
����������
�������

Citation: Wang, M.; Chen, Q.; Fu, Z.

LSNet: Learned Sampling Network

for 3D Object Detection from Point

Clouds. Remote Sens. 2022, 14, 1539.

https://doi.org/10.3390/rs14071539

Academic Editors: Fahimeh

Farahnakian, Jukka Heikkonen and

Pouya Jafarzadeh

Received: 14 February 2022

Accepted: 19 March 2022

Published: 23 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

LSNet: Learned Sampling Network for 3D Object Detection
from Point Clouds
Mingming Wang 1, Qingkui Chen 1,2,* and Zhibing Fu 1

1 Department of Systems Science, Business School, University of Shanghai for Science and Technology,
Shanghai 200093, China; 171310068@st.usst.edu.cn (M.W.); zbfu@usst.edu.cn (Z.F.)

2 Department of Computer Science and Engineering, School of Optical-Electrical and Computer Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China

* Correspondence: chenqingkui@usst.edu.cn; Tel.: +86-131-2238-1881

Abstract: The3D object detection of LiDAR point cloud data has generated widespread discussion
and implementation in recent years. In this paper, we concentrate on exploring the sampling method
of point-based 3D object detection in autonomous driving scenarios, a process which attempts
to reduce expenditure by reaching sufficient accuracy using fewer selected points. FPS (farthest
point sampling), the most used sampling method, works poorly in small sampling size cases, and,
limited by the massive points, some newly proposed sampling methods using deep learning are
not suitable for autonomous driving scenarios. To address these issues, we propose the learned
sampling network (LSNet), a single-stage 3D object detection network containing an LS module that
can sample important points through deep learning. This advanced approach can sample points
with a task-specific focus while also being differentiable. Additionally, the LS module is streamlined
for computational efficiency and transferability to replace more primitive sampling methods in
other point-based networks. To reduce the issue of the high repetition rates of sampled points, a
sampling loss algorithm was developed. The LS module was validated with the KITTI dataset and
outperformed the other sampling methods, such as FPS and F-FPS (FPS based on feature distance).
Finally, LSNet achieves acceptable accuracy with only 128 sampled points and shows promising
results when the number of sampled points is small, yielding up to a 60% improvement against
competing methods with eight sampled points.

Keywords: 3D object detection; point cloud; sampling; single-stage

1. Introduction

Three-dimensional data captured by LiDAR and the RGB-D camera have applications
in various fields such as autonomous driving, virtual reality, and robotics. Many deep
learning techniques have been applied to point cloud tasks such as point cloud classification,
segmentation, completion, and generation. In this paper, we focus on 3D object detection of
autonomous driving.

In recent years, 3D object detection of autonomous driving has been a major focus.
Refs. [1–4] fuse point clouds and images together to detect 3D objects. In this paper,
we focus on the processing of point clouds. With a point cloud captured by LiDAR,
the different methodologies to approach this issue can be classified as view-based, point-
based, and voxel-based methods. Additionally, some methods utilize the advantages of
both the point-based method and voxel-based method to enable both high-quality 3D
proposal generation and flexible receptive fields to improve 3D detection performance.
With the massive number of raw points in a point cloud, it is not trivial to downsample the
point cloud data efficiently and reserve as many meaningful points as possible. With this
said, the sampling approaches themselves have received comparatively less attention.

View-based methods project the 3D point cloud data into different 2D views so that ma-
ture 2D convolution techniques can be applied to solve the problem efficiently. The down-

Remote Sens. 2022, 14, 1539. https://doi.org/10.3390/rs14071539 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071539
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14071539
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071539?type=check_update&version=1

Remote Sens. 2022, 14, 1539 2 of 22

sampling process is reflected in both the pooling process and the step size of convolution.
Voxel-based methods view the 3D point cloud space as a cube and divide it into voxels.
This means the size of the sampled point subset can be controlled by the length, width,
and height of each voxel, while the step size of 3D convolution and 3D pooling can also
downsample the data. Additionally, point-based methods take the raw point cloud as
input and generate predictions based on each point. This causes the point-based methods
to suffer from a heavy computational burden due to the need to process so much data.
Ref. [5] addressed this issue and proposed an efficient and lightweight neural architecture
for semantic segmentation task of large-scale point clouds. Ref. [6] introduced kernel point
convolution to improve the efficiency of feature extraction in point-based methods. Hence,
developing an appropriate sampling strategy has become a crucial issue.

In a point-based model, one naive approach is to sample points randomly. The most
widely used method is furthest-point-sampling (FPS), which selects a group of points that
are farthest apart from each other based on their 3D Euclidean distance. However, there is
one sampling approach that first voxelizes the whole 3D space and only preserves one point
in each voxel. KPConv [6] used grid subsampling and chose barycenters of the original
input points contained in all non-empty grid cells. The 3DSSD [7] utilizes the F-FPS and FS
methods. F-FPS samples points based on feature distance instead of Euclidean distance in
FPS, while FS is the fusion of D-FPS(FPS) and F-FPS. Crucially, these sampling strategies
are non-learned approaches and cannot preserve important points when the sampling size
is small, leading to poor performance. Recently there have been a few learned approaches.
Ref. [8–10] proposed learning-based methods, but they are limited to simple datasets such
as ModelNet40 [11] and are not suitable to autonomous driving scenarios.

In conclusion, the small sampling size can save the cost of both memory and compu-
tation. However, existing sampling approaches either perform poorly in small sampling
size cases or are not suitable for autonomous driving scenarios. Motivated by these issues,
in this paper, we present a novel architecture named LSNet, shown in Figure which con-
tains a learning-based sampling module and works extraordinarily well in low sampling
size cases. The sampling process faces two main challenges. The first is how to allow
backpropagation and the second is how to avoid excessive time consumption. The learned
sampling module of LSNet is a deep learning network that must be kept streamlined to
avoid the issue of excessive computation time because if the sampling network is too
complex, the resources and time invested would render the downsampling strategy moot.
The LS module outputs a one-hot-like sampling matrix and uses matrix multiplication
to create the sampling subset of points. Since the sampling process itself is discrete and
is not trainable, we instead adjust the grouping method in the SA module and use the
τ-based softmax function in the LS module to make it differentiable. Additionally, we add
random relaxation to the sampling matrix in the early part of the training with the degree
of relaxation decaying to zero along the training step. However, the sampling matrix of
the LS module cannot ensure that the sampled points will not be redundant. To solve this
issue, a new sampling loss was proposed. Finally, of major importance is that the entire
LSNet model is end-to-end trainable.

We evaluate the model on the widely used KITTI [12] dataset. To verify the effec-
tiveness of the LS module, we compare it with random sampling, D-FPS, F-FPS, and FS.
The results of these comparisons show that the LS module method outperformed the other
methods and it was close to the state-of-the-art 3D detectors with 512 sampled points.
Specifically, LSNet with 128 sampled points has relatively little accuracy loss and achieves
acceptable accuracy. It is also shown that the fewer the sampling points, the better the
improvement. Figure 1 shows the results of different sampling methods with only eight
sampled points. Unlike other sampling methods, such as FPS, this learning-based sam-
pling approach utilizes semantically high-level representations, which is reflected in the
fact that the points sampled by the LS module are distributed around the target objects.
Furthermore, it pays more attention to regions of interest and is less sensitive to outliers.

