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Abstract: This review focuses on the use of unmanned aerial vehicles (UAVs) in precision agriculture,
and specifically, in precision viticulture (PV), and is intended to present a bibliometric analysis of their
developments in the field. To this aim, a bibliometric analysis of research papers published in the last
15 years is presented based on the Scopus database. The analysis shows that the researchers from
the United States, China, Italy and Spain lead the precision agriculture through UAV applications.
In terms of employing UAVs in PV, researchers from Italy are fast extending their work followed
by Spain and finally the United States. Additionally, the paper provides a comprehensive study on
popular journals for academicians to submit their work, accessible funding organizations, popular
nations, institutions, and authors conducting research on utilizing UAVs for precision agriculture.
Finally, this study emphasizes the necessity of using UAVs in PV as well as future possibilities.

Keywords: drones; precision agriculture; precision viticulture; unmanned aerial vehicles (UAVs);
remote sensing

1. Introduction

Precision agriculture (PA) is becoming highly significant in today’s technologically
advanced world and has been considered as the farm for the future [1]. This is a modern
farming management concept using digital techniques to monitor and optimize agricul-
tural production processes by using technological advancements [2]. PA uses modern
technology and principles to manage the spatial and temporal variability in all aspects
of agricultural production for the goal of improving crop performance [3,4]. Spatial and
temporal variability are terms used to describe variability that have significant impacts
on agricultural production. Examples of spatial and temporal variability include yield
variability [5], field variability [6], soil variability [7], crop variability [8], and management
variability [9]. The goal is to reduce economical costs, decrease the impact on the envi-
ronment (e.g., by using less water and fertilizers), and increase food production quality
at the same time [10]. Typically, unmanned aerial vehicles (UAVs), sensor technologies,
satellite navigation and positioning technologies, and the internet of things (IoT) are used
to achieve these goals. PA is increasingly aiding farmers with their job as it makes its way
into fields across Europe [11]. Larger yields need greater financial investment because a
large amount of fertilizers, pesticides, water, and other resources is required. However,
by their proper management, growers can achieve considerable saving on the expected
expenses [12–14]. Further, in addition to increasing the yield by proper monitoring, the
plants’ health and productivity can also increase at the same time, which will allow growers
to meet the demand. Figure 1 depicts the last ten years of documents released by scien-
tists, researchers, and growers, demonstrating that the practice of PA is expanding day by
day. PA has evolved on digital-based farming management approach that monitors and
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optimizes agricultural production operations [15]. PA has been now practiced frequently
in cultivation, monitoring and harvesting of: rice [16], wheat [17], maize [18], barley [19],
soybean [20], potato [21], orange [22], olive [23], and many other crops.
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Figure 1. Documents published in precision agriculture in the last 10 years (* prior to 15 November
2021).

Precision viticulture (PV) is a subset of PA, where the same technologies are applied
only on grapevine care and development. In viticulture, the cultivation and study of grapes
are of concern, and it refers to a set of activities in the vineyard [24]. Typically, viticultur-
ists are mainly interested in monitoring and managing the vineyard [25], fertilizing, and
watering [26], canopy management [27], monitoring fruit growth and characteristics [28],
choosing when to harvest [29], and trimming during the specific months [30]. Viticulturists
and winemakers are commonly linked because vineyard management and grape char-
acteristics provide the basis for wine-making [31]. A vast range of varietals is presently
cultivated in the European Union as actual grapes for wine growing and viticulture [32].

Viticulture is one of the major factors which plays an important role in the economic
developments of majorly the European countries [33]. PV also involves the practice of
grape farmers and winemakers employing a range of information technologies to better
sense and comprehend variability in their production systems. Then, this information is
used to better match production inputs to desired or expected outputs [34]. Crop sensors
and yield monitors, remote sensors, geographic information system (GIS), and global
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navigation satellite systems (GNSS) are some of the components of the PV’s technological
advancements. Therefore, they are a rising trend in the wine industry [35]. Furthermore, PV
is growing substantially because of the improved and cost-effective sensors, methodologies,
and equipment for data acquisition from drones [36].

