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Abstract: Gross Primary Productivity (GPP) for cropland is often estimated using a fixed value for
maximum light use efficiency (LUEmax) which is reduced to light use efficiency (LUE) by environ-
mental stress scalars. This may not reflect variation in LUE within a crop season, and environmental
stress scalars developed for ecosystem scale modelling may not apply linearly to croplands. We
predicted LUE on several vegetation indices, crop type, and agroclimatic predictors using supervised
random forest regression with training data from flux towers. Using a fixed LUEmax and environ-
mental stress scalars produced an overestimation of GPP with a root mean square error (RMSE) of
6.26 gC/m2/day, while using predicted LUE from random forest regression produced RMSEs of 0.099
and 0.404 gC/m2/day for models with and without crop type as a predictor, respectively. Prediction
uncertainty was greater for the model without crop type. These results show that LUE varies between
crop type, is dynamic within a crop season, and LUE models that reflect this are able to produce much
more accurate estimates of GPP over cropland than using fixed LUEmax with stress scalars. Therefore,
we suggest a paradigm shift from setting the LUE variable in cropland productivity models based on
environmental stress to focusing more on the variation of LUE within a crop season.

Keywords: light use efficiency; Gross Primary Productivity; random forest

1. Introduction

Gross Primary Productivity (GPP) and Net Primary Productivity (NPP) underpin
many global estimates of crop production with remote sensing. They express the rate of
carbon fixation by plants, from which measures such as cumulative biomass production and
yield can be derived. For example, several global crop yield maps are now available which
estimate grain yield from GPP or NPP [1,2]. Furthermore, there is increasing use of remote
sensing methods to monitor carbon dynamics over agricultural lands [3,4]. Therefore, it is
important that the accuracy of productivity estimation methods is continually monitored
and improved.

Remote sensing estimates of productivity at a point in time are generally based on
a Production Efficiency Model since Monteith [5,6] defined productivity as a function of
incoming solar radiation and light use efficiency (LUE) (Equation (1)):

GPP = f PAR × PAR × LUE, (1)

where GPP is a function of photosynthetically active radiation (PAR), the fraction of this
which is absorbed by plants ( f PAR), and LUE. This can be applied to either GPP or NPP,
and LUE values may refer to either measure [7–10]. We focus on GPP in this paper as it
forms the basis of several current cropland products [1,11–13].

Early efforts to optimise Production Efficiency Model parameters focused on fPAR,
and attention has now turned to the LUE parameter, which has been recognised as a
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critical component of the error budget in remote sensing GPP models [14–16]. Various
approaches to setting the LUE parameter exist, which include assuming a globally fixed
value, assuming a fixed value for each functional type of vegetation (C3 grass, C4 grass, and
trees), or varying LUE dynamically with vegetation type and environmental stressors [8,14].
The latter approach, known as the Carnegie–Ames–Stanford Approach (CASA) has been
widely applied to both NPP and GPP estimation for field crops [17,18] (Equation (2)):

GPPCASA = f PAR × PAR × LUEmax × TS × VS × SMS, (2)

where maximum LUE (LUEmax) is reduced below its potential by temperature stress (TS),
vapor stress (VS), and soil moisture stress (SMS) scalars to give LUECASA. This is a sim-
ple yet effective means of capturing environmental variation in LUE [8]. Alternatively,
Donohue et al. [14] varied LUE based on the proportion of diffuse radiation which met
or outperformed the stress scalar approach for accurate GPP estimation at a continental
scale. However, each method relies on an accurate starting value for LUEmax. Lobell
et al. [8] recognised that LUE, and thereby LUEmax, could be predicted based on relation-
ships with satellite-derived vegetation indices [19,20]. For example, canopy greenness, as a
proxy for crop maturity and stress, such as nutrient deficiency, may be useful predictors
of LUE [21,22]. We sought to combine vegetation indices with crop type and agrocli-
matic information to test whether a machine learning method could accurately predict
cropland LUE.

A contrasting approach for setting LUE for agricultural applications is setting a fixed
LUEmax based on information such as crop type, and sometimes soil fertility and fertiliser
regimes [8]. For example, the Global Yield Mapper in Google Earth Engine (GYMEE)
notes uncertainty in defining LUEmax for crop type and applies 2.5 gC/MJ/day for C3
crops and 3.5 gC/MJ/day for C4 crops [1]. Similarly, the Python implementation for the
Surface Energy Balance Algorithm (PySEBAL) documentation for estimating crop biomass
production and evapotranspiration recommends LUEmax values of 2.5 gC/MJ/day and
4.5 gC/MJ/day for C3 and C4 crops, respectively [12,13,23].

