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Abstract: Semantic segmentation is a critical problem for many remote sensing (RS) image applica-
tions. Benefiting from large-scale pixel-level labeled data and the continuous evolution of deep neural
network architectures, the performance of semantic segmentation approaches has been constantly
improved. However, deploying a well-trained model on unseen and diverse testing environments
remains a major challenge: a large gap between data distributions in train and test domains results
in severe performance loss, while manual dense labeling is costly and not scalable. To this end, we
proposed an unsupervised domain adaptation framework for RS image semantic segmentation that
is both practical and effective. The framework is supported by the consistency principle, includ-
ing the cycle consistency in the input space and self-supervised consistency in the training stage.
Specifically, we introduce cycle-consistent generative adversarial networks to reduce the discrepancy
between source and target distributions by translating one into the other. The translated source
data then drive a pipeline of supervised semantic segmentation model training. We enforce consis-
tency of model predictions across target image transformations in order to provide self-supervision
for the unlabeled target data. Experiments and extensive ablation studies demonstrate the effective-
ness of the proposed approach on two challenging benchmarks, on which we achieve up to 9.95%
and 7.53% improvements in accuracy over the state-of-the-art methods, respectively.

Keywords: unsupervised domain adaptation; semantic segmentation; self-supervision; remote
sensing image

1. Introduction

Semantic segmentation of remote sensing (RS) images has attracted increasing at-
tention and research interest. Many applications, such as environmental monitoring,
crop production, and urban planning, need accurate and efficient segmentation mecha-
nisms [1–5]. These demands coincide with the rise of deep learning methods in the RS
field and application target-related RS image interpretation, including segmentation, object
detection, and classification [6–9]. Semantic segmentation assigns a predefined ground
truth label to each pixel in an image by clustering parts of an image that belong to the same
object class [10], and usually applies end-to-end dense prediction networks to achieve
pixelwise prediction. However, dense prediction architectures rely on pixel-level anno-
tations of all categories to extract rich semantics and locate object boundaries accurately.
Obtaining such dense annotations for semantic segmentation is notoriously laborious and
expensive, and is the major limitation of semantic segmentation methods.
Moreover, a trained model suffers from performance decreases in practical tasks due
to the complexity of RS data, such as in the diversity of acquisition conditions, varied
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geospatial locations, and different ground sampling distances [11]. The requirement to de-
velop generalizable models with unlabeled data has motivated work on deep domain
adaptation (DA) approaches for semantic segmentation. DA is a special case of transfer
learning that uses labeled data in one or more relevant source domains to implement new
tasks in the target domain [12]. It aims to improve the generalization ability of the model
across domains and realize the cross-domain transfer reuse of domain-invariant knowl-
edge. DA methods can be classified into supervised, semisupervised, and unsupervised
DA according to whether the target domain has labels. Obviously, unsupervised domain
adaptation (UDA) is a promising approach for semantic segmentation and other tasks
for which large-scale data annotation is costly and time-consuming.

The UDA methods for semantic segmentation have been extended to address issues
in the RS community. According to existing works in the RS fields, UDA methods can
roughly be categorized into three methods: generative-based method, adversarial learn-
ing, and self-training [13]. Specifically, generative-based methods translate source data
to the visual appearances of a target domain by performing distribution alignment in the im-
age space by using generative adversarial networks (GANs). Adversarial training aims
to minimize the discrepancy between source and target feature distributions by introducing
a discriminator network alongside the main segmentation network. Self-training-based
methods minimize the loss of latent variables by alternatively generating pseudolabels
on target data and retraining the model with these labels. Recent works on UDA for RS
image semantic segmentation have primarily used generative-based methods [14–22].
To the best of our knowledge, Benjdira et al. [14] first addressed the problem of DA for RS
image semantic segmentation by GANs. This study performed image-level translation
from the source domain to the target domain using CycleGAN [23], and the results showed
that the method is capable of substantially improving the accuracy of the segmentation
model. Most recently, Li et al. [15] found that the DualGAN [24] is recommended to con-
duct unsupervised image translation between the source and target domains to carry out
a weakly supervised transfer invariant constraint (WTIC). Tazar et al. [16] designed a novel
GAN architecture named color mapping generative adversarial networks (ColorMapGAN),
which can generate fake training images that are semantically the same as training images
but with a spectral distribution similar to that of test images. Due to the architecturally
simple (the generator has no convolution and pooling layers) but powerful design, Col-
orMapGAN performs well in both accuracy and computational complexity. Most studies
mentioned above were implemented on a single space (e.g., input, feature, or output).
In the study by [18], an end-to-end GAN-based full-space DA for classification was pro-
posed. In this framework, the source and target images are fully aligned in the image,
feature, and output spaces by different methods. Mateo-Garcia et al. [20] used CycleGAN
to train a domain adaptation method between Proba-V and upscaled Landsat images.
This was applied to train a cloud detection algorithm and eventually achieved higher
cloud detection accuracy. Some researchers also used the CycleGAN approach for DA
in deforestation detection in the Amazon Forest [21]. Kou et al. [22] proposed progres-
sive domain adaptation (PDA) by embedding a convolutional long short-term memory
(ConvLSTM) network into a conditional generative adversarial network (cGAN [25])
for change detection using season-varying remote sensing images.