This bibliometric study presents the analysis on the usage of UAVs in PA and more
specifically in PV, and presents the analyzed results. Readers can find other bibliometric
reviews dedicated to PA and PV, such as research evolution on PA [37], advances in
precision coffee growing research [38], wireless sensor networks in agriculture [39], IoT
in PA [40], digital agriculture [41,42], an investigation of PV production, impact, and
interdisciplinary collaboration involved in viticulture [43], a bibliometric analysis of PV in
Italy [44], Mexican academicians’ contribution to viticulture [45], to gain further information
on PA and PV. Although numerous reviews have been published, to our knowledge, no
bibliometric study has explored on the use of UAVs in PV. The current article fills this gap
in the literature by identifying the important concerns and potential associated with the use
of UAVs in PV. The remaining sections of this manuscript are as follows: Section 2 discusses
the materials and methods used for the bibliometric analysis, Section 3 discusses briefly
why the UAV is needed in PA, Section 4 discusses why the UAV is needed in PV, Section 5
presents the analyzed results, and Section 6 summarizes the findings and future scope.

2. Materials and Methods

The usage of UAVs in PA (UAV-PA) and usage of UAVs in PV (UAV-PV) are undeniably
transforming traditional agricultural operations. The number of contributions is constantly
rising throughout the years. In 2020 alone, the number of publications using the terms
UAV-PA and UAV-PV reached 224 and 40, respectively. It is difficult to maintain track of
key developments in the area at such a rapid rate of publishing. By statistically evaluating
published data, bibliometric analytic tools can assist speed up the review process in this
context [41]. Authors working in the use of UAVs in PA research field use a variety of
terminologies to refer to the same ideas. In such a fragmented subject, bibliometric analysis
becomes very important. So, to find the most important publications, the most influential
sources, institutions, and nations, we have used bibliometrics tools.

2.1. Materials

In this bibliometric review, the articles from the Scopus database have been considered.
Scopus is an online database that contains nearly all significant research publications and
has built-in analytical capabilities for generating representative data. Additionally, the
search results from Scopus can be exported to other software, for additional post process-
ing. For instance, the targeted study used VOSviewer [46] that provides algorithms for
bibliometrics-based analysis of publishing datasets. Co-citation, network analysis, collab-
oration, coupling, and co-word information fetching are also possible. A publication is
indeed the dataset’s base element. Authors, document type, document title, keywords, cited
references, source, year, author address, times cited, and others are connected with each
publication. The targeted study also used the science mapping analysis software tool (Sci-
MAT). SciMAT has been chosen because it facilitates all stages of scientific mapping, from
data preparation to the development of field maps [42,47], and also has a comprehensive
preparation module that verifies the quality of the data [42].

The quality and thoroughness of the outcomes in this work may still be hampered by
constraints in the analysis tools and data filtering procedure. To begin with, the retrieved
data could have left out certain publications. Some publications that did not contain the
sought keywords in the title, abstract, author keywords may have been excluded from the
records because we used a search strategy presented in Table 1. Some publications may be
incorrectly eliminated as a result of manual selection. Finally, we want to express our grati-
tude to the VOSviewer tool and SciMAT for offering the data visualization functionalities
utilized in this study.
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2.2. Methods

Research towards the application of UAV-PA and UAV-PV is trending, and further
knowledge should be obtained to progress in these fields, which is why bibliometric
analysis is vital. As a result, this review is conducted at the appropriate moment to give
a comprehensive knowledge of the utilization of UAV-PA and UAV-PV, as well as future
research possibilities.

2.2.1. Design of the Study

We defined and explored the following questions in order to correctly gain significant
knowledge and conduct a bibliometric study on UAV-PA and UAV-PV:

1. Why are UAVs required in PA? Section 3 of this review study explored the solution to
this question. The purpose of this research question is to examine the developments
in the use of UAV-PV.

2. What technologies are employed in UAV-PA and UAV-PV? The answer to this question is
explored in further detail in Sections 4 and 5 of this review study.