However, fixed LUEmax measured at the field or plant levels may be much greater
than LUEmax applicable to remote sensing scales. Calculating in situ LUEmax from flux
tower GPP measurements has revealed overestimation of LUEmax for croplands and
therefore overestimation of remotely sensed GPP. For example, Wang et al. [9] calcu-
lated LUEmax values ranging from approximately 2.3 to 3.7 gC/MJ/day for maize and
1.4 gC/MJ/day for wheat from flux tower sites. Similarly, Xin et al. [24] calculated mean
values of 2.78 and 1.64 gC/MJ/day for maize and soybean, respectively. These values
are generally greater than estimates of LUEmax for global or continental products such as
the Moderate-Resolution Imaging Spectroradiometer (MODIS) GPP, but less than values
generated in field experiments. This has led to an underestimation of cropland GPP in
continental products and overestimation of GPP when fixed LUEmax values are used in
cropland-specific applications [7,24,25].

In addition to overestimation of LUEmax, there are two main reasons why CASA with
fixed LUEmax may not adequately quantify LUE for cropland. The first is that neither a
fixed coefficient for LUEmax nor the stress scalars (Equation (2)) account for within-season
variation in LUE, which has been demonstrated for a range of field crops. For example,
Gitelson and Gamon [15] show that LUE varied within maize- and soybean-growing
seasons, both before (LUEinc) and after (LUEtotal, referred to as LUE in this paper) fPAR
was accounted for, and Lecoeur and Ney [26] show a similar temporal pattern for field
peas. Gitelson et al. [16] recognised the two to three-fold variation in LUE within growing
seasons for maize and soybean meant this source of variation “should be accounted for in
LUE models”.

The second reason that CASA may not apply well to croplands is that stress scalars
may be less relevant in managed environments, especially irrigated croplands, than in
other vegetated land types. Lobell et al. [8] found that omitting stress scalars from CASA
(Equation (2), adapted for NPP) improved NPP estimation accuracy for irrigated and
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temperature-resistant crops. Therefore, an alternative approach to setting the LUE variable
for cropland productivity estimations based primarily on within-season variation in crop
growth may be superior to the CASA method.

In this paper, we investigate whether a non-parametric, machine learning, predictive
model for LUE based on satellite-derived vegetation indices and agroclimatic variables
can give more accurate GPP predictions for cropland than CASA. This approach differs
from previous studies in its non-parametric approach, and specificity and scalability to
croplands. Relationships between vegetation indices and both LUE and GPP for cropland
have been investigated by Peng et al. [27], and Peng and Gitelson [28], though these have
generally focused on parametric modelling approaches relating GPP or LUE to individual
indices. Non-parametric random forest approaches have been applied to prediction of
LUE at the global scale by Wei et al. [29] based predominantly on meteorological and land
use/land cover predictors. Our approach is unique in its use of both agroclimatic and
vegetation indices as predictor variables that have previously been investigated separately,
its specificity to cropland and crop type, and its scalability due to reliance on globally-
available Landsat and climate data.

To this end, flux tower data were used to derive GPPin situ and LUEin situ, and demon-
strate how these varied within a crop season and between crop type. The in situ values
were compared with satellite-based estimates of LUECASA, and GPPCASA. LUEin situ was
also used to train a machine learning model with satellite data, crop type, and agroclimatic
variables as predictors. The importance and dependence of each predictor in the model
were evaluated to assess which variables best predicted LUE, and to understand how
vegetation indices and agroclimatic information relate to LUE within a crop season. Finally,
the accuracy of GPPCASA estimates was compared with the accuracy of predicted GPP
( ˆGPP) using predicted LUE ( ˆLUERF) from the random forest regression model.

2. Materials and Methods
2.1. Overview of Methodology

We used flux tower data for GPPin situ to assess the accuracy of remotely sensed
GPP. From this, LUEin situ was also derived, which was then used as training data for the
predictive model. This process is summarised in Figure 1 and details of LUEin situ and
LUEmax in situ estimation are provided in the following sections.