In addition to the dominant generative-based methods, other methods have been
widely explored in RS fields. Zhang et al. [26] introduced a layer alignment method and
a feature covariance loss function. They also adopted a self-training method to fine-tune
the model with pseudolabels on target data and further improve segmentation performance.
Zhang et al. [27] proposed a curriculum-style local-to-global cross-domain adaptation
framework for the segmentation of very-high-resolution (VHR) RS images. The result
showed that the curriculum-style cross-domain adaptation (CCDA) strategy and local-
to global feature alignment (LGFA) module achieved better performance on common
benchmarks. Similar to this idea, Shen et al. [28] introduced a spatial frequency, detached
the target domain into an easy and hard split, and then adopted intradomain adaptation
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by self-supervised training to improve the performance of the hard split. In addition,
to be more efficient in addressing domain shifts on aerial datasets, Chen et al. [29] used
entropy minimization and classwise distribution alignment to produce high-confidence
prediction. In addition to extracting features from the image domain, Liu et al. [30]
proposed a bispace alignment network for DA, named BSANet, which is able to extract
features in the image and wavelet domains simultaneously. The dual-branch structure
utilizing two discriminators minimizes the discrepancy in the fused feature space and
output spaces.

While previous studies explored UDA for RS image semantic segmentation, chal-
lenges still exist: (i) the generative-based methods used above ignore the spatial scale
difference of data across domains, and only one-sided translated images are used in the
subsequent process, which results in a huge waste of computation; (ii) adversarial learning
computationally involves adversarial objectives in different space that are highly sensitive
to hyperparameters and are difficult to train; (iii) self-training methods do not sufficiently
explore the intrinsic invariant characteristics of the target data caused by the data transfor-
mation. In this paper, we propose a cycle and self-supervised consistency (CSC) training
framework. The three main contributions of our work can be summarized as follows:

1. We propose a novel UDA framework for RS image semantic segmentation that com-
bines cycle-consistent image-to-image translation techniques and self-supervised
transformation consistency training.

2. We investigate multiple transformation functions and enforce transformation consis-
tency to provide supervision for self-supervised training of the model on unlabeled
target data. These functions provide different perspectives on how to learn domain-
invariant features for semantic segmentation.

3. Compared with previous methods, the framework we proposed achieves state-of-
the-art performance on two challenging benchmarks of UDA for RS image semantic
segmentation. Each consistency component independently outperformed some previ-
ous methods. This was verified by extensive ablation studies on our framework.

4. The proposed domain adaptation framework is easy to implement and is readily
embedded in any existing semantic segmentation model to improve the prediction
performance on unlabeled data.

2. Methods

In the following, we first give an overview of the proposed framework, and then
introduce the ResiDualGAN to conduct unsupervised image translation between source
and target domains to carry out cycle consistency training. Finally, we give the detailed
descriptions of the proposed consistency training strategy.

2.1. Overview

In the setting of unsupervised domain adaptation for semantic segmentation, we
consider a labeled source domain S and an unlabeled target domain T with the same set
of semantic classes. In general, RS images from S and T are composed of different image
attributes with different geographic locations, which leads to the cross-domain RS image
semantic segmentation being more complex than other tasks in UDA fields. The goal
of the purposed framework is to train a model on labeled domain S, and perform across-
domain semantic segmentation tasks with minimal prediction error on the unlabeled target
domain T. Intuitively, the overall workflow of the proposed consistency-based framework
is shown in Figure 1, and is driven by consistency principles in different training stages.
The framework consists of two consistency criteria: the cycle consistency across domains
in the input space and the self-supervised transformation consistency in the training
stage. A cycling generative adversarial network with scale change modules is trained
in the input space to eliminate spectral- and spatial-scale discrepancies across domains by
iteratively reconstructing and discriminating. A mapping of the data distribution between
the source and target domains is established, and the target-stylized source domain data are
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produced to train a semantic segmentation model in a supervised way. In the subsequent
training stage, a self-supervised training module is incorporated to enforce the consistency
of target semantic maps produced by the model across a serious image transformation.
Such consistency training is based on the idea that a strong model’s output should be
consistent, with respect to the transformation of inputs, and enable the model to learn
features from unlabeled target data in a self-supervised way.

…

…

…

𝐿𝑠𝑟𝑐

𝐿𝑐𝑜𝑛

𝐿𝑐𝑦𝑐 𝐿𝑎𝑑𝑣

ResiDualGan workflow

Training with gradient

Inference without gradient

Loss calculating

Shared weight

Image transformation
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Figure 1. Overview of proposed framework. ResiGS→T and ResiGT→S are generators of the ResiD-
ualGAN between two domains. Lcyc and Ladv are cycle loss function and adversarial loss function,
respectively. Lsrc and Lcon are segmentation loss function for source data and target data, respectively.