3. What nations are pioneering research on the use of UAV-PA and UAV-PV? Sections 4.1 and 5.1
show the solution with their respective publications.

4. Which journals are chosen by researchers for publication, which funding agencies are accessible,
which prominent researchers are active in the field, and which universities/institutions are
active in the field of UAV-PA and UAV-PV? The answers to these concerns can be found
in subsections of Sections 4 and 5, respectively. Section 6 contains information about
major universities/institutions active in the area of UAV-PA and UAV-PV. In addition,
the future scope towards the PV’s technological development is also reported in
this section.

2.2.2. Data Collection

To address the questions of Section 2.2.1, we examined the publications between 1
January 2006 and 15 November 2021. The most widely utilized publishing databases are
Web of Science (WoS) and Scopus and there were no other options available in the past [48]
about what databases to choose for the bibliometric analysis. However, WoS and Scopus
continue to have the highest data quality and completeness across several categories [49],
and as a result, they are the most commonly employed for bibliometric analysis. Scopus
demonstrated that it has a wider coverage than WoS, which justifies our choice to use only
the first.

The data are accessed on 15 November 2021 with keywords reported in Table 1. The
table also reports the type of database used, how many documents have been considered,
time-span of the data collection, the criteria for inclusion and the software used to analyze
the results.

2.2.3. Data Preparation

The data fetched have not been used directly because of missing values in relevant
fields. Thus, a manual checking has been carried out in order to remove the articles
with incomplete information. Then, the filtered data have been uploaded to SciMAT and
VOSviewer for generating results.

The strategic diagram, thematic network structure and thematic evolution structure
for the most significant themes have been generated via SciMAT. The evolutionary map
was constructed using the equivalence index, with solid lines indicating that clusters have
a common theme (Figure 2). In comparison, dashed lines indicate a connection between
non-major terminologies, whereas in some cases, the absence of lines indicates that the
topic gradually ceased to exist from one period to the other [42].



Remote Sens. 2022, 14, 1604 5 of 30

Figure 2. Thematic evolution structure. This demonstrates that the evaluation and association of
keywords increased from 5 to 17 between 2006 and 2021.

In total, 1084 documents were exported from Scopus related to use of UAV-PA with
duplicates being deleted from the list. The phrases that indicated the same thing were then
grouped together, and the data were preprocessed before being entered into software to
create a strategic picture of the topic of research. To achieve the evolutionary map, data
were divided into three sub-periods (2006–2013, 2014–2018, and 2019–2021). Using SciMAT,
it is not possible to create super-periods automatically; thus, it required a manual entry for
the sub-periods. It can be seen that, in the third sub-period (2019–2021), a large number of
articles were published, providing a good indication of what the study field would look
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like in the future (as pictorially shown in Figure 1). To determine which topics were most
essential and which clusters they were in, we used the keyword co-occurrence matrix. Data
were normalized and clustered into groups based on the simple centers algorithm using
the equivalence index (EI) to create a network of links between the themes. We compress
the data to a frequency resolution of 2 to create the diagrams. We established a maximum
and minimum network size of 14 and 3, respectively, when we examined the field of study.
In the strategic diagram, the horizontal axis (centrality) depicts the importance of each
subject and the number of links it has with other themes, while the vertical axis (density)
depicts the number of connections between each cluster. This graph depicts the relationship
between two or more topics throughout time, for more information about the quadrants,
the reader is referred to [42].

Table 1. Search strategy adopted to explore and retrieve relevant publications for the bibliometric
analysis from Scopus database.

Database Scopus

Topic for PA ‘Precision Agriculture’ and ‘UAV’, ‘Precision Agri-
culture’ and ‘UAS’

Topic for PV
‘Precision Viticulture’ and ‘UAV’, ‘Precision Viti-
culture’ and ‘UAS’, ‘Vineyard’ and ‘UAV’, ‘Vine-
yard’ and ‘UAS’

Number of relevant documents considered
in PA 1084

Number of relevant documents considered
in PV 182

Time-span 1 January 2006–15 November 2021

Criteria for inclusion Title, abstract, and keywords should contain
search terms. Only English documents.