Remote Sens. 2022, 14, 1539 3 of 22

Figure 1. The results of different sampling methods processing the same eight sampled points in
the same scene. The top-left picture is the 3D object detection results of our model and the green
box shows the ground truth, while the red box shows the detection of our model with eight points.
The remaining three pictures demonstrate the points before sampling (4096 white points) and the
points after sampling (eight green points inside green circle) in the bird’s eye view (BEV). Top-right:
sampling results of the LS module, zoomed in and cropped for better illustration since there are no
outliers, unlike the other two pictures. Bottom-left: sampling results of D-FPS (FPS). Bottom-right:
sampling results of F-FPS.

In addition, the proposed LS module can be viewed as a complete standalone module.
This means it can be attached to another model to sample points flexibly. Following the
results of the end-to-end training is the study of the multi-stage training process. Based
on the results from the experiment evaluation, when given a trained task network with
limited training time, the number of sampled points can be reduced by half. This can be
accomplished quickly with the only cost an affordable loss of accuracy.

To summarize, the key contribution of the proposed model lies in the following
four points:

• First, the proposed LSNet, a point-based 3D object detector with a novel sampling
approach (LS module), can be trained end-to-end to sample points with consideration
for a specific task. The approach nears parity with state-of-the-art 3D detectors when
using 512 sampling points while still achieving acceptable performance with only
128 sampling points.

• Second, to enable backpropagation of the sampling process and make it differentiable,
the vanilla SA module’s grouping method was adjusted and the τ-based softmax
function was used to approximate one-hot-encoding while also applying random
relaxation to the sampling matrix to boost the performance.

• Third, to address the issue of duplicate sampling, a new sampling loss technique was
used. This resulted in a significant increase of unique samples as well as improved
accuracy.

Remote Sens. 2022, 14, 1539 4 of 22

• Fourth, the LS module can be flexibly transferred and inserted into other point-based
detection models to reduce the number of points needed. Of significant importance
is the fact that the multi-stage training method enables the LS module to be easily
attached to other trained models, while reducing the necessary number of points with
relatively little training time.

2. Related Work

In this section, recent advances in 3D object detection of autonomous driving are
reviewed, after which some of the pioneer works related to point cloud sampling methods
are examined.

For the purposes of 3D object detection, recent 3D object detection models based on
LiDAR point clouds can be roughly categorized into view-based methods, voxel-based
methods, point-based methods, and integrated methods.

With the rapid development of computer vision, much effort has been devoted to
detecting objects from images. In the service of this effort, representing 3D point clouds
as 2D views is helpful as it makes it easy to apply off-the-shelf and mature computer
vision skills to the problem. The most used views are front view ([13–15]), bird’s eye
view ([1,3,16–18]), and range view ([19,20]). However, these methods cannot localize 3D
objects accurately due to the loss of information.

In the voxel-based methods ([21–26]), the point clouds are divided into 3D voxels
equally to be processed by 3D CNN. Due to the massive amount of empty voxels, 3D sparse
convolution [23,27] is introduced for efficient computation. For example, ref. [22] used
3D sparse convolutions through the entire network. VoxelNet ([24]), SECOND ([23]), and
PointPillars ([25]) learn the representation of each voxel with the voxel feature encoding
(VFE) layer. TANet ([26]) learns a more discriminative and robust representation for each
voxel through triple attention (channel-wise, point-wise, and voxel-wise attention). Then,
the 3D bounding boxes are computed by a region proposal network based on the learned
voxel representation.

Point-based methods are mostly based on the PointNet series [28,29]. The set ab-
straction operation proposed by PointNet is widely used in point-based approaches [7].
PointRCNN [30] generates 3D proposals directly from the whole point clouds. Qi, Litany,
He, and Guibas proposed VoteNet [31], the Hough voting strategy for better object feature
grouping. The work in [32] introduces StarNet, a flexible, local point-based object detector.
The work in [33] proposed PointGNN, a new object detection approach using a graph
neural network on the point cloud.

PV-RCNN [34] takes advantages of both the voxel-based and point-based methods for
3D point-cloud feature learning, leading to improved performance of 3D object detection
with manageable memory consumption. The work in [35] combines both voxel-based CNN
and point-based shared-MLP for efficient point cloud feature learning.

In relation to point clouds sampling, farthest point sampling (FPS) is widely used
in many models ([7,29,31,33]) to handle the downsampling issue inherent in using point
clouds. Ref. [36] applied graph-based filters to extract features. Haar-like low/highpass
graph filters are used to preserve specific points efficiently, and 3DSSD [7] proposed F-FPS
and FS. According to [8], the proposed simplification network, termed S-Net, is the first
learned point clouds sampling approach. After this, SampleNet [9] further improved the
performance with sampled point clouds to classify and reconstruct the tasks based on it.
Ref. [10] used Gumbel subset sampling to replace FPS to improve its accuracy.

3. Methods
3.1. Problem Formulation

Consider a general matrix representation of a point cloud with N points and K attributes,

Remote Sens. 2022, 14, 1539 5 of 22

P =
[

f1 f2 . . . fK
]
=


pT

1
pT

2
...

pT
N

 ∈ RN×K, (1)

where fi ∈ RN denotes the ith attribute and pj ∈ RK denotes the jth point. Specifically,
the actual number of K varies according to the output feature size of each layer. The at-
tributes contain 3D coordinates and context features. The context features can be the
original input features or the extracted features. For instance, the input feature of velodyne
LiDAR is the one-dimensional laser reflection intensity, and it is the three-dimensional RGB
colors of the RGB-D camera. Additionally, the extracted features come from the neural
network layers. To distinguish 3D coordinates from the other attributes, we store them in
the first three columns of P and call that submatrix Pc ∈ RN×3, while storing the rest in the
last K− 3 columns of P and call that submatrix Po ∈ RN×(K−3).

The target of the LS module in Figure 2 is to create a sampling matrix,

S =
[

p′1 p′2 . . . p′N′
]
=


pT

1
pT

2
...

pT
N

 ∈ RN×N′ , (2)

where p′i ∈ RN represents the ith sampled point and pj ∈ RN′ represents the jth point
before sampling. N is the original points size and N′ is the sampled points size. This matrix
is used to select N′(N′ < N) points from the original points. Let the sampled point cloud
be PN′ ∈ RN′×K and the original point cloud be PN ∈ RN×K. To achieve this, column p′i
should be a one-hot vector, defined as

p′i,j =
{

1, j = the index of selected point in N original points;
0, otherwise.

(3)

SAD-FPS

Ninputx3

Ninputx1
LS Module SAs vote

Nx3

Nx(K-3)

N’x3

N’x(K-3)

N’x3

N’x(K’-3)

box

class

Backbone Head

Input

Nx3 Nx(K-3)

Nx3 Nx(K’-3)

Task Net Part 1 Task Net Part 2

Nx3

Nx1

Figure 2. The overall architecture of the proposed LSNet. The input data of each module contain
coordinates data (N × 3) and feature data (N × K). The raw coordinates information is kept for point
grouping and feature extraction. The blue arrows represent the main data flow of LSNet, while the
red arrows demonstrate the data flow in the multi-stage training method when the LS module is
skipped. There are two ways to split the entire network for a concise model description in the paper.
One is dividing the network into a feature extraction backbone and a detection head. The other is
dividing the network into a task network and a sampling network (LS module).

There should be only one original point selected in each column p′i, defined as

N

∑
j=1

(
p′i,j
)
= 1. (4)

Remote Sens. 2022, 14, 1539 6 of 22

With the sampling matrix S and original point cloud PN , we can acquire the new
sampling point cloud PN′ through matrix multiplication:

PN′ = ST ⊗ PN , PN′ ∈ RN′×K; ST ∈ RN′×N ; PN ∈ RN×K. (5)

The invariance properties of the sampling approach are pivotal. Since the intrinsic
distribution of 3D points remains the same when we permutate, shift, and rotate a point
cloud, the outputs of the sampling strategy are also not expected to be changed. These
invariance properties will be analyzed on the coordinate matrix Pc alone because the
features of each point (Po) will not be influenced by them.