2.2. Flux Tower Data

Flux tower sites corresponding to cropland were identified within the FLUXNET
database [30]. From these, sites with known crop species were selected so accuracy could
be assessed between crop functional type (C3 and C4) and crop species. Table 1 shows the
FLUXNET tower sites used. Data were downloaded from the FLUXNET database in daily
format. The number of observations was determined by the number of days during active
years where a clear Landsat 7 or 8 image was available over the site, and crop growth was
occurring, which was defined as GPP being ≥0.1 gC/m2.
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Figure 1. Flowchart of methodology showing data sources (circles), data items (trapezoids), algo-
rithms or estimations (rectangles), and accuracy assessments of GPP estimations (rounded rectangles).

2.3. Satellite and Climate Data

At present, Landsat mission satellites offer useful spatial resolution and historical
temporal coverage for cropland applications. Several software applications readily support
GPP calculations from Landsat images. We used the Python script PySEBAL because it
produces a biomass estimate based on GPP from the CASA equation, and also gives outputs
required to calculate stress scalars, such as transpiration and evaporation [12,23].
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Table 1. Flux tower sites used to derive GPPin situ and LUEin situ.

Site Name Site Code Years Active Crop Species Observations

Cheorwon Rice paddy KR-CRK [31] 2015–2018 Rice 15
Philippines Rice
Institute flooded

PH-RiF [32] 2012–2014 Rice 19

Humnoke Farm Rice
Field A

US-HRA [33] 2017 Rice 4

Humnoke Farm Rice
Field C

US-HRC [34] 2017 Rice 4

Mead-irrigated
continuous maize site

US-Ne1 [35] 2001–2013 Maize 47

Mead-irrigated
maize–soybean rotation

site

US-Ne2 [36] 2001–2013 Maize (odd
years), soybean

(even years)

33

Mead-rainfed
maize–soybean rotation

site

US-Ne3 [37] 2001–2013 Maize (odd
years), soybean

(even years)

46

Both Landsat-7 and Landsat-8 imagery were used to cover the epoch from 2001 to 2018
(Table 1). Collection 1 Level-1 images with less than 20% cloud cover were downloaded
from the USGS Earth Explorer website. Landsat band digital numbers were converted
to top of atmosphere reflectance values using the scaling coefficients in metadata files.
Landsat-7 imagery must be spatially gapfilled to correct the scan line corrector (SLC)
failure. Jaafar et al. [38] reported more consistent outputs from PySEBAL when Landsat-7
bands were gapfilled using the ‘focal’ function from the R package ‘raster’ [39]. Therefore,
a 3 × 3 moving window was applied to Landsat-7 bands using the ‘focal’ function to fill
pixels identified as having null values in R version 4.1.1 [40].

PySEBAL requires 24 average and instantaneous shortwave radiation, wind speed, air
temperature, air pressure and relative humidity as inputs. These were derived from the
National Aeronautics and Space Administration’s Global Land data assimilation system
(GLDAS) [41]. Climate observations closest in time to the Landsat overpass time were used
as the instantaneous values while means were calculated across the eight observations for
each day to form 24 h average values [11,12].

To complete the required inputs for PySEBAL, a digital elevation model (DEM) was ac-
quired from the Shuttle Radar Topography Mission (SRTM) [42] and soil physical properties
were derived from the HiHydroSoil dataset [43].

2.4. Remote Sensing Estimation of Gross Primary Productivity and Light Use Effiency
2.4.1. Analysis Boundary

All remotely sensed measures were masked to an approximate cropland ecosystem
boundary which was defined as a 10 × 10 matrix of Landsat pixels surrounding the flux
tower, giving an area of approximately 300 m × 300 m. This area was chosen across
sites because flux tower height was generally set at a level which best captured the im-
mediate field and eliminated surrounding landscapes [44], and this area generally fell
within the target fields while enabling consistent spatial sampling from each site. This
area was also consistent with former studies on flux tower sites which have used both
Landsat and MODIS resolutions and therefore enhanced comparability of error across
approaches [22,24,27,45]. The mean of values across the 10 × 10 matrix were taken for all
remotely sensed variables to generate the final dataset with the number of observations
shown in Table 1.

More recent flux tower initiatives have captured meteorological variables which enable
calculation of flux footprints for use in future studies [46,47].

2.4.2. Remotely Sensed Gross Primary Productivity

Initial estimates of GPPCASA were used to calculate a baseline error against GPPin situ;
this is the foremost accuracy assessment in Figure 1. The output map of biomass produc-
tion from PySEBAL expresses GPP in kg/ha/day as calculated in Equation (2) [11,12,23].
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PySEBAL was run with the recommended LUEmax values of 2.5 gC/MJ/day for C3 crops
(rice, soy) and 4.5 gC/MJ/day for C4 crops (maize). This output map was multiplied by 0.1
to convert from kg/ha to gC/m2.