2.2. Cycle Consistency

As mentioned in Section 1, GAN-based unpaired image translation algorithms have
been widely used in cross-domain adaptation tasks for semantic segmentation. The orig-
inal GANs can teacha generator to capture the distribution of real data by introducing
an adversarial discriminator that evolves to discriminate between the real data and the fake.
Therefore, it usually includes two neural networks, in which generative network G gener-
ates candidates while the discriminate network D distinguishes candidates produced by G
from the true data distribution. With such a strategy, a bidirectional GAN architecture en-
ables cross-domain image-to-image translation. Suppose there are two collections of images
XS and XT from source domain S and target domain T, respectively. The generator GS→T
maps an image xS ∈ XS to an image xT ∈ XT , while the dual task is to train an inverse
generator GT→S. Discriminators DS and DT are trained to measure how well the generated
candidates fit in the corresponding domains. This idea of implementing inverse mapping
and having two generators and two discriminators is common among a series of GAN-
family methods for image translation, such as DiscoGAN [31], CycleGAN, and DualGAN.
For RS image translation, Li et al. [15] quantitatively verified that DualGAN performed
better than other unsupervised methods (e.g., CycleGAN and DiscoGAN) in across-domain
semantic segmentation tasks.
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However, this line of work on RS image translation suffers from two main limitations
in practical applications. First, the spatial scale discrepancy of images between two do-
mains is not considered, while the scale factor is very important in RS image interpretation
tasks. Previous works have proven that RS images with similar ground sampling distance
(GSD) are easier to adapt across domains [19,32]. Second, cycle translation in appearance
may locally change the semantic information of certain ground types; hence such seman-
tic consistency should be ensured during translation. To solve the above problems, we
introduce ResiDualGAN [32] to align the distribution in the image space. Based on Dual-
GAN, ResiDualGAN redesigned the structure of generators and named it Resi-Generator,
where a residual module and a resize module were incorporated (Figure 2). It is proposed
specifically for optimizing the translation results of RS images with different spatial res-
olutions. For translation of XS → XT , the Resi-Generator can be denoted as ResiGS→T ,
containing a regular generator GS→T and a resize module ResizeS→T . As Figure 2 shows,
the design of ResiGS→T was inspired by the structure of skip connections (i.e., shortcuts)
from the residual network [33]. The outputs of GS→T are added as an identity mapping
XS to enhance the original semantic information and then fed into ResizeS→T to decrease
the spatial resolution:

XS→T = ResiGS→T(XS) = ResizeS→T(GS→T(XS) + XS). (1)

The mapping of XS → XT :image xs ∈ XS is translated to domain XT using ResiGS→T .
How well translation ResiGS→T(xS) fits in XT is evaluated by DT . ResiGS→T(xS) is then
translated back to domain XS using ResiGT→S, which outputs ResiGT→S(ResiGS→T(xS))
as the reconstructed version of xS. Similarly, xT ∈ XT is translated to XS as ResiGT→S(xT)
and then reconstructed as ResiGS→T(ResiGT→S(xT)). Note that the reverse mapping
XT → XS and both DT and DS are not illustrated in Figure 1 for simplification.

The objective functions of ResiDualGAN consist of a feature-level adversarial loss and
an image-level cycle loss. The adversarial loss function is integrated from loss functions
used in DT and DS, which can be defined as

Ladv = (−DS(ResiGT→S(xT))− DT(ResiGS→T(xS))). (2)

Loss functions for generators ResiGS→T and ResiGT→S, however, are the same, as both
share the same objective. The cycle loss function measured by the L1 distance can be
defined as

Lcyc = ψcyc(||xS−ResiGT→S(ResiGS→T(xS))||+ ||xT − ResiGS→T(ResiGT→S(xT))||)
+ ψadv(−DS(ResiGT→S(xT))− DT(ResiGS→T(xS))),

(3)

where ψcyc and ψadv are two hyperparameters. By alternately minimizing Lcyc and Ladv,
cycle consistency enforces cross-domain consistent predictions in the context of image-
to-image translation. The translated source and target data are used to train a semantic
segmentation model in the next stage.

𝑮 𝑺→𝑻 𝑅𝑒𝑠𝑖𝑧𝑒

Figure 2. Resi-Generator of ResiDualGAN.
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2.3. Self-Supervised Consistency

Our ultimate goal is to train a semantic segmentation model that is capable of high perfor-
mance on unlabeled target domains. Cycle consistency reduces the distribution of data between
the source domain and target domain. The semantic segmentation model can be trained on la-
beled, target-stylized source data and learn the features transferred from the target domain.
However, the transferred features are insufficient for mapping real target data to ground truth.
Inspired by approaches from self-training learning and semisupervised learning communi-
ties [34–40], a consistency training strategy is designed in this stage. This strategy is based
on the assumption that the outputs from a well-trained model should be consistent across input
transformations. For example, let f :X → Y represent a pixelwise mapping from images x ∈ X
to semantic output y ∈ Y. Denote t as a transformation function. We denote tp:X → X′ as a pho-
tometric image transformation such as whitening or style transfer, and tq:X → X′ as a spatial
image transformation such as flipping or scaling. The consistency training is under the following
hypothesis that for any image x ∈ X, f is invariant under tp: f (tp(x)) = f (x) and equivariant
under tq: f (tq(x)) = tq( f (x)). If x ∈ XT, then the f (x) can be seen as pseudo labeling and
the prediction inconsistency cases provide self-supervision for target data. As shown in Figure 3,
the training step is composed of a standard pipeline of a supervised segmentation network
driven by labeled target-stylized source domain data and a self-supervised consistency training
branch with pseudo labeling. In one training loop, a batch of target-stylized source images are
fed in the model f and the predicted semantic maps are used to calculate supervised loss with
labels. After that, a batch of unlabeled target images are fed into the model and pseudolabels are
created by selecting confident pixels from the averaged map using thresholds. A transformation
function t mentioned above is used to obtain a transformed version of the same pair of target
images and pseudolabels. The consistency between these two version predictions compels
the model to learn the features from the target domain in a self-supervised way. From another
perspective, minimizing the unsupervised consistency loss progressively propagates semantic
information from labeled data to unlabeled ones.