Definition 1. A sampling strategy is permutation-invariant when, given input PN ∈ RN×K, ∀
permutation matrix Mp of size N,

SAMPLE(Mp · PN) = SAMPLE(PN). (6)

Definition 2. A sampling strategy is shift-invariant when, given input PN ∈ RN×K, ∀ shift
matrix Ms of size 3,

SAMPLE(Ms · PN) = SAMPLE(PN). (7)

Definition 3. A sampling strategy is rotation-invariant when, given input PN ∈ RN×K, ∀
rotation matrix Mr of size 3,

SAMPLE(Mr · PN) = SAMPLE(PN). (8)

The softmax function is also permutation-invariant, which is already proved in [10].

Lemma 1. Given A ∈ RN×N , ∀ permutation matrix Mp of size N,

softmax(MpAMT
p) = Mp softmax(A)MT

p . (9)

3.2. Network Architecture

The entire network structure of LSNet is displayed in Figure 2. It is a point-based,
single-stage 3D object detection network with a feature extraction backbone and a detection
head. The backbone, similar to many other point-based methods [7,29,31,34], uses the multi-
scale set abstraction(SA) proposed by PointNet++ [29] to gather neighborhood information
and extract features, making it a PointNet-based model as well. Multiple SA modules
were stacked to abstract high-level features and enlarge the receptive field. Inspired by
VoteNet [31] and 3DSSD [7], a vote layer was added to improve network performance.
For downsampling points, the FPS sampling method, i.e., D-FPS in 3DSSD [7], is used to
downsample the raw points roughly, while the LS module is used to further sample the
points delicately. In addition, there are two 3D detection heads in the proposed model, one
for box regression and the other for classification.

In relation to the LiDAR point cloud, the inputs of the model consist of 3D coordi-
nates and 1D laser reflection intensity, i.e., Pinput = [Pc Po], Pinput ∈ RN×4, Pc ∈ RN×3,
Po ∈ RN×1. The predicted object in the KITTI 3D object detection dataset can be repre-
sented by a 3D bounding box (cx, cy, cz, h, w, l, θ), including its center, cx, cy, cz, size, h, w, l,
and orientation, θ, which indicates the heading angle around the up-axis.

First, FPS based on 3D Euclidean distance is used to sample a subset of the raw points
Pinput. Then, the vanilla multi-scale SA module is applied to extract the low-level features
Po ∈ RN×(K−3), which will be viewed as the inputs of the LS module with their coordinates.
Working from these middle features, the LS module generates the sampling point cloud
PN′ and PN′ ⊂ PN . After several SA modules and a vote layer, the final features are
fed into the detection head to predict the box and class of the object. After this, NMS is
applied to remove the redundant boxes. Non-maximum suppression (NMS) is a critical

Remote Sens. 2022, 14, 1539 7 of 22

post-processing procedure to suppress redundant bounding boxes based on the order of
detection confidence, which is widely used in object detection tasks.

According to PointNet++, the SA module has many 1D-convolution-like layers, which
are composed of shared-MLP layers. For each point, the SA module groups the surrounding
points within a specific radius and uses shared-MLP to extract the features. The box
regression head and the classification head are both fully connected (FC) layers.

3.3. LS Module

The traditional sampling approaches are neither differentiable nor task-agnostic. There-
fore, they cannot be trained using the loss method. Since the sampling process is discrete,
we need to convert it to a continuous issue to smoothly integrate the sampling operation
into a neural network. Ref. [8] proposed S-Net and [9] proposed its variant SampleNet
to ameliorate this shortcoming. These sampling strategies have several defects. First,
they generate new point coordinates, which are not in the subset of the original points.
In addition, they can only be placed at the beginning of the total network and the entire
model lacks the ability to be trained end-to-end. Another issue is due to the fact that the
sampling network extracts features from coordinate inputs, while the task network also
extracts features from the raw inputs. This duplicated effort inevitably results in a level
of redundant extraction in regard to low-level features. A final issue is that the sampling
network is relatively complex and time-consuming. This problem will become more severe
as the number of points grows. A sampling process that requires burdensome levels of
computation to function defeats the purpose of its application to the issue. In consideration
of these issues, the discussed methods are not suitable for autonomous driving tasks.

To overcome such problems, the LS module was developed. As illustrated in Figure 3,
the network architecture of the LS module has only a few layers, which keeps the complexity
low. Rather than extracting useful features to create a sampling matrix from a fresh start,
these features are instead extracted by the task network part 1 and are shared, and the
matrix is the output based on them to improve computational efficiency and to avoid the
repeated extraction of the underlying features.

Cf

P

f f

N

N

N’

K

N N

K’

K’

2K’

1

f C

P

Shared-MLP Convolution

Sigmoid Function

Concatenation

Max Pooling

B

B

Figure 3. The details of the LS module’s network structure, where B is the batch size, N is the points
size, and K is the feature size.

Remote Sens. 2022, 14, 1539 8 of 22

The input of the LS module is PN , which is the subset of the points sampled by FPS
with the features extracted by the former SA module. First a shared-MLP convolution layer
is applied to obtain the local feature Flocal of each point,

Flocal = f (PN |W1), Flocal ∈ RN×k′ . (10)

Function f represents the shared-MLP convolution layer with its weights W. Then, a sym-
metric feature-wise max pooling operation is used to obtain a global feature vector Fglobal,

Fglobal = MaxPool(Flocal) Fglobal ∈ R1×k′ . (11)

With the global features and the local features, we concatenate them of each point and
pass these features to the shared-MLP convolution layers and use the sigmoid function to
generate a matrix Ŝ, defined as

Ŝ = f (f (concat(Flocal , Fglobal)|W2)|W3), (12)

Ŝ = Sigmoid(Ŝ) Ŝ ∈ RN×N′ . (13)

Ŝ has the same shape as the sampling matrix S. It is the output of the LS module while
also being the middle value of S.

To sample data based on PN , the sampling matrix is further adjusted to S (used in the
inference stage) or S′ (used in the training stage). S can be computed as

S = one_hot_encoding
p′i∈RN ,i∈[1,N′]

(argmax(Ŝ)), (14)

where the argmax function and the one_hot_encoding function are applied to each column
of Ŝ, i.e., p′i with the shape of original points size N. Since Ŝ has N′ columns, corresponding
to N′ sampled points, and each column of S is a one-hot vector, Equation (5) can be used to
obtain the final sampled points PN′ .

However, the argmax operation and the one_hot_encoding operation are not differ-
entiable, indicating that Equation (14) cannot be used in the training stage to enable
backpropagation. Inspired by the Gumbel-softmax trick [10,37,38], softmax is applied
to each column of Ŝ with parameter τ to approximate the one_hot_encoding operation.
The generated sampling matrix is called S′,

S′ = so f tmax
p′i∈RN ,i∈[1,N′]

(Ŝ/τ), (15)

where parameter τ > 0 is the annealing temperature, as τ → 0+, each column in S′

degenerates into a one-hot distribution such as S. When the distribution of each column in
S′ does not degenerate to a one-hot distribution, the features of sampled points Po,N′ are
not the same as before. Po,N′ is computed by the matrix multiplication with S′,

Po,N′ = S′T ⊗ Po,N , Po,N′ ∈ RN′×(K−3); S′T ∈ RN′×N ; Po,N ∈ RN×(K−3). (16)

Nevertheless, it is desirable to keep the coordinates of the sampled points the same
as they were previously. So, the argmax operation and the one_hot_encoding operation are
applied to S′ to generate sampling matrix S. Then, the coordinates of the sampled points
Pc,N′ are computed as

Pc,N′ = ST ⊗ Pc,N , Pc,N′ ∈ RN′×3; ST ∈ RN′×N ; Pc,N ∈ RN×3. (17)

Additionally, before Equation (15), a random relaxation trick is employed to further
boost the performance of the model, represented as

Remote Sens. 2022, 14, 1539 9 of 22

γ = r
current_step
decay_steps , r ∈ [0, 1]; (18)

Ŝ = Ŝ + Random(γ), Random(γ) ∈ RN×N′ , (19)

where r is the decay rate and γ is the upper boundary of the random number. Parameter γ
is decayed with the training step exponentially and eventually approaches 0 when there is
no relaxation.