2.4.3. Calculation of Light Use Efficiency and Stress Scalars

LUEin situ and LUEmax in situ corresponding to Landsat overpass dates were calculated
by inversion of the GPP (Equation (1)) and CASA equations (Equation (2)) [8,10]. Daily
GPPin situ and incoming shortwave radiation were available from FLUXNET datasets for
each site. Other parameters were kept consistent with the PySEBAL script [12,23] due to
its specificity to cropland and its similarity to other GPP estimates for cropland including
GYMEE [1]. The variable, fPAR, was calculated on Landsat images as:

f PAR = −0.161 + 1.257 × NDVI, (3)

conditional on the Normalised Difference Vegetation Index (NDVI) being ≥0.125, below
which f PAR was set as 0. This definition of f PAR has been widely applied to cropland
applications since Bastiaannssen and Ali [48] aggregated coefficient and intercept values
from several cropland experiments, including the work of Daughtry et al. [49] on maize
and soybean.

PAR was calculated as:

PAR = Rs × 0.48 × 0.0864, (4)

where PAR is 48% of incoming shortwave radiation (Rs) [48] and 0.0864 converts W/m2 to
MJ/m2/day.

Temperature stress (TS) was calculated based on Stewart [50,51] and Jarvis [52] as:

TS =
(T − Tl)× (Th − T)Jc
(Kt − Tl)× (Th − Kt)Jc

(5)

where T is the average daily temperature and Jc is the Jarvis coefficient, calculated as:

Jc =
Th − Kt

Kt − Tl
, (6)

where Th, Kt, and Tl are the upper limit, optimum value, and lower limit of temperatures
(◦C) for stomatal conductance, respectively. These constants were made consistent with the
PySEBAL script [12,23] Constants used in Equations (5) and (6) are presented in Table 2.

Table 2. Constant values used for calculation of temperature stress in the estimation of GPPCASA.

Constant Definition Source

Tl 0 ◦C [53,54]
Kt 23 ◦C [53,54]
Th 35 ◦C [53,54]

Vapor stress (VS) was calculated based on Oren et al. [55], and Fuchs and
Stanghellini [56], as:

VS = 0.88 − 0.183 × log(Esat − Eact), (7)

where Esat and Eact are the saturated and actual vapor pressure (kPa), respectively.
Soil moisture stress (SMS) was calculated as the ratio of actual (Tact) to potential (Tpot)

24 h transpiration [57]:

SMS = Tact/Tpot, (8)

where Tact and Tpot were taken from PySEBAL output maps and masked according to
Section 2.4.1.
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2.5. Modelling Light Use Efficiency
2.5.1. Predictor Variables

Several satellite bands, vegetation indices, and agroclimatic variables were used as
predictors for LUE. Although vegetation indices vary with crop maturity [16], we included
both days after sowing (DAS) and day length as predictor variables to capture potential
within-season variation in LUE. Using DAS as a predictor overcame the limitation of using
day of year which may be site, rather than crop type, specific. The inclusion of these
predictors also enabled the relative importance of seasonality and vegetation indices to
be investigated.

Satellite-derived data were masked according to the analysis boundary as per
Section 2.4.1. The details of each predictor variable used in the random forest regres-
sion models are summarised in Table 3.

Table 3. Definition of predictor variables used to train predictive models for light use efficiency.

Group Variable Definition Source

Satellite
bands

Blue Landsat-7: 0.45–0.52 µm
Landsat-8 0.45–0.51 µm

[58]

Green Landsat-7: 0.52–0.60 µm
Landsat-8 0.53–0.59 µm

[58]

Red Landsat-7: 0.63–0.69 µm
Landsat-8 0.64–0.67 µm

[58]

Near Infrared (NIR) Landsat-7: 0.77–0.90 µm
Landsat-8 0.85–0.88 µm

[58]

Shortwave Infrared 1
(SWIR 1)

Landsat-7: 1.55–1.75 µm
Landsat-8 1.57–1.65 µm

[58]

Shortwave Infrared 2
(SWIR 2)

Landsat-7: 2.09–2.35 µm
Landsat-8 2.11–2.29 µm

[58]

Vegetation
indices

Normalised Difference
Vegetation Index (NDVI)

