, respectively. (b,d) represent the corresponding
downscaling results based on the multifactor SD downscaling model.
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Table 4. Error statistics for the comparison between different SD products and observed SD in
this study.

Snow Product
Dataset 1 (Temporal) Dataset 2 (Spatial)

RMSE (cm) Bias (cm) R RMSE (cm) Bias (cm) R

WESTDC
D WESTDC-SP

9.52 −1.97 0.40 12.19 −6.07 0.12
7.60 1.53 0.56 9.59 −3.16 0.27

FY 6.93 −1.50 0.68 10.42 −4.71 0.30
DFY-SP 5.83 0.57 0.76 9.46 −2.35 0.34

6. Conclusions

Accurate SD assessments are important in Northeast China for understanding crop
production, climate change, and surface hydrological cycles. Currently, PMW remote
sensing is the most effective method for SD monitoring in spatiotemporal variations.
However, owing to the influence of coarse spatial resolution and complex environmental
factors, the existing PMW SD products have large uncertainties, and it is difficult to
accurately capture snow spatiotemporal variation. Therefore, we developed a multifactor
SD downscaling model by combining AMSR2 PMW SD data, optical snow cover extent data,
and surface environmental parameters to successfully downscale the PMW SD product at
25 km resolution to a higher resolution (500 m) and achieve satisfactory inversion accuracy.
Through the analysis and verification in time and space, the main conclusions are as follows:

A total of 12 models were compared for illustrating the influence of different regression
models and surface parameters and determining the optimal model as multifactor SD down-
scaling model. The results show that the introduction of surface parameter information
indeed improved the performance of the regression models. The SD inversion spatiotempo-
ral accuracy obviously improved when the geolocation factors and topographical features
were considered, but the inclusion of land cover fraction did not effectively improve the
performance in SD assessment. Moreover, the RF model-based regression method achieved
the best performance compared with other ML regression methods including MLR and
SVR.

The multifactor SD downscaling model that considers both the influence of spatial
resolution and complex environmental factors achieved the best performance in terms of
SD assessment in Northeast China when compared with the existing general downscaling
methods. It could not only downscale the raw PMW SD product’s spatial resolution but
also improve their SD inversion accuracy. Furthermore, field quadrat (3 km × 2 km)
observations shows that the proposed model is in good agreement with the observed SD,
with the error ranging between −2 cm and 2 cm. Results demonstrated that the multifactor
SD downscaling model can better describe the spatial variations of SD, which is impossible
for raw PMW SD products.

In general, the multifactor SD downscaling model not only shows good spatial het-
erogeneity but also presents better temporal consistency against the observed SD from
ground meteorological stations, thereby demonstrating strong potential for SD estimation.
However, there are still challenges, such as underestimation for thicker snowpack, prior
knowledge of snowpack (e.g., snow density and snow grain size), that should be consid-
ered to eliminate the potential error caused by snow cover evolution. In future work, we
will attempt to construct a coupling system of ML and physical snow evolution model to
overcome these shortcomings.
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