Target-stylized 
source data

Supervised
cross-entropy loss

f

Target data

Unsupervised 
consistency loss

t

Total loss

f

𝑥𝑥𝑆𝑆→𝑇𝑇 𝑦𝑦𝑆𝑆→𝑇𝑇 𝑥𝑥𝑇𝑇
𝑦𝑦𝑇𝑇

𝑦𝑦𝑦𝑇𝑇

�𝑦𝑦𝑦𝑇𝑇

f
�𝑦𝑦𝑆𝑆→𝑇𝑇

𝑥𝑥𝑦𝑇𝑇

Figure 3. Flowchart of self-supervised consistency training: xS→T and yS→T are target-stylized source
image and label; xT and yT are target image and pseudolabel. f denotes the pixelwise mapping
from images to semantic output; t is the transformation function; x′T and y′T are the transformed
target image and pseudolabel; ŷS→T and ŷ′T are the semantic outputs of the f .
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Concisely, consistency training methods simply regularize model predictions to be invariant
to perturbations applied to either input samples or hidden states [40]. Under this framework, we
are interested in what perturbations or transformations to apply are beneficial for cross-domain
semantic segmentation of RS images. In this paper, we explore three types of transformation
functions for such self-supervised consistency training:

• Translation consistency: The GAN-based image translation outputs are bidirectional.
However, in previous generative-based methods, source-stylized target images are
useless in subsequent procedures, which results in a huge waste of computation.
With the help of ResiDualGAN, the spatial scale and semantic information are well
preserved during target-to-source stylization. Therefore, we regard such translation
as transformation and enforce consistency between the model’s outputs on the original
target images and the translated target image (Figure 4b).

• Augmentation consistency: Data augmentation in model training is a technique to in-
crease the amount of data by adding modified copies of already existing data.
It acts as a regularizer and helps reduce overfitting when training a deep learning model.
We randomly augment the target data by flipping, cropping, and brightness-changing.
The corresponding augmentation is also performed on pseudolabels (Figure 4c).

• CutMix consistency: CutMix is a regularization method designed for image classifi-
cation and transfer learning [41]. We leverage this strategy to randomly cut and paste
patches from source data to target data. The ground truth labels or pseudolabels are
also mixed proportionally. The added patches on target data can be seen as a trans-
formation for consistency training. Pasting patches from the source domain further
increases confidence in pseudo labeling (Figure 4d).

(a)                            (b)                           (c)                           (d)               

Figure 4. Transformation of images from target domain for consistency training. (a) Target domain
images without transformation. (b) Source-stylized target images. (c) Augmented target images.
(d) Target images mixed by source image patches.

In this paper, we adopt a combination objective function that combines a distribution-
based cross-entropy loss and a region-based Dice loss. In this way, we can combine local
with global information to improve the segmentation results. The loss function is defined
as follows:

LCE_DC(y, ŷ) = (−
c

∑
i

N

∑
j

yj
i log ŷj

i) + (1− 1
c

c

∑
i=0

∑N
j 2yj

i ŷ
j
i + ε

∑N
j yj

i + ∑N
j ŷj

i + ε
), (4)

where yj
i and ŷj

i denote the ith channel at the jth pixel location of the reference labels and
neural network softmax output, respectively. We use c to denote the total channel count, N
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to denote the total pixel count in a mini-batch, and ε as a small constant plugged to avoid
numerical problems. In addition to the supervised loss, we use transformation functions
to obtain transformed pairs of target data and pseudolabels to calculate consistency loss by
the same loss function. Therefore, the final loss Lseg involves the source supervised loss
and the consistency training loss, which can be defined as follows:

Lseg = (1− λ)LCE_DC(yS→T , ŷS→T) + λLCE_DC(y′T , ŷ′T), (5)

where yS→T and ŷS→T are labels and predictions of target-stylized source data, respectively.
Meanwhile, y′T and ŷ′T are transformed pseudo labels and predictions of transformed
target data, respectively. λ is a hyperparameter for weighting the two loss terms.

3. Experiments

In this section, we describe the datasets and experimental implementation details first
and then we give the experimental results.

3.1. Datasets

We evaluate our framework on the two standard large-scale RS image semantic
segmentation datasets Potsdam and Vaihingen [42]. These two common datasets are
published by the International Society for Photogrammetry and Remote Sensing (ISPRS)
as benchmarks of a 2D semantic labeling contest, providing airborne images with very high-
resolution true orthophotos and labeled ground truth. The semantic categories from both
datasets are the same and have been defined in the ranges of impervious surfaces, build-
ings, low vegetation, trees, cars, and clutter/background. Both areas cover urban scenes
captured from different geographic locations (the city of Potsdam and Vaihingen) with
different geospatial distributions. Potsdam shows a typical historic city with large building
blocks, narrow streets, and dense settlement structures, while Vaihingen is small with many
detached buildings and small multistory buildings. There are also differences in the imag-
ing modes, including the channels and resolution. Potsdam datasets contain subsets with
different spectral band combinations such as IR-R-G and R-G-B, while images from Vai-
hingen datasets have only IR-R-G channels. Moreover, the ground sampling distance or
spatial resolution of the Potsdam datasets is 5 cm, while that of the Vaihingen datasets is
9 cm.

The similarities and differences mentioned above imply that these two datasets are
quite suitable to evaluate the performance of UDA methods because, as two domains,
they are the same in task objective and label space but different in data distribution and
feature space. Li et al. [15] first developed them as new benchmarks of unsupervised
domain adaptation for RS image semantic segmentation, evaluating the performance
of the UDA model from the perspective of variation in geographic location and imag-
ing modes. Since then, some work has been evaluated using this benchmark [15,27,32].
In this paper, we continue to adopt this established evaluation protocol. Images and labels
from the Potsdam datasets serve as the source data, and the images from the Vaihingen
datasets serve as the target data without available semantic labels. The two domain adap-
tation scenarios in the following are denoted as Potsdam IRRG→ Vaihingen IRRG and
Potsdam RGB→ Vaihingen IRRG, respectively. The former represents the scenario in which
domain adaptation tasks are across domains with different geographic regions. The latter
crosses domains with different geographic regions plus different spectral combinations.
Note that both adaptation scenarios involve the difference in ground sample distance.