(NIR−Red)
(NIR+Red) [59]

Green Chlorophyll Vegeta-
tion Index (GCVI)

NIR
Green − 1 [60]

Leaf Area Index (LAI) From PySEBAL [12,23]
Soil-Adjusted Vegetation
Index (SAVI)

1.5 × (NIR−Red)
(NIR+Red+0.5) [61]

Site and
image
information

Crop Type Table 1
Sensor Landsat-7 or Landsat-8
Latitude Table 1 [30]
Day length Calculated on latitude

and DOY using geo-
sphere R package

[62]

Agroclimatic
variables

Daily Average Temperature Section 2.3
Daily Average Relative Humidity Section 2.3
Days after Sowing (DAS) Approximate sowing dates

taken from regional
crop calendars

[63–65]

2.5.2. Random Forest for Light Use Efficiency

Random forests [66] is a machine learning algorithm which was used to develop a
predictive model for LUE using the randomForest package in R [67]. The method uses
an ensemble approach to build a large number of regression trees on bootstrap samples
(typically 500) of the original dataset with varying inputs. Predictions from regression
trees are aggregated to estimate ˆLUERF and uncertainties can be quantified through the
assessment of quantiles from the bootstrap distribution of outputs.

Three predictive models for LUE were trained and evaluated: one trained on LUEin situ
with all 17 variables in Table 3 and one without crop type, as this may not always be
known to users. A third model was also trained on LUEmax in situ using all 17 predictors
to determine whether this parameter could be accurately modelled. Variable importance
was extracted from the model and expressed as the percentage increase in mean squared
error (MSE). The out-of-bag (OOB) predictions for ˆLUERF were used to calculate GPP using
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Equation (1). We refer to this as ˆGPP. An OOB prediction for an observation, LUEi, is
based on trees which do not use the in situ value of LUEi in the bootstrapped training
sample. Evaluations based on OOB predictions are therefore not prone to overfitting and
are an alternative to traditional cross validation. The accuracy of ˆGPP against GPPin situ
was evaluated using the root mean square error (RMSE) and mean error (ME). These
formed the latter accuracy assessment shown in Figure 1, which was compared with
the accuracy for GPPCASA (Equation (2)), the foremost accuracy assessment in Figure 1.
Prediction uncertainty was calculated for each random forest model. This was presented
as the standard error on the OOB prediction and calculated using the randomForestCI
package [68].

3. Results
3.1. In Situ Light Use Efficiency

LUEin situ was mostly distributed between 1 and 4 gC/MJ/day (Figure 2). Maize gave
the highest median, and each median was below 2 gC/MJ/day.

The temporal pattern of LUEin situ generally reflected the pattern in GPPin situ. Both
GPPin situ and LUEin situ rose to reach a mid-season maximum before declining, with the
rate and timing of increase and decline varying between crop type (Figure 3). However,
the pattern in GPPin situ initially increased at an increasing rate, showing a sigmoidal plant
growth curve, while LUEin situ tended to show a more constant rate of increase. This was
particularly evident in the locally fitted polynomial curves for soybean (Figure 3).

Figure 2. Distribution of in situ light use efficiency values derived from flux tower sites for maize,
rice, and soy crops [11].



Remote Sens. 2022, 14, 1495 9 of 19

(a)

(b)

Figure 3. Figures showing (a) in situ Gross Primary Productivity (GPP) and (b) light use efficiency
(LUE) aggregated by crop type and over crop seasons by day after sowing. Colours denote codes for
the FLUXNET flux tower sites shown in Table 1. Plotted lines were fitted with a local polynomial
regression and ribbons show the 95% confidence interval.

3.2. Prediction of Light Use Efficiency

The model which included crop type produced a higher R2 and lower mean of squared
residuals (Table 4), indicating that crop type is an important predictor of LUE. This was
reflected in the variable importance results (Figure 4). However, the OOB predictions
for LUEmax from random forest models did not explain much variation in LUEmax in situ
(Table 4). Additionally, Figure 5 shows that the stress scalars in the CASA Equation (2)
do not sufficiently downscale the fixed LUEmax values to match LUEin situ, especially for
maize. The negative mean error indicates that LUECASA is an overestimate of LUEin situ.