In actuality, the sampling matrix S′ introduces the attention mechanism to the model.
Each column of S′ indicates the newly generated sampling point’s attention on old points.
Then, the new features in Po,N′ contain the point-wise attention on the old points. Since
each column of S is a one-hot distribution, the coordinates of the sampled points Pc,N′

calculated with S mean its attention is focused on the single old point when it comes to
coordinate generation.

In all the above functions, the shared-MLP function f and the Sigmoid function
are point-wise operations, while the random relaxation is an element-wise operation.
In addition, the MaxPool function operates from the feature dimension and selects the
max value of each feature from all points. This means these functions do not change the
permutation equivariance of the LS module. Separate from these functions, Lemma 1
shows the permutation invariance of so f tmax. Thus, our proposed sampling method is
permutation-invariant (Definition 1).

3.4. SA Module

The set abstraction procedure proposed by Qi et al., PointNet++, which is widely used
in many point-based models, can be roughly divided into a sampling layer, grouping layer,
and a PointNet layer. To obtain better coverage of the entire point set, PointNet++ uses FPS
to select N′ grouping center points from N input points in the sampling layer. Based on the
coordinates of these center points, the model will gather Q points within a specified radius,
contributing to a group set. In relation to the PointNet layer, a mini-PointNet (composed
of multiple shared-MLP layers) is used to encode the local region patterns of each group
into feature vectors. In this paper, the grouping layer and the PointNet layer are retained
in our SA module. The LS module is used instead of FPS to generate a subset of points
serving as the grouping center points, while the grouping layer is adjusted to fit our learned
sampling model.

As shown in Figure 4, multi-scale grouping is used to group the points of each center
point with different scales. Features at different scales are learned by different shared-
MLP layers and then concatenated to form a multi-scale feature. If the points sampled by
the LS module are viewed as ball centers and perform the ball grouping process on the
original dataset N, similar to PointNet++, the entire network cannot be trained through
backpropagation since the outputs of the LS module are not passed to the following network
explicitly. Two methods have been developed to address this issue. The first method is
to ignore the old dataset before sampling and instead use the newly sampled dataset for
both the grouping center points and grouping pool. The other possibility is to use the
new sampled dataset as grouping center point and replace the points of the old dataset
with the new points in their corresponding positions. Using this method, it is possible to
concatenate the features of the new sampled points to each group and pass the outputs
(new points) of the LS module to the network.

Within each group, the local relative location of each point from the center point is
used to replace the absolute location Pc. Importantly, the extracted features Po will not
be affected by shifting or rotating the point cloud. So, it follows that the inputs to the LS
module remain the same despite the shift and rotation operations, which also indicates
that the proposed sampling method is shift-invariant (Definition 2) and rotation-invariant
(Definition 3).

Remote Sens. 2022, 14, 1539 10 of 22

grouping

Figure 4. Adjusted multi-scale grouping methods. The red points are sampled by the LS module,
while the blue points are old points before sampling. The dotted circle represents a ball of a particular
radius. Top: Grouping with old points and new points. Bottom: Grouping with new points only.

3.5. Loss

Sampling loss. Unlike the D-FPS and F-FPS methods, the point in the sampling
subset generated by the LS module is not unique and the high duplicate rate will result in
unwanted levels of computational usage while being unable to make full use of a limited
sampling size. This problem increases in severity as the sampling decreases in size.

As illustrated in Equation (20), a sampling loss has been presented to reduce the
duplicate rate and sample unique points to as great an extent as feasible. We accumulate
each row of S′, i.e., pj ∈ RN′ . pj represents the sampling value of each point in the original
dataset PN . The ideal case is that the point in PN is sampled 0 or 1 time. Since each column
in S′ can be summarized to 1 and tends to be a one-hot distribution, the accumulation of
pj should tend to be near 0 or 1 if the point is not sampled more than once. Equation (20)
is designed to control this issue. The more the accumulation of pj nears 0 or 1, the less
the loss.

Lsample =
1
N

N

∑
j=1

(∣∣∣∣∣∣∣ N′

∑
i=1

S′[j, i]− 0.5
∣∣∣− 0.5

∣∣∣∣
)

(20)

Each row of S′ indicates the old point’s attention on the newly generated sampling
points. If there are many high values in one row, this old point is highly relevant to more
than one new point, and the new point’s features will be deeply affected by the old point
with high attention when each column in S′ tends to be a one-hot distribution. That is, these
new points tends to be similar to the same old point, which leads to repeated sampling.
However, we expect a variety of new sampling points. In a word, we utilized Equation (20)
to restrain each old point’s attention.

Task loss. In the 3D object detection task, the task loss consists of 3D bounding box
regression loss Lr, classification loss Lc, and vote loss Lvote. θ1, θ2, and θ3 are the balance
weights for these loss terms, respectively.

Ltask = θ1Lr + θ2Lc + θ3Lvote (21)

Cross-entropy loss is used to calculate classification loss Lr while vote loss related
to the vote layer is calculated as VoteNet [31]. Additionally, the regression loss in the
model is similar to the regression loss in 3DSSD [7]. The regression loss includes distance
regression loss Ldist, size regression loss Lsize, angle regression loss Langle, and corner loss
Lcorner. The smooth-l1 loss is utilized for Ldist and Lsize, in which the targets are offsets from

Remote Sens. 2022, 14, 1539 11 of 22

the candidate points to their corresponding instance centers and sizes of the corresponding
instances, respectively. Angle regression loss contains orientation classification loss and
residual prediction loss. Corner loss is the distance between the predicted eight corners
and assigned ground-truth.

Total loss. The overall loss is composed of sampling loss and task loss with α and β
adopted to balance these two losses.

L = αLsample + βLtask (22)

3.6. Training Method
3.6.1. End-to-End Training

Problem statement: Given a point set PN ∈ RN×K, a sample size N′ ≤ N, and a
untrained task network T, find a subset P∗N′ ∈ RN′×K of N′ points and a group of weights
W of T that minimize the total objective function L:

P∗N′ = arg min
PN′ ,W

L(T(PN′)|W), PN′ ⊆ PN , |PN′ | = N′ ≤ N. (23)

For the end-to-end training method, the task network T and the LS module are trained
simultaneously using the total loss L. Compared to the network in the multi-stage training
method, the task network part 2 is trained and inferred on the same sampling points
distribution. Thus, the entire network is well trained with a certain sampling size.