3.2. Implementation Details

We implement the proposed framework in PyTorch [43] and adopt DeepLabv3+ [44]
with ResNet-34 backbone as the segmentation architecture. Backbone initializes from
the models pretrained on ImageNet. In the first stage, we implement cycle consistency
using ResiDualGAN to translate the data from both domains. The loss parameters ψcyc and
ψadv are set to 10 and 5 for training. Based on the ratio of the spatial resolution of the data
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in the two domains, Potsdam IRRG and Potsdam RGB are cropped into the size of 896× 896
while images from the target domain are cropped into the size of 512 × 512. Finally,
a total of 2368 Potsdam images and labels serve as source data for translation and training.
The Vaihingen datasets contain 1697 images as target data for self-supervised training
stage, 440 of which are used for validation. ResiDualGAN applies the color rendering and
spatial resolution style of Vaihingen datasets (target domain) to higher resolution images
of Potsdam datasets (the reverse translation occurred at the same time). We obtained
the Vaihingen stylized Potsdam IRRG and Potsdam RGB images with downscale size
of 512× 512. In the self-supervised transformation consistency training stage, we train
the model with labeled target-stylized source data in a supervised way. Joint training
proceeds in a self-supervised manner with unlabeled target data. The total gradient is
calculated after alternating source-target forward passes to update the weights of the model.
The batch size of 16 comprises eight target-stylized images and eight real target images
at a size of 512× 512, which is a common practice. The optimizer is Adam and the initial
learning rate is set to 1× 10−4 and is scaled down by a factor of 0.5, according to the patience,
which is a number of epochs with no improvement. To investigate the effects of each
component and hyperparameter of our framework on performance, we present an extensive
set of ablation studies. All experiments are conducted on a machine equipped with an Intel
Core i7-7800X CPU, 16 GB of RAM, and one NVIDIA GeForce RTX 2080 Ti GPU with
11 GB of VARM to accelerate the training process. We measure the segmentation accuracy
with per-class intersection-over-union (IoU) and F1-score, following recent works [15,27].
We denote the number of true positives, false positives, and false negatives by TP, FP, and
FN respectively. The formulation of IoU and F1-score can be written as follows:

IoU =
TP

TP + FP + FN
, (6)

F1-score =
2× TP

2TP + FP + FN
. (7)

The F1-score tends to measure something closer to average performance, while the IoU
score measures something closer to the worst-case performance.

3.3. Performance of the CSC

We present our experimental results of the proposed CSC training framework
on the Potsdam RGB→ Vaihingen IRRG and Potsdam IRRG→ Vaihingen IRRG bench-
marks in Tables 1 and 2. Depending on the transformation functions involved, our methods
in Tables 1 and 2 are denoted as CSC-Trans, CSC-Aug, and CSC-CutMix, respectively.
The qualitative results of these approaches can be seen in Figures 4 and 5. In both do-
main adaptation scenarios, augmentation-based consistency performs best, followed by
CutMix-based and translation-based consistency. We adopt DeepLabv3+ as the base-
line segmentation model to show the practical performance of the segmentation model
in the presence of a domain gap. The baseline model is trained on labeled source data
and tested on the unlabeled target datasets. Compared to the baseline, the CSC improves
the accuracy of the segmentation result on target domain by up to 83% on Potsdam RGB→
Vaihingen IRRG and 65% on Potsdam IRRG→ Vaihingen IRRG. The solid performance
of augmentation-based consistency suggests that the simple geometric or photometric
transformations provide more significant equivariant constraints to the model than CutMix
and image translation. CutMix-based consistency involves patches from source domain
data, which provide high-confidence pseudo labeling while facilitating model-learning
domain-invariant features. Note that in the scenario of the Potsdam IRRG → Vaihin-
gen IRRG, the CutMix-based method has a significantly higher segmentation accuracy
for the category of cars than the other methods. Translation-based consistency performs
the worst relative to the other two transformation methods of our framework. As shown
in column (d) of Figures 5 and 6, the results of the translation-based method misclassi-
fied many regular objects into the class of clutter. Such poor performance is particularly
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evident in the average accuracy of the Potsdam RGB → Vaihingen IRRG. This implies
that the reverse appearance translation as a transformation function for self-supervised
consistency training is too intense for domains with vastly different imaging modes. By
comparing the results of the baselines, methods on the domains with the same spectral
band combination can bring an 18% performance improvement. This is another verification
that aligning the domains directly in image space is effective for adapting domains with
different imaging modes.

Table 1. Quantitative results (%) of cross-domain semantic segmentation on Potsdam RGB→ Vaihin-
gen IRRG benchmark.

Method Metrics Clutter/
Background

Impervious
Surface Car Tree Low

Vegetation Building Overall

Baseline (DeepLabv3+ [44]) IoU 2.67 40.24 18.35 53.14 12.88 52.63 29.98
F1-score 4.65 56.93 30.40 69.19 22.68 68.74 42.10

GAN-RSDA [14] IoU 2.29 48.27 25.73 42.16 23.34 64.33 34.35
F1-score 3.50 64.79 40.20 59.03 37.55 78.13 47.20

AdaptSegNet [45] IoU 6.26 55.91 34.09 47.56 23.18 65.97 38.83
F1-score 9.55 71.44 50.34 64.17 37.22 79.36 52.01

MUCSS [15] IoU 5.87 54.21 27.95 43.73 26.94 68.76 37.91
F1-score 8.77 70.04 42.89 60.53 42.09 81.26 50.93