ˆLUERF from Model 1 (Table 4) shows a much closer distribution to that of LUEin situ.
For this reason, only Models 1 and 2, which give ˆLUERF, not LUEmax, were chosen for
further evaluation.
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Figure 4. In situ light use efficiency (LUEin situ) values compared with LUE reduced below its
potential by stress scalars as per Equation (2) (LUECASA) and LUE predicted from a random forest
model with satellite-derived and agroclimatic predictors ( ˆLUERF) in Table 3. Median is shown with a
horizontal line, and the fixed maximum light use efficiency (LUEmax) for C3 and C4 crops are shown
with points.

Figure 5. Variable importance plot for the random forest regression model using all predictors shown
in Table 3, expressed as percentage increase in mean square error.

Crop type was the most important predictor in Model 1 (Figure 5), reflecting variation
in LUEin situ between crops shown in Figure 2. Thereafter, the agroclimatic variables—day
length, DAS, and temperature—were relatively important predictors. Vegetation indices
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were of similar importance. Satellite bands were scattered amongst other predictors in
terms of importance, and relative humidity was relatively unimportant.

Partial dependence plots (Figure 6) from random forest Model 1 show that LAI val-
ues less than approximately 2 reduced ˆLUERF. Higher SAVI and NDVI were associated
with greater ˆLUERF, while GCVI between approximately −0.5 and 1 reduced predicted
values. Partial dependence on DAS reflected temporal patterns in GPP and LUE shown in
Figure 3. Greater day length was associated with higher ˆLUERF, as was average tempera-
ture, although values greater than approximately 25 ◦C reduced predictions.

(a)

(b)

Figure 6. Partial dependence of light use efficiency predictions on (a) vegetation index and
(b) agroclimatic predictors in the random forest regression model fit with all variables in Table 3
as predictors.
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Table 4. Performance of random forest prediction models for light use efficiency (LUE) (Models 1
and 2) and LUEmax (Model 3) expressed as percentage of variation in LUEin situ or LUEmax in situ

explained by variation in out-of-bag predictions (R2) for LUE/LUEmax and mean of squared residuals.

Measure Model 1: All Predictors in Table 3 Model 2: No Crop Type Predictor Model 3: All Predictors in
Table 3, LUEmax as Response

R2 62.94% 58.30% 14.19%

Mean of squared residuals 0.28 0.32 0.87

3.3. Estimation of Gross Primary Productivity

CASA led to overestimation of GPP, as indicated by the negative ME, especially for
maize (Figure 7). Estimating GPP with ˆLUERF improved accuracy and reduced the RMSE
between GPPin situ and ˆGPP (Figure 8). Prediction uncertainty was greater and estimate
accuracy was lower in the model that did not include crop type as a predictor (Figure 8).

Figure 7. Predicted Gross Primary Productivity ( ˆGPP) with fixed maximum light use efficiency
values against GPPin situ from flux tower sites in Table 1. Root mean square error (RMSE) and mean
error (ME) between observed and predicted observations are shown.
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(a)

(b)

Figure 8. Predicted Gross Primary Productivity ( ˆGPP) with predicted light use efficiency ( ˆLUERF)
values from the model with (a) all predictor variables in Table 3 against GPPin situ from flux tower sites
in Table 1, and (b) without crop type as a predictor. Root mean square error (RMSE) and mean error
(ME) between observed and predicted observations are shown and the standard error on out-of-bag
prediction is denoted by error bars.

4. Discussion
ˆLUERF from a machine learning model produced more accurate estimates of ˆGPP than

GPPCASA estimated with a fixed LUEmax and stress scalars, as shown in Figure 8. This was
because CASA gave grossly overestimated GPP estimates (Figure 7) due to overestimation
of LUEmax and insufficient downscaling from the stress scalars (Figure 4). These findings
are consistent with Cheng et al. [25] who, using some of the flux tower sites in Table 1,
found that CASA overestimated GPP by a RMSE of approximately 6 gC/m2/day, while the
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MODIS MOD17 GPP product underestimated cropland GPP by a RMSE of approximately
12 gC/m2/day. This means that using crop-specific LUEmax values in CASA is likely to
produce more accurate estimates of GPP than continental GPP products over cropland, and
that accuracy can be further improved by varying LUE using a predictive model.

Furthermore, prediction of ˆLUERF on a combination of agroclimatic and vegeta-
tion index predictors for calculation of ˆGPP gave more accurate estimates than other
approaches applied to these flux tower sites. Peng and Gitelson [28,69] produced RMSEs
of 2.75 and 2.9 gC/m2/day, respectively, by focusing on GCVI and NDVI as predictors.
RMSEs between 1 and 2 gC/m2/day were achieved by incorporating other indices such
as the LAI and Wide Dynamic Range Vegetation Index (WDRVI) [27,45]. Our estimation
of RMSEs < 1 gC/m2/day (Figure 8), across similar ranges of GPPin situ, for the same
flux tower sites demonstrates the enhanced accuracy attributable to the machine learning
approach encompassing within-season variation.