3.6.2. Multi-Stage Training and Flexibility of the LS Module

Problem statement: Given a point set PN ∈ RN×K, a sample size N′ ≤ N, and a
trained task network T, find a subset P∗N′ ∈ RN′×K of N′ points that minimizes the total
objective function L:

P∗N′ = arg min
PN′

L(T(PN′)), PN′ ⊆ PN , |PN′ | = N′ ≤ N. (24)

Figure 5 shows the flexibility of the LS module and the multi-stage training procedure.
The task network part 2 is first trained on sampling points distribution DN . After this,
the task network parts are loaded and fixed to train the sampling network(LS module).
Therefore, it is possible to obtain a learned sampling points distribution DN′ . Subsequently,
in the inference stage, the distribution DN′ is passed to the task network part 2 for detection.
Due to these factors, the task network part 2 is trained and inferred on different sampling
points distribution. With the sampled dataset P∗N′ being the best subset of PN that can make
full use of the trained task network, the performance of the network using this method is
relatively inferior to the performance of an end-to-end training network because the task
network part 2 has not been fully trained with the sampled dataset P∗N′ .

In relation to the flexibility of the LS module, the effectiveness of the multi-stage
training demonstrates that the LS module can be transferred and adjusted to other point-
based models to replace FPS or any other sampling approaches concisely. Even in the case
of an already trained task network, point size can still be reduced simply by attaching the
LS module to the existing task network and training the LS module solely. This training
process can be accomplished quickly because stage 1 is skipped and the LS module is
relatively simple and small.

Remote Sens. 2022, 14, 1539 12 of 22

Raw Point

Clouds

Raw Point

Clouds

Raw Point

Clouds

Task Net Part 1 Task Net Part 2 Task Loss

Task Net Part 1 Task Net Part 2 Task Loss

Sampling Loss

LS Module

Training Training

TrainingFixed Fixed

Task Net Part 1 Task Net Part 2LS Module

Fixed FixedFixed

outputs

Figure 5. Flexibility and multi-stage training. Illustration of the proposed multi-stage training and
inference procedure. In stage 1, the LS module is skipped and the task network is trained on N points
data with task loss. In stage 2, we use the trained weights from the former stage and fix the weights
of the task network layers, after which the LS module is trained through task loss and sampling loss.
The LS module will output N′ sampled points. In stage 3, the inference step, the trained LS module is
used to sample data and generate the results.

4. Experimental Results
4.1. Setup

Datasets. The KITTI Dataset [12] is one of the most popular dataset for 3D object
detection for autonomous driving. All of the experiments for the proposed module are
conducted on it. The KITTI dataset collects point cloud data using a 64-scanning-line
LiDAR and contains 7481 training samples and 7518 test samples. The training samples are
generally divided into the training split (3712 samples) and the val split (3769 samples).
Each sample provides both the point cloud and the camera image. Using this approach, only
the point cloud is used. Since the dataset only annotates objects that are visible within the
image, the point cloud is processed only within the field of view of the image. The KITTI
benchmark evaluates the mean average precision (mAP) of three types of objects: car,
pedestrian and cyclist. We perform all our experiments on the car objects. Three difficulty
levels are involved (easy, moderate, and hard), which depend on the size, occlusion level,
and truncation of the 3D objects. For training purposes, samples that do not contain objects
of interest are removed.

Data Augmentation. To prevent overfitting, data augmentation is performed on the
training data. The point cloud is randomly rotated by yaw ∆θ ∼ U (−π/4,+π/4) and
flipped along its x-axis. Each axis is also shifted by ∆x, ∆y, and ∆z (independently drawn
from N (0, 0.25)). The mix-up strategy used in SECOND [23] is also used to randomly add
foreground instances from other scenes to the current scene. During the translation, it is
checked to avoid collisions among boxes, or between background points and boxes.

Remote Sens. 2022, 14, 1539 13 of 22

Network Architecture Details. The network architecture is illustrated in Figure 2.
FPS is used to sample 4096 points from the raw input. The LS module will sample points
from these 4096 points. There are four multi-scale SA modules in the network with a
different shared-MLP structure and a different grouping radius. The shared-MLP layer is a
stack of “FC–BN–FC–BN–FC–BN”.

Training and Inference Details. All of the experiments are conducted on a single RTX
2080Ti GPU card. The Adam optimizer [39] is used in the training stage with a learning
rate of 0.002. The mini-batch size differs according to each sampling size.

Evaluation Metric. Mean average precision (mAP) is utilized as the evaluation metric.
For a fair comparison, the official evaluation protocol is followed. Specifically, the IoU
threshold is set to 0.7 for cars. As for the unique rate of the sampled points, this is
determined by taking the size of the unique points divided by the size of the entire points.

4.2. 3D Object Detection on the KITTI Dataset

LSNet is evaluated along two points. First is submitting the results of the car objects to
the KITTI 3D object detection benchmark and the BEV object detection benchmark. Table 1
shows a comparison of the submitted results and the existing literature on the KITTI test
dataset. The LSNet-512 (LSNet with 512 sampled points) model is applied to detect the
3D objects of the test dataset, with the results showing that LSNet outperforms other 3D
detectors [1–3,23–25] with only 512 points, and the performance of LSNet-512 is similar
to 3DSSD [7] on the easy difficulty level and is a little worse than it on the moderate and
hard difficulty levels. For a more specific and detailed comparison of the two models,
Table 2 compares their precision and speed on the KITTI validation set. LSNet-1024 (LSNet
with 1024 sampled points) works better than LSNet-512 and shows competitive accuracy
compared to 3DSSD. However, LSNet-1024 runs slower than LSNet-512. Although LSNet-
512 sacrifices some accuracy, it runs faster than 3DSSD. To balance the accuracy and speed,
we chose LSNet-512 as the final model which was used to generate results on the KITTI
test set in Table 1.

Table 1. The mean average precision (mAP) comparison of 3D object detection and bird’s eye
view(BEV) object detection on the KITTI test set.

Method Modality
Car-3D (%) Car-BEV (%)

Easy Moderate Hard Easy Moderate Hard

MV3D [1] Image + LiDAR 74.97 63.63 54.00 86.62 78.93 69.80
F-PointNet [2] Image + LiDAR 82.19 69.79 60.59 91.17 84.67 74.77
AVOD-FPN [3] Image + LiDAR 83.07 71.76 65.73 90.99 84.82 79.62

VoxelNet [24] LiDAR 81.97 65.46 62.85 89.60 84.81 78.57
PointPillars [25] LiDAR 82.58 74.31 68.99 90.07 86.56 82.81
SECOND [23] LiDAR 83.34 72.55 65.82 89.39 83.77 78.59

3DSSD [7] LiDAR 88.36 79.57 74.55 92.66 89.02 85.86

LSNet (ours) LiDAR 86.13 73.55 68.58 92.12 85.89 80.80

Table 2. The mean average precision (mAP) and speed comparison of 3D object detection on the
KITTI validation set between 3DSSD and LSNet.

Method Speed (fps)
Car-3D (%)

Easy Moderate Hard

3DSSD 10.89 90.87 82.62 79.82
LSNet-512 12.17 89.29 78.36 75.46
LSNet-1024 10.71 91.04 82.15 78.98

Second, Tables 3–5 compare the mAP of different sampling approaches with different
sampling sizes. To make a fair comparison, the only change is replacing the LS module

Remote Sens. 2022, 14, 1539 14 of 22

with other sampling methods such as random, FPS, F-FPS, and FS sampling, with the
rest of the model remaining unchanged. F-FPS and FS are sampling methods raised by
3DSSD [7]. After detailed study about the structure and code of SampleNet, we found
that the sampling method of SampleNet [9] is too heavy and not suitable for massive
points scenarios such as autonomous driving. Therefore, it is not necessary to conduct
experiments on it. The red values between parentheses in these tables are calculated by
subtracting the mean of random, FPS, F-FPS, and FS from the value of the LS module. With
only eight sampled points, LSNet outperforms other sampling methods significantly with
a 60% mAP gain on the easy difficulty level, a 42% mAP gain on the moderate difficulty
level, and a 33% mAP gain on the hard difficulty level. Also shown is the fact that when the
number of sampling points is decreased, the LS module increasingly outperforms the other
approaches. However, once the number of points reaches 512, the differences between these
approaches are small. The cause of this behavior is due to the fact that there are already
enough points to describe the whole 3D space and the sampling mode does not affect the
coverage of key information.