CCDA [27] IoU 12.38 64.47 43.43 52.83 38.37 76.87 48.06
F1-score 21.55 77.76 60.05 69.62 55.94 86.95 61.98

RDG-OSA [32] IoU 9.84 62.59 54.22 56.31 37.86 79.33 50.02
F1-score 14.55 76.81 70.00 71.92 54.55 88.41 62.71

CSC-Trans IoU 5.79 57.32 52.93 51.78 30.61 74.31 45.46
F1-score 9.16 72.69 69.02 68.11 46.40 85.13 58.42

CSC-Aug IoU 8.12 68.91 57.41 65.47 48.33 81.78 55.00
F1-score 11.23 81.48 72.76 79.04 64.78 89.94 66.54

CSC-CutMix IoU 10.21 10.21 53.89 56.43 37.29 78.32 49.94
F1-score 14.81 14.81 69.74 72.00 54.02 87.74 62.64

Table 2. Quantitative results (%) of cross-domain semantic segmentation on Potsdam IRRG→ Vai-
hingen IRRG benchmark.

Method Metrics Clutter/
Background

Impervious
Surface Car Tree Low

Vegetation Building Overall

Baseline (DeepLabv3+ [44]) IoU 2.99 47.88 20.82 58.74 19.57 61.37 35.23
F1-score 5.18 64.40 33.93 73.88 32.47 75.83 47.61

GAN-RSDA [14] IoU 7.26 57.32 20.04 44.27 35.47 65.35 38.28
F1-score 10.32 72.60 32.53 61.04 51.99 78.84 51.22

AdaptSegNet [45] IoU 6.32 62.50 29.31 55.74 40.30 70.41 44.10
F1-score 9.67 76.66 44.81 71.36 57.01 82.50 57.00

MUCSS [15] IoU 11.16 65.94 26.30 50.49 39.85 69.07 43.80
F1-score 14.70 79.15 40.77 66.76 56.55 81.53 56.58

CCDA [27] IoU \ 58.64 28.17 53.28 30.39 60.60 46.22
F1-score \ 75.13 45.81 69.52 47.62 76.89 62.99

RDG-OSA [32] IoU 10.70 70.31 54.04 59.22 49.03 81.20 54.08
F1-score 15.48 82.43 69.85 74.22 65.52 89.57 66.18

CSC-Trans IoU 8.42 65.67 54.75 61.72 42.69 75.88 51.52
F1-score 12.77 79.15 70.56 76.23 59.46 86.20 64.06

CSC-Aug IoU 13.83 75.56 56.58 65.55 52.92 84.17 58.10
F1-score 19.59 86.01 72.01 79.09 68.96 91.38 69.50

CSC-CutMix IoU 10.46 73.31 57.91 63.58 51.58 81.25 56.35
F1-score 14.91 84.50 73.05 77.57 67.86 89.56 67.91
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Potsdam RGB –TO

15-40
26-23
35-30
4-11
34-1

Clutter/Background Impervious surface

Clutter/Background Impervious surface Car Tree Low vegetation Building

(a) (b) (c) (d) (e) (f)

Figure 5. Qualitative results of cross-domain semantic segmentation on Potsdam RGB→ Vaihin-
gen IRRG. (a) Target images. (b) Ground truth. (c) Baseline. (d) CSC-Trans. (e) CSC-Aug and
(f) CSC-CutMix.

I2I
29-22
12-49
12-11
28-15
11-19

Potsdam IRRG –TO
Clutter/Background Impervious surface Car Tree Low vegetation Building

(a) (b) (c) (d) (e) (f)

Figure 6. Qualitative results of the cross-domain semantic segmentation on Potsdam IRRG→ Vai-
hingen IRRG. (a) Target images. (b) Ground truth. (c) Baseline. (d) CSC-Trans. (e) CSC-Aug and
(f) CSC-CutMix.
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3.4. Comparison to State-of-the-Art Methods

Since we adopt an established evaluation protocol, including the same test datasets
and metrics, we compare our framework to previous work from the benchmark list.
The methods involved in the comparison include an adversarial learning method
(AdaptSegNet [45]), an image-to-image translation-based method (GAN-RSDA [14]), a cur-
riculum learning method (CCDA [27]), and two hybrid methods (MUCSS [15] and RDG-
OSA [32]). Among them, GAN-RSDA, MUCSS, CCDA, and RDG-OSA are specifically
designed for RS image semantic segmentation across domains, and the AdaptSegNet is
designed for natural images. AdaptSegNet aligns the distribution of features in the out-
put space using a discriminator network, which is a representative adversarial learning
in the UDA field. GAN-RSDA is the pioneer in the use of image-to-image translation
techniques in UDA for RS images and introduces the CycleGAN for appearance adapta-
tion in image space. MUCSS goes a step further from the GAN-RSDA by using the more
effective DualGAN and involving a self-training strategy and consistency regularization.
CUSS designs a curriculum-style local-to-global cross-domain adaptation method to learn
domain-invariance features. RDG-OSA combines the ResiDualGAN with an output space
adaptation method and claims the best published results. For fairness, all the methods we
reproduce in experiments employ the same segmentation model and training setup as our
proposed framework.