Bibliometric software SciMAT and VOSviewer

2.2.4. Data Analysis

In this bibliometric review, the strategies for data analysis is divided into the follow-
ing categories:

• Worldwide published documents based on year-wise and country-wise on adopting UAV-PA
and UAV-PV: Under this analysis, we analyzed the documents published during the
considered time-span that are fetched from the database, and arranged them according
to the year of publication and presented in graphical form. We applied the same
methods for country-specific publications.

• Influenced authors world wide on adopting UAV-PA and UAV-PV: The world recognizes
excellent research, and hence, we chose three different categories to identify leading
authors on adopting UAV-PA and UAV-PV. These are: (i) on the basis of author’s
citation count, (ii) on the basis of most cited documents, and (iii) on the basis of the
number of documents produced by an author, and accordingly, we presented the
results in this manuscript.

• Most preferred journals and popular funding sponsors: To choose most preferred journals, it
is obvious to go for the number of articles published in the specific journals on adopting
UAV-PA and UAV-PV, and the same we applied to the popular funding sponsors.

• Leading institutions based on the citation counts on adopting UAV-PA and UAV-PV: To
identify leading institutions, we again focused on the citation count of the articles
published by an institute on adopting UAV-PA and UAV-PV.
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2.2.5. Evaluation of the Terminologies towards the Use of UAV-PA

The evaluation of PA terminologies since 2006 is shown in Figure 2 based on their
h-index. These terms can be found by looking at the strategic diagram (Figure 3) with the
help of SciMAT, a software that proved to be the most efficient in determining the trending
keywords (themes). A few of the most frequently used terms (h-index more than 10) and
relevant to this bibliometric study have been extracted from the strategic diagram, and their
thematic network structures are shown in Figure 4, and also, they are briefly introduced
below.

Figure 3. Strategic diagram shows keywords of (a) 2006–2013, (b) 2013–2018 and (c) 2018–2021. The
horizontal axis (centrality) depicts the importance of each subject and the number of links it has
with other themes, while the vertical axis (density) depicts the number of connections between each
cluster.

1. Vegetation Index (VI): VI is a common term for a class of indices that are used in
agriculture to derive a plant’s status via the observation of their reflected spectrum in
multiple bands [50]. Plants take in these lights and reflect near infrared (NIR), which a
human eye cannot see. Stressed or dead leaves will show more red light than healthy
leaves. Another term associated with VI is the Normalized Difference VI (NDVI),
where the health status is derived by considering a plant’s reflected spectrum in the
near-infrared and that in the visible range (red wavelengths). It is good to use the
NDVI index to figure out how healthy the plants are and how much biomass they
have. When the field is covered in healthy leaves, the NDVI index goes up. If an
area is there with a lot of vegetation, then NDVI may not be able to see very small
changes in the plants. Other approaches based on spectral indices are available and
are quite commonly employed, for more details on indices, one may consult [51].
In addition to monitoring plant health, VI is very important in determining canopy
height, chlorophyll content, when to start fertilizer, and when to start irrigation.

2. UAVs: UAVs are now becoming more popular when it comes to monitoring, not
only when applied to agriculture but also the other important aspects, such as power-
line inspection, pipeline monitoring, building and structure monitoring etc. UAVs
can fly autonomously over the area and take images of the various regions. The
information regarding where the vulnerabilities are present in the field is extracted
from these snapshots using standard tools. A decision support system uses this
information to determine how much fertilizer, water, or other resources are essential
and in what quantities. UAVs are becoming increasingly popular for monitoring,
not just in agriculture, but also in other critical areas, such as power-line inspection,
pipeline monitoring, construction and structural monitoring, and so on.