Table 3. Performance comparison on the easy difficulty level between different sampling methods on
the KITTI validation set. The results are evaluated using the mean average precision (mAP).

Sampled Points Random (%) FPS (%) F-FPS (%) FS (%) LS Module (%)

8 4.12 0.18 2.06 0.06 61.28 (+59.67)
16 18.71 1.83 10.87 0.15 66.59 (+58.70)
32 35.95 8.29 46.38 9.09 73.48 (+48.55)
64 51.40 32.61 77.21 45.30 83.57 (+31.94)

128 70.55 64.82 86.63 74.94 88.19 (+13.95)
256 72.81 76.10 89.66 86.10 88.56 (+7.39)
512 78.93 87.75 89.17 85.27 89.29 (+4.01)

Table 4. Performance comparison on the moderate difficulty level between different sampling methods
on the KITTI validation set. The results are evaluated using the mean average precision (mAP).

Sampled Points Random (%) FPS (%) F-FPS (%) FS (%) LS Module (%)

8 3.19 0.18 0.32 0.08 42.49 (+41.54)
16 13.30 2.07 8.57 0.24 46.53 (+40.49)
32 27.11 7.82 35.70 7.56 53.29 (+37.74)
64 39.21 28.60 64.28 34.34 65.18 (+23.57)

128 54.87 54.77 75.87 63.01 72.64 (+10.51)
256 61.20 64.66 79.08 74.72 74.51 (+4.60)
512 66.97 76.79 79.52 76.83 78.36 (+3.33)

Table 5. Performance comparison on the hard difficulty level between different sampling methods on
the KITTI validation set. The results are evaluated using the mean average precision (mAP).

Sampled Points Random (%) FPS (%) F-FPS (%) FS (%) LS Module (%)

8 2.16 0.32 1.31 0.03 33.46 (+32.50)
16 11.76 1.62 7.54 0.28 39.17 (+33.87)
32 24.18 7.49 30.77 6.82 46.28 (+28.97)
64 34.77 26.89 58.65 30.54 58.43 (+20.71)

128 51.20 52.31 71.62 57.05 67.19 (+9.15)
256 57.99 62.84 76.43 70.60 72.63 (+5.67)
512 64.82 73.94 78.83 74.45 75.46 (+2.45)

In Figures 6–8, visual examples of the described behavior are shown that illustrate
the advantages of the LS module. Firstly, by comparing these three sampling methods, we

Remote Sens. 2022, 14, 1539 15 of 22

can see that our sampling approach generates more points within the region of interest
and near the target object, which is the reason why LSNet works extremely well when
the sampling size is small. Furthermore, Figures 6 and 7 depict a complex scene with
various features and a simple scene with relatively less different features. It is obvious that
FPS and F-FPS performed poorly in the complex scene because there is relatively more
distraction. In contrast, our sampling approach can still locate the key areas by selecting
the corresponding points nearby.

Figure 6. Visualizing the results of LSNet with 16 sampled points and different sampling approaches.
The top-left frame presents the 3D object detection results, where ground truth and predictions are
labeled in red and green, respectively. Moreover, the area surrounded by gray lines is the visible area
within the image, which can be also recognized as a region of interest. The top-right frame displays
the image of the scene. The second line illustrates the sampling results of the LS module, D-FPS, and
F-FPS, where the sampled points are displayed in green and the 4096 original points before sampling
are displayed in white.

Figure 7. Visualizing the results of LSNet with 16 sampled points and different sampling approaches.
This is an easier scene compared to Figure 6 .

Remote Sens. 2022, 14, 1539 16 of 22

Figure 8. Visualizing the results of LSNet with 512 sampled points and different sampling approaches.

4.3. Effects of Multi-Stage Training and the Flexibility of the LS Module

As previously described, only the LS module is replaced, with the rest of the archi-
tecture remaining the same. This ease of insertion and the removal of the part of the LS
module illustrates how flexibly it can be used. Additionally, Tables 6 and 7 show the
results of multi-stage training when starting from an already-trained task network. In this
paper, the model trained with the F-FPS sampling approach was used as the task network.
Following this, F-FPS was substituted with the LS module. Once the substitution was
finished, the weights were set as fixed to solely train the LS module. Finally, Tables 6 and 7
show the results inferred by the new model with the LS module. Using the LS module,
the number of sampled points is halved in short order with only a small loss of accuracy.
The number of sampled points of the fixed task model is 256 in Table 6 and 512 in Table 7.
This illustrates that the greater the difference in the number of sampled points between
the original task network and the LS module, the larger the performance degradation.
For example, with 128 sampling points, task-network-256 leads task-network-512 by over
17% mAP gain in moderate difficulty. Figure 9 shows that the training time of the LS
module is much shorter in comparison to the time required for the end-to-end training.
Furthermore, the growth trend of the time cost for training the LS module is more gentle.

Table 6. Multi-stage training on the trained task network with 256 sampled points using the F-FPS
sampling method. The first line of the table shows the original performance of the trained model and
the results are evaluated by the mean average precision (mAP).

Sampled Points Easy (%) Moderate (%) Hard (%)

256 (task-net) 89.66 79.08 76.43

8 30.19 18.23 14.56
16 42.61 27.13 22.34
32 69.24 50.36 42.28
64 76.47 59.29 50.82
128 84.13 70.08 65.21

Remote Sens. 2022, 14, 1539 17 of 22

Table 7. Multi-stage training on the trained task network with 512 sampled points using the F-FPS
sampling method. The first line of the table shows the original performance of the trained model and
the results are evaluated by the mean average precision (mAP).

Sampled Points Easy (%) Moderate (%) Hard (%)

512 (task-net) 89.17 79.52 78.83

8 6.80 4.36 3.31
16 21.43 15.33 12.52
32 50.31 32.29 26.48
64 64.28 46.47 39.61
128 79.36 52.86 55.31
256 85.58 70.36 66.53

0

1

2

3

4

5

6

8 16 32 64 128 256

T
im

e
:

se
co

n
d

 p
e

r
1

0
 s

te
p

s

Sampling points size

end-to-end LS Module only trend(end-to-end) trend(LS Module only)

Figure 9. Time comparison between training the entire model end-to-end and training the LS module
only with a batch size of eight.

5. Discussion
Ablation Study

In this section, extensive ablation experiments are conducted to analyze the individual
components of the proposed approaches. All the models are trained on the training split
and evaluated on the validation split for the car class of the KITTI dataset [12].

Effects of the Different Grouping Methods. Table 8 compares the performance
between the grouping with the old points and new points together versus the grouping
with the new points only. The result is that while there is no difference when the number
of points is large, when the number of points is very small, the approach of grouping old
and new points together gains higher accuracy. For example, the mAP of eight sampled
points for “new points only” is lower than the one for “old + new”, which is caused by the
relatively smaller information loss of grouping old and new points together.

Remote Sens. 2022, 14, 1539 18 of 22

Table 8. The mAP results for different groupings.