As shown in Tables 1 and 2, our proposed framework substantially outperforms
the other methods and sets a new standard in terms of IoU and F1-score. Compared with
the state-of-the-art methods, our framework increases the IoU and F1-score of segmentation
results by 9.95% and 6.61% on Potsdam RGB→ Vaihingen IRRG, respectively, while by
7.53% and 5.02% on Potsdam IRRG→ Vaihingen IRRG. From the perspective of the adap-
tation scenario, the average performance improvement on the Potsdam RGB→ Vaihingen
IRRG is superior to that on the Potsdam IRRG→ Vaihingen IRRG. For example, the mIoU is
improved by 37% compared to MUCSS on Potsdam RGB→ Vaihingen IRRG and shows an
up to 28% improvement on Potsdam IRRG→ Vaihingen IRRG. This phenomenon does not
include the CCDA, which ignores the class of clutter on the Potsdam IRRG→ Vaihingen
IRRG. Specific to the accuracy comparison of each class, CCDA achieves the best accuracy
of clutter on the Potsdam RGB→ Vaihingen IRRG while MUCSS achieves the best accuracy
on the Potsdam IRRG→ Vaihingen IRRG. In addition, augmentation-consistency-based
CSC achieves the best accuracy in other categories in both scenarios. The proposed frame-
work shows strong robustness and great generalization capability. Figures 7 and 8 present
a few qualitative examples, comparing our framework to the baseline and previous meth-
ods. Particularly prominent are the refinements of the small-scale elements such as cars
and clutters, which may benefit from spatial resolution alignment in the cycle consistency.
Moreover, the boundaries of the segments in our results are more precise by enforcing
self-supervised consistency with transformation function, which makes our framework
less prone to the contextual bias, leading to coarse boundaries.
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Clutter/Background Impervious surface Car Tree Low vegetation Building

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 7. Qualitative results of the cross-domain semantic segmentation on Potsdam RGB→ Vai-
hingen IRRG. (a) Target images. (b) Ground truth. (c) Baseline. (d) GAN-RSDA. (e) AdaptSegNet.
(f) MUCSS. (g) RDG-OSA and (h) CSC-Aug.

Clutter/Background Impervious surface Car Tree Low vegetation Building

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 8. Qualitative results of the cross-domain semantic segmentation on Potsdam IRRG→ Vai-
hingen IRRG. (a) Target images. (b) Ground truth. (c) Baseline. (d) GAN-RSDA. (e) AdaptSegNet.
(f) MUCSS. (g) RDG-OSA and (h) CSC-Aug.
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4. Discussion

In this section, we first discuss the effects of components and hyperparameters sensi-
tivity of the proposed CSC training framework. Then, we discuss the limitations of the pro-
posed method and possible further improvements.

4.1. Ablation Study

In this subsection, we examine an extensive set of ablation studies to determine what
makes our framework effective. These studies concern each component of the proposed
framework and hyperparameters, such as the loss function ratio and pseudolabel thresh-
old. Note that the self-supervised module of the full framework (cycle + self-supervised
consistency) in this subsection is augmentation-consistency-based. First, we analyze the con-
tribution of two components: cycle consistency and self-supervised consistency. We inde-
pendently switch off each component and report the results in Table 3. On the Potsdam
RGB→ Vaihingen IRRG, compared to the full framework, disabling the self-supervised
consistency module (transformation functions) leads to a 12% IoU decrease, while abol-
ishing cycle consistency (without ResiDualGAN) leads to a drop of 34% IoU. For similar
cases in the Potsdam IRRG→ Vaihingen IRRG scenario, the mIoU decreases by 7% and
17%, respectively.

Table 3. Ablation study of effects of components of our framework.

Method Potsdam RGB→ Vaihingen IRRG Potsdam IRRG→ Vaihingen IRRG

mIoU ∆ mIoU ∆
Cycle + Self-supervised 55.00 0.00 58.10 0.00
Cycle consistency only 48.50 ↓ 12% 54.09 ↓ 7%

Self-supervised consistency only 36.56 ↓ 34% 48.10 ↓ 17%
Source only 29.98 ↓ 45% 35.23 ↓ 39%

These statistics suggest that both cycle consistency and self-supervised consistency
play a critical role in the entire framework. The contribution of cycle consistency is larger,
especially in domain adaptation scenarios where there are vast differences in appearance
or imaging mode. It is worth mentioning that the cycle-consistency-only cases in our
methods significantly outperform CycleGAN-based GAN-RSDA and DualGAN-based
MUCSS. This demonstrates the improvement in accuracy brought by the resize-residual
module in the ResiDualGAN. To demonstrate the effectiveness of cycle consistency in re-
ducing differences in data distribution, we randomly selected 500 images in each of two
adaptation scenarios and extracted the high-dimensional features in the latent space
of the backbone for semantic segmentation. These high-dimensional features are reduced
to the two-dimensional space for visualization. As shown in Figure 9, the ResiDualGAN
well matches the data distribution of the source domain data with the target domain data.
The feature distribution of most translated images is similar to the target domain data
feature distribution. In addition, it can be seen from Figure 9 that the matching difficulty
of the data distribution between Potsdam IRRG and Vaihingen IRRG is less than the match-
ing difficulty of Potsdam RGB and Vaihingen IRRG, which again illustrates the impact
of imaging mode differences on domain adaptation.

Figure 10 illustrates the contribution of each component to the accuracy of individual
classes on the Potsdam IRRG→ Vaihingen IRRG. For most categories, the contribution
of the different components to their accuracy is similar to that of the overall accuracy.
However, for the impervious surface and clutter, there is little difference between the cycle-
consistency-only-based method and the self-supervised-only-based method for accuracy
improvement. In addition, the combination of cycle consistency and self-supervision gives
the car an almost negligible improvement in accuracy.
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Vaihingen IRRG Stylized Potsdam IRRG

Vaihingen IRRG

Vaihingen IRRG Stylized Potsdam RGB

Potsdam RGBPotsdam IRRG

（a） （b）

Figure 9. The visualization of distribution matching in latent space, where we map features to 2D
space with t-SNE [46]: (a) Potsdam IRRG→ Vaihingen IRRG; (b) Potsdam RGB→ Vaihingen IRRG.
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Figure 10. Ablation study of contribution of each component to accuracy of individual classes
on Potsdam IRRG→ Vaihingen IRRG.