Our findings demonstrate that varying LUE dynamically over a cropping season will
produce more accurate estimates of remotely sensed GPP. Figure 3 shows that LUEin situ
varies within seasons, and variables related to seasonality, namely DAS and day length,
have been highlighted as important by the random forest model (Figure 5). This is also
supported by the partial dependence patterns of the random forest model on DAS, NDVI,
and day length (Figures 5 and 6), which reflects patterns identified in Figure 3. Neither the
LUEmax or stress scalars in CASA account for within-season variation in LUE. We suggest
that this source of variation should be a primary component of productivity estimation
methods for cropland.

Furthermore, Figure 4 shows that stress scalars did not sufficiently reduce LUEmax to
reflect LUEin situ, especially for maize. This may be because temperature, vapor, and soil
moisture stress did not explain much variation in LUEin situ, though setting LUEmax too high
also contributed. A weak relationship between the stress scalars and LUEin situ may also
explain the poor predictive ability of Model 3 with LUEmax as the response (Table 4). This
corresponds to Lobell et al. [8] who found greater NPP estimate accuracy with CASA when
stress scalars were omitted for irrigated and temperature-resistant crops. They attributed
this to the stress scalars being inappropriate indicators of variation in LUE for some
croplands where stress may be overcome by either genotypic (temperature stress-resistant
cultivars) or agronomic (irrigation) management. Additionally, components of CASA have
been criticised for their weak relationship to LUE. Sinclar and Muchow [70] argued that
the Occam’s Razor philosophy of preferring hypotheses with fewer assumptions should
be applied to determining crop LUE in their criticism of relating vapor pressure deficit
to LUE. They cited minimal statistical support for a meaningful relationship between
these variables. This is supported by our finding that relative humidity was a relatively
unimportant predictor of LUE (Figure 5).

Varying LUE within season is specific to remote sensing for croplands because crop
maturity and type are generally uniform in space and time within fields, contrasting other
land types with heterogeneous vegetation type and age [8]. We have demonstrated that
approaches that vary crop LUE primarily on environmental stresses may lack relevance
to croplands, and productivity modelling approaches should place more importance on
within-season variation. Environmental stress-based approaches may remain applicable
to ecological applications where a fixed LUEmax reflects a central value for heterogeneous
vegetation and plant growth is more greatly influenced by temperature and soil moisture
stress [14,17]. However, such approaches may also be enhanced by consideration of diffuse
radiation [14,70].

The importance of crop type and predictors relating to within-season variation in the
random forest model (Figure 5) show that these variables best reflect the photosynthetic
properties of a crop at a given satellite overpass date. The better prediction accuracy,
reduced uncertainty, and importance of crop type for Model 1 compared with Model 2
(Table 4 and Figure 5) demonstrate that crop-specific estimates of LUE are greatly preferred.
Temporal patterns in GPP and LUE shown in Figure 3 match Lecoeur and Ney’s [26]
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description of the sigmoidal pattern between LUE and thermal time where LUE reaches
a maximum following great variability after emergence, before declining towards zero
at the end of the plant growth cycle. The partial dependence plots for LAI, NDVI, and
SAVI also show that LUE increases with canopy greenness, corresponding to Gitelson and
Gamon’s [15] demonstration of a positive relationship between LUE and green LAI found
using the US-Ne flux sites (Table 1). Given their relatively important predictive properties
(Figure 5), further investigation into the relationships between NDVI, LAI and LUE across
crop growth stages would inform how these indices might be used to better predict LUE.

GCVI was the least important of the vegetation indice predictors (Figure 5), despite
its hypothetical potential to capture nutrient stress. Figure 6 shows that GCVI values
around 0 reduced ˆLUE, which may be due to these values relating to low leaf nitrogen
(N) concentration. The relationship between leaf N concentration and LUE has been well
described by Sinclair et al. [71,72], Fischer et al. [73], and Evans [74]. Therefore, it has been
hypothesised [21] and demonstrated [27] that the GCVI could be an important predictor
of LUE given its ability to capture nutrient deficiencies and reflect the photosynthetic
capacity of a canopy. Burke and Lobell [21] attributed this ability to their finding that GCVI
outperformed NDVI and the Enhanced Vegetation Index (EVI) in prediction of yields at
smallholder farms in Kenya. However, Burke and Lobell [21] noted that crop nutrient stress
is common in those farming systems. Relatively lower variation in nutrient stress among
flux tower sites may explain why the indices related to crop maturity and growth were
more important predictors of LUE than the GCVI.