Sampled Points
Old + New (%) New Points Only (%)

Easy Moderate Hard Easy Moderate Hard

8 61.24 42.36 33.12 46.49 35.01 29.15
16 66.38 46.09 39.31 69.16 51.61 42.29
32 73.07 53.35 46.21 74.08 57.81 50.26
64 83.47 65.81 58.43 83.13 69.42 63.16
128 88.12 72.42 67.35 87.52 74.16 69.63
256 88.63 74.36 72.61 88.17 74.56 70.47
512 89.36 78.61 75.47 89.35 75.43 72.39

Effects of the Sampling Loss. As shown in Table 9, the proposed sampling loss can
boost the unique rate significantly. With our sampling loss, the average unique rate of the
points can be stabilized at around 95%. On the contrary, once we remove the sampling
loss, the repetition rate climbs to 88% with 512 sampled points and 77% with 256 sampled
points. Another issue is that the model performs poorly with a large number of repetition
points when it comes to mAP.

Table 9. The effectiveness of sampling loss evaluated by unique rate and mAP results.

Sampled Points

Unique Rate (%) mAP (%)

With SL Without SL
With SL Without SL

Easy Moderate Hard Easy Moderate Hard

8 95 94 46.49 35.01 29.15 47.35 35.12 30.56
16 95 85 69.16 51.61 42.29 63.26 45.63 39.18
32 95 75 74.08 57.81 50.26 72.53 55.45 49.32
64 95 54 83.13 69.42 63.16 70.64 56.36 50.21

128 96 51 87.52 74.16 69.63 79.10 65.12 60.03
256 96 33 88.17 74.56 70.47 80.59 65.51 60.52
512 95 22 89.35 75.43 72.39 76.53 62.59 56.24

Effects of Relaxation. Table 10 confirms that the random relaxation strategy of the
sampling matrix yields a higher mAP, i.e., increasing the mAP by an average of 2.96%,
2.94%, and 1.97% on the easy, moderate, and hard difficulty levels, respectively.

Table 10. The effectiveness of random relaxation evaluated by mAP results.

Sampled Points
With Relaxation (%) Without Relaxation (%)

Easy Moderate Hard Easy Moderate Hard

8 61.24 42.36 33.12 54.23 36.19 30.09
16 66.38 46.09 39.31 60.63 41.71 35.32
32 73.07 53.35 46.21 70.52 49.63 44.37
64 83.47 65.81 58.43 81.25 63.61 56.47
128 88.12 72.42 67.35 86.21 70.45 65.21
256 88.63 74.36 72.61 88.04 73.54 71.58
512 89.36 78.61 75.47 88.54 77.31 75.65

Speed Analysis of LSNet. All the speed experiments were run on a 2080Ti GPU.
Table 11 illustrates the inference speed of the entire network in fps(frames per second).
The processing time of each model with different sampling approaches has little variation,
which proves that replacing the original sampling strategy in other models with the LS
module will not introduce excessive time consumption. Thus, this shows that the LS

Remote Sens. 2022, 14, 1539 19 of 22

module is lightweight and can be plugged into other models without encumbering them.
Under the consideration of both inference speed and accuracy, LSNet outperforms the other
tested methods according to Figure 10. The green gradient background of the table shows
the overall performance of the method, and the darker the color, the better the performance.
Then, we can see that LSNet gains higher overall performance, especially when it comes to
faster inference speed. Furthermore, we add several auxiliary lines (black dashed lines) in
Figure 10 to address this superiority. Each auxiliary line indicates the same accuracy, and
LSNet runs faster than other methods with the same accuracy. In addition, FPS collapses
very quickly at speeds above 15 fps. The inference time of LSNet-256 is 73 ms and the
inference time of LSNet-8 is 64 ms.

Table 11. Speed comparison between different sampling methods by checking the fps (frames per
second) of the entire model.

Sampled Points Random FPS F-FPS LS module

8 15.48 15.64 15.10 15.53
16 15.38 15.58 15.09 15.49
32 15.38 15.53 15.04 15.13
64 15.31 15.47 15.00 15.05

128 14.96 14.99 14.93 14.83
256 14.00 14.02 13.73 13.66
512 13.02 12.92 12.51 12.17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

12 12.5 13 13.5 14 14.5 15 15.5 16

m
A

P

fps(frames per second)

FPS F-FPS LSNet Random

Figure 10. Speed-precision demonstration of different sampling size and different sampling methods.

6. Conclusions

In this paper, LSNet was proposed to solve the 3D object detection task that operates
on LiDAR point clouds. Importantly, the LS module, which is a novel deep-learning-based
sampling approach that is differentiable and task-related, was presented. Specifically,
with 128 sampled points, it attained a computational acceleration at the cost of acceptable
accuracy loss. In addition, the random relaxation method was introduced to the sampling
matrix. Evaluated on the challenging KITTI dataset, the LS module of LSNet was found
to work extremely well when only using a small amount of sampling data in comparison
to the D-FPS and F-FPS methods. The proposed sampling loss was proven to be highly

Remote Sens. 2022, 14, 1539 20 of 22

effective in ameliorating the issue of sampling duplicates. Finally, it has been shown that,
with an already trained point-based task network, the LS module can be attached to the
task network flexibly to replace the original sampling method such as FPS.

As the proposed method has been shown to be superior in comparison to other
sampling methods for usage in low sampling size cases and complex scenarios, it is
therefore particularly appropriate for autonomous driving usage on urban roads. This is
due to the increased complexity faced on urban roads in comparison to highway driving.
Additionally, if autonomous vehicles, i.e., trucks, are equipped with multiple LiDARs, this
would greatly increase the initial amount of raw points in the system, an issue this sampling
method is well suited to handling, giving rise to a reduction in the required memory and
computational cost. In a similar vein, the large amount of exploration undertaken recently
in China on vehicle-to-everything (V2X) scenarios can also benefit from the LS module.
As V2X involves multiple sensors containing LiDAR, they inevitably produce more point
cloud data than vehicle-only scenarios. Once again, this means that the module’s efficiency
in dealing with such issues is applicable. These varied use cases show the widespread
potential and applicability of the LS module.

The LS module tends to sample more points in dense objects than sparse objects, which
results in relatively weak performance in moderate and hard categories. In the future, we
will work on sampling points evenly on each object and regard their density. Furthermore,
it is expected to keep at least one point, even when the object is badly shaded. In addition,
we look forward to achieving better accuracy with less points in the following study.

Author Contributions: Conceptualization, M.W.; Data curation, M.W. and Z.F.; Formal analysis,
M.W.; Funding acquisition, Q.C.; Investigation, M.W.; Methodology, M.W.; Project administration,
M.W. and Q.C.; Resources, Q.C.; Software, M.W.; Supervision, M.W. and Q.C.; Validation, M.W. and
Z.F.; Visualization, M.W.; Writing—original draft, M.W.; Writing—review and editing, M.W., Q.C.,
and Z.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Shanghai Key Science and Technology Project (19DZ1208903);
National Natural Science Foundation of China (Grant Nos. 61572325 and 60970012); Ministry of
Education Doctoral Fund of Ph.D. Supervisor of China (Grant No. 20113120110 0 08); Shanghai
Key Science and Technology Project in Information Technology Field (Grant Nos. 14511107902
and 16DZ1203603); Shanghai Leading Academic Discipline Project (No. XTKX2012); Shanghai
Engineering Research Center Project (Nos. GCZX14014 and C14001).

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. This data can be found here: [http:
//www.cvlibs.net/datasets/kitti/index.php], accessed on 10 March 2022.