Next, we analyze the sensitivity of hyperparameters λ and τ (Figure 11). Our pro-
posed framework involves tuning the single hyperparameter λ, which trades off between
the strength of the source supervised loss and self-supervised consistency loss. We present
results for λ from the range of 0.1–0.9 and find that the performance of the model de-
creases gradually as λ grows. Similarly, we present results for the pseudo label threshold τ
from the range of 0.1–0.9. We find that the accuracy starts to decrease significantly when
the threshold τ > 0.5. It should be noted that due to the datasets consist of 6 classes,
τ = 0.1 means there is no thresholding in the training process. We think that the decrease
in accuracy with increasing pseudo label thresholds τ is due to the loss being dominated
by easy classes when a high threshold is set.
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Figure 11. Ablation study of hyperparameter sensitivity.

4.2. Computational Complex Analysis

In Section 3, related domain adaptation methods involved in the comparison include
an adversarial learning method (AdaptSegNet), a generative-based method
(GAN-RSDA), a curriculum learning method (CCDA), and two hybrid methods
(MUCSS and RDG-OSA).The complete framework of CSC can also be viewed as a hybrid
of generative methods and self-supervised training. Since the objective of domain adapta-
tion methods is to improve the performance of a semantic segmentation model on unlabeled
target domain, the computational complexity of all methods involved in the comparison is
consistent in the model inference. In this paper, the adapted semantic segmentation model
in the experiments is DeepLabv3+ with with ResNet-34 backbone. However, the compu-
tational complexity of various domain adaptation frameworks has significant differences
in the training step. Generative-based methods and hybrid methods that include generative
methods are much more computationally complex than other methods due to the existence
of cycle generative adversarial networks. For example, the network structure of ResiD-
ualGAN contains two generators and two discriminators. The numbers of parameters
for each generator and discriminator are 41.82 M and 6.96 M, respectively, and the multiply-
accumulate operations (MACs) for each generator and discriminator are 144.44 G and
7.74 G, respectively. Similarly, domain adaptation methods based on adversarial learning
and curriculum learning introduce additional neural network structures, resulting in higher
computational complexity than self-supervised methods with shared parameters. In sum-
mary, the complete CSC training framework is similar to other generative methods in terms
of the number of parameters and the computational complexity during the training step.
When the self-supervised module of CSC is used alone, since there is no additional network
structure, the computational complexity and the amount of parameters are smaller than
other methods.

4.3. Limitations

We have verified that the proposed cycle and self-supervised consistency training
framework with different transformation functions performs well on UDA of RS image
semantic segmentation, but there are many issues that remain unexplored and undeveloped
in our proposed framework. Although we reduced the loss of semantic information of im-
ages during reconstruction by ResiDualGAN, we still cannot completely avoid the error
of local semantic information. Such errors are exacerbated when the source and target
domains have different data imaging modes. The overall adaptation effect on the Potsdam
IRRG → Vaihingen IRRG is better than that on the Potsdam RGB → Vaihingen IRRG.
This phenomenon arises because the latter needs to adapt not only the domain gap posed
by geographical location but also the gap posed by differences in imaging modes. For
example, in the Potsdam RGB to Vaihingen IRRG translation, parts of the building roofs
in the Potsdam datasets that appear close to red and have complex textures are generated



Remote Sens. 2022, 14, 1527 17 of 19

as trees or low vegetation. This semantic error affects the supervised training of the source
domain data in the subsequent process. In addition, the differences in the label space
of domains can lead to additional problems in the unsupervised domain adaptation pro-
cess. The limitations of the segmentation accuracy for all methods in this paper occur
in the class of clutter/background. The official documents define this class as water, clut-
ters, and others. However, there exists a perception difference of “clutter or background”
in the manual labeling of the two datasets. Many previous studies of UDA of semantic
segmentation for RS images excluded this class from the training and validation proce-
dure [19]. Finally, we do not analyze the individual contribution of the transformation
function in augmentation-based consistency or whether there exists an optimal combina-
tion of target data transformation functions when faced with certain domain adaptation
scenarios. The problem of class imbalance still exists in that our loss function does not
include parameters to weight classes, nor does the self-supervised consistency training step
set classwise thresholds. These are issues that need to be addressed and will be explored
in our subsequent work.

5. Conclusions

We addressed the task of unsupervised domain adaptation for RS image semantic
segmentation by proposing a simple but effective training framework (CSC) that unifies
cycle consistency with self-supervised consistency. The CSC leverages cycle-consistent
generative adversarial networks to reduce distribution discrepancies between the source
and target domains. To further improve the performance on the target domain, self-
supervision is embedded into a supervised learning framework by consistency training,
which forces the model predictions from various transformed target images to be consistent.
Compared to other UDA methods for RS image semantic segmentation, our framework
achieved state-of-the-art performance on the two representative benchmarks.
Based on an extensive set of ablation studies, we believe that each consistency component
can work independently for UDA, and the ensemble of the two consistency components fur-
ther improves the performance. Moreover, this method can be embedded in various types
of semantic segmentation domain adaptation methods to solve the problem of performance
degradation of semantic segmentation models between datasets with large differences
in spectrum, resolution, and geographic distribution. Future work will focus on different
combinations of transformation functions in the self-supervised step and exploring other
transformation functions in certain UDA scenarios.
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