The fixed values for C3 crops produced relatively accurate estimates of GPP compared
with the fixed value for C4 maize. This was especially the case for rice. Maize, as a C4
crop, had higher in situ LUE values for these sites, but not to the degree recommended in
the setting of LUEmax for PySEBAL and the GYMEE [1,11,12]. The median LUE value of
approximately 2.0 gC/MJ for maize from in situ sites (Figure 2) is consistent with Lindquist
et al. [75] and Muchow and Sinclair [76]. It is unclear why recommended LUEmax values
for maize have become much higher than would give this LUECASA in recent times. It may
be because these values relate to the true maximum LUE across a growing season and are
used to avoid underestimation at high values of GPP. However, our results show that this
approach leads to great overestimation of GPP at most time points.

Estimating in situ LUE and LUEmax from inversion of the GPP (Equation (1)) and
CASA equations (Equation (2)) leads to some methodological limitations. Optimising the
LUEmax parameter is likely to be compensating for some other variable errors, so that our
results may reflect overestimation of GPP due to inaccurate estimates of variables such
as fPAR and inaccurate quantification of stress scalars. This may also explain some of the
poor predictive ability of Model 3 for LUEmax (Table 4). Furthermore, the use of NDVI
both as a predictor in the random forest for LUE and the linear equation for fPAR may be
confounding. There is also likely to be some error associated with the cropland ecosystem
boundary used. More recent flux tower initiatives include data and means to calculate
more accurate flux footprints [46,77,78], though few are in croplands with known crop
types and agronomic information related to irrigation and fertiliser regimes. Open-source
flux tower initiatives in croplands would provide invaluable data for further improving
cropland productivity estimates.

Additionally, the increasing abundance and availability of sensors is likely to enable
further enhancement of GPP estimation. For example, the relationship between the photo-
chemical reflectance index (PRI) and LUE has been well documented by Gamon et al. [19],
Garbulsky et al. [79], and Barton and North [80]. However, narrow-band spectroradiome-
ters are required for its derivation. Future availability of easily deployed and operated
unmanned aerial vehicles (UAVs) or other sensors would likely enhance understanding of
LUE in croplands.
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5. Conclusions

The application of crop-specific LUEmax and environmental stress scalars led to over-
estimation of GPP for cropland, and this was remedied by varying LUE using a predictive
model that captured variation in LUE within seasons. The greater accuracy of GPP estima-
tion means that this predictive model approach is preferable to using CASA for cropland.
It also allows quantification of prediction uncertainty, which is especially pertinent where
crop type is unknown.

The primary implication of our findings is that the focus of the productivity estimation
paradigm for cropland should shift from environmental stress to variation within season
and between crop type. Including within-season predictors in models for LUE will enhance
the accuracy of GPP estimation and therefore give more accurate measures of derived
estimates such as cropland carbon fluxes and crop yields.
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Abbreviations
The following abbreviations are used in this manuscript:

GPP Gross Primary Productivity
GPPin situ In Situ Gross Primary Productivity

ˆGPP Predicted Gross Primary Productivity
NPP Net Primary Productivity
CASA Carnegie–Ames–Stanford Approach
LUE Light Use Efficiency
LUEin situ In Situ Light Use Efficiency
LUECASA Light Use Efficiency reduced from LUEmax Using CASA Stress Scalars
LUEmax Maximum Light Use Efficiency
LUEmax in situ In Situ Maximum Light Use Efficiency

ˆLUERF Predicted Light Use Efficiency from Random Forest
fPAR Fraction of Absorbed Photosynthetically Active Radiation
PAR Photosynthetically Active Radiation
DAS Days after Sowing
SMS Soil Moisture Stress
VS Vapor Stress
TS Temperature Stress
NDVI Normalized Difference Vegetation Index

https://github.com/mickwelli/LUE-model


Remote Sens. 2022, 14, 1495 17 of 19

SAVI Soil-Adjusted Vegetation Index
LAI Leaf Area Index
GCVI Green Chlorophyll Vegetation Index
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