Acknowledgments: The authors would like to acknowledge the support from the Flow Computing
Laboratory at University of Shanghai for Science and Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chen, X.; Ma, H.; Wan, J.; Li, B.; Xia, T. Multi-View 3D Object Detection Network for Autonomous Driving. In Proceedings of the

2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.
2. Qi, C.R.; Liu, W.; Wu, C.; Su, H.; Guibas, L.J. Frustum pointnets for 3d object detection from rgb-d data. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 918–927.
3. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S. Joint 3D Proposal Generation and Object Detection from View Aggregation.

In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2019.

4. Wang, J.; Zhu, M.; Wang, B.; Sun, D.; Wei, H.; Liu, C.; Nie, H. KDA3D: Key-Point Densification and Multi-Attention Guidance for
3D Object Detection. Remote Sens. 2020, 12, 1895. [CrossRef]

5. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 14–19 June 2020.

6. Thomas, H.; Qi, C.R.; Deschaud, J.E.; Marcotegui, B.; Goulette, F.; Guibas, L.J. KPConv: Flexible and Deformable Convolution for
Point Clouds. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019.

http://www.cvlibs.net/datasets/kitti/index.php
http://www.cvlibs.net/datasets/kitti/index.php
http://doi.org/10.3390/rs12111895

Remote Sens. 2022, 14, 1539 21 of 22

7. Yang, Z.; Sun, Y.; Liu, S.; Jia, J. 3dssd: Point-based 3d single stage object detector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 11040–11048.

8. Dovrat, O.; Lang, I.; Avidan, S. Learning to sample. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 2760–2769.

9. Lang, I.; Manor, A.; Avidan, S. SampleNet: Differentiable Point Cloud Sampling. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 7578–7588.

10. Yang, J.; Zhang, Q.; Ni, B.; Li, L.; Liu, J.; Zhou, M.; Tian, Q. Modeling point clouds with self-attention and gumbel subset sampling.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
pp. 3323–3332.

11. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 1912–1920.

12. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite. In Proceedings of the
2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361.

13. Song, S.; Chandraker, M. Joint SFM and detection cues for monocular 3D localization in road scenes. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3734–3742.

14. Chen, X.; Kundu, K.; Zhang, Z.; Ma, H.; Fidler, S.; Urtasun, R. Monocular 3d object detection for autonomous driving. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2147–2156.

15. Mousavian, A.; Anguelov, D.; Flynn, J.; Kosecka, J. 3d bounding box estimation using deep learning and geometry. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 June 2017; pp. 7074–7082.

16. Yang, B.; Luo, W.; Urtasun, R. Pixor: Real-time 3d object detection from point clouds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7652–7660.

17. Simony, M.; Milzy, S.; Amendey, K.; Gross, H.M. Complex-YOLO: An Euler-Region-Proposal for Real-time 3D Object Detection
on Point Clouds. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany,
1–4 September 2018.

18. Yang, B.; Liang, M.; Urtasun, R. Hdnet: Exploiting hd maps for 3d object detection. In Proceedings of the Conference on Robot
Learning, Zurich, Switzerland, 29–31 October 2018; pp. 146–155.

19. Li, B.; Zhang, T.; Xia, T. Vehicle detection from 3d LiDAR using fully convolutional network. arXiv 2016, arXiv:1608.07916.
20. Chai, Y.; Sun, P.; Ngiam, J.; Wang, W.; Caine, B.; Vasudevan, V.; Zhang, X.; Anguelov, D. To the Point: Efficient 3D Object Detection

in the Range Image With Graph Convolution Kernels. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Virtual, 19–25 June 2021; pp. 16000–16009.

21. Chen, Y.; Liu, S.; Shen, X.; Jia, J. Fast point r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Seoul,
Korea, 27 October–3 November 2019; pp. 9775–9784.

22. Shi, S.; Wang, Z.; Shi, J.; Wang, X.; Li, H. From points to parts: 3d object detection from point cloud with part-aware and
part-aggregation network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 2647–2664. [CrossRef] [PubMed]

23. Yan, Y.; Mao, Y.; Li, B. Second: Sparsely embedded convolutional detection. Sensors 2018, 18, 3337. [CrossRef] [PubMed]
24. Zhou, Y.; Tuzel, O. Voxelnet: End-to-end learning for point cloud based 3d object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4490–4499.
25. Lang, A.H.; Vora, S.; Caesar, H.; Zhou, L.; Yang, J.; Beijbom, O. Pointpillars: Fast encoders for object detection from point clouds.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seoul, Korea, 27 October–3 November 2019;
pp. 12697–12705.

26. Liu, Z.; Zhao, X.; Huang, T.; Hu, R.; Zhou, Y.; Bai, X. TANet: Robust 3D Object Detection from Point Clouds with Triple Attention.
In Proceedings of the AAAI Conference on Artificial Intelligence , New York, NY, USA, 7–12 February 2020; pp. 11677–11684.

27. Graham, B.; Engelcke, M.; Van Der Maaten, L. 3d semantic segmentation with submanifold sparse convolutional networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 9224–9232.

28. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–27 June 2017; pp. 652–660.

29. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inf.
Process. Syst. 2017, 30, 5099–5108.

30. Shi, S.; Wang, X.; Li, H. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 770–779.

31. Qi, C.R.; Litany, O.; He, K.; Guibas, L.J. Deep hough voting for 3d object detection in point clouds. In Proceedings of the IEEE
International Conference on Computer Vision, Seoul, Korea, 27 October–3 November 2019; pp. 9277–9286.

32. Ngiam, J.; Caine, B.; Han, W.; Yang, B.; Chai, Y.; Sun, P.; Zhou, Y.; Yi, X.; Alsharif, O.; Nguyen, P.; et al. Starnet: Targeted
computation for object detection in point clouds. arXiv 2019, arXiv:1908.11069.

33. Shi, W.; Rajkumar, R. Point-gnn: Graph neural network for 3d object detection in a point cloud. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 1711–1719.

http://dx.doi.org/10.1109/TPAMI.2020.2977026
http://www.ncbi.nlm.nih.gov/pubmed/32142423
http://dx.doi.org/10.3390/s18103337
http://www.ncbi.nlm.nih.gov/pubmed/30301196

Remote Sens. 2022, 14, 1539 22 of 22

34. Shi, S.; Guo, C.; Jiang, L.; Wang, Z.; Shi, J.; Wang, X.; Li, H. Pv-rcnn: Point-voxel feature set abstraction for 3d object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020;
pp. 10529–10538.

35. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-Voxel CNN for efficient 3D deep learning. Adv. Neural Inf. Process. Syst. 2019, 32, 965–975.
36. Chen, S.; Tian, D.; Feng, C.; Vetro, A.; Kovačević, J. Fast resampling of three-dimensional point clouds via graphs. IEEE Trans.

Signal Process. 2017, 66, 666–681. [CrossRef]
37. Jang, E.; Gu, S.; Poole, B. Categorical reparameterization with gumbel-softmax. arXiv 2016, arXiv:1611.01144.
38. Maddison, C.J.; Mnih, A.; Teh, Y.W. The concrete distribution: A continuous relaxation of discrete random variables. arXiv 2016,

arXiv:1611.00712.
39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.

http://dx.doi.org/10.1109/TSP.2017.2771730

	Introduction
	Related Work
	Methods
	Problem Formulation
	Network Architecture
	LS Module
	SA Module
	Loss
	Training Method
	End-to-End Training
	Multi-Stage Training and Flexibility of the LS Module

	Experimental Results
	Setup
	3D Object Detection on the KITTI Dataset
	Effects of Multi-Stage Training and the Flexibility of the LS Module

	Discussion
	Conclusions
	References