3. Unmanned Aerial Systems (UAS): The term UAS refers to the ensemble drones,
ground control systems, the cameras, GNSS, the software, maintenance tools that are
required to operate and enable UAVs to fly autonomously or remotely. UAS gives
freedom to the growers to make the decision online and, as an example of UAS system,
the article [52] can be followed to see how the UAV and the associated sensory devices
work in decision making.
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It is critical to note that the term remotely piloted aircraft (RPA) systems has been
used multiple times to refer to UAS systems. A review of RPA applications in PA
is provided in [53], where the authors use the term RPA to refer to UAVs or drones.
Additionally, the review article [54] discussed drones and RPAs as well as those with
the same name as RPAs that have been used in agriculture. In [55], a technique
for developing and constructing a prototype of a low-cost quadcopter-type RPA for
precision agriculture applications is described.

4. Sensors: Sensors are becoming less expensive and more advanced as technology
advances. The sensors are the backbone of the PA, providing vital information about
variability in farm areas. Sensors are also utilized to determine the viability of a given
crop being grown on farm area. Wireless sensors have been widely used to collect data
from farm fields and interact with UASs for further processing and decision making.
It is a good to follow [56] for additional information on sensors and sensory devices.

5. Detection Methods: There are various kinds of detection methods from the farm
available in the literature that talk about, for example, disease detection [57], crop
row detection [58], fruit detection [59], tree detection [60], weed detection [61], etc.,
using UAV. These detection methods further help in the decision making process in
the farm.

6. Soils: The first and utmost importance is given to soil management for PA [7]. Soil
management is a way of bifurcating the field into different categories depending on
soil content. The soil samples can be collected from different points/locations from
the field. The soil quality can be measured in the laboratories using the collected
samples and, depending on the categorization, it can be implemented [62]. The color
variations in the images of the soil acquired by drones after plowing the fields play
an important role in segregating the fields [7]. However, soil management is usually
very expensive and time-consuming since, in order to be effective, it has to be run
continuously. Similar outcomes but with very less effort can be obtained using UAVs
equipped with RGB cameras: through the acquisition of several RGB images from
the field, it is possible to infer whether the soil is sunny-wet, sunny-dry, shadow-wet,
shadow-dry and also other decisions via an off-line image processing [63].

7. Neural Networks (NNs): PA practices rely on accurate mapping of farmlands. A
neural network is a system for managing and mapping UAV remote sensing for the
best outcomes. When applied to UAVs for PA, NNs proved to be the best in remote
sensing in several situations. A multispectral camera along with the NNs has shown
that a semantic segmentation of citrus orchards is highly achievable with deep neural
networks [64]. Based on an NN technique, a methodology given in [65] proposes an
automatic strategy for the large-scale mapping of date palm trees from very-high-
spatial-resolution UAV images. NNs also played an important role in spraying UAVs.
For example, Khan et al. in [66] proposed an accurate real-time recognition method
based on NNs which is critical for UAV-based sprayers.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4. Thematic network structures. The size of the clusters is proportional to the h-index of the
associated documents and the significance of the theme in the research field, while the thickness of the
lines indicates the strength of the relationship between the clusters. (a) Vegetation index; (b) drones;
(c) UAS; (d) sensors; (e) detection method; (f) soil; (g) neural networks.
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3. Why UAV in PA?

It is convincing that as the world’s population grows, there is a need to enhance
what is done on the farm, and UAVs are a reasonable extension of improving productivity
and quality of the crops that will be cultivated [67]. The UAVs should hover over the
field and detect areas that have a significant infestation that cannot be seen from a distant
location, allowing a range of pesticides to be applied exclusively to smaller regions where
the infections are present [68]. The objective of these efforts is to achieve productivity
gains of 70% by 2050 to satisfy the growing requirements of the Earth’s population while
decreasing the area under agriculture [69]. UAVs fall under the category of aerial robotics,
which is the deployment of devices to perform beneficial tasks, including agriculture which
is the focus of this review study. The designed UAV system should have the required
payload capacity [70] and can fly to survey the area being monitored [71]. In addition (but
not limited to), the system may include near-infrared, visible cameras aboard, the potential
to use thermal cameras [72], and multispectral and hyperspectral cameras.

Technologies of UAV in PA

UAVs have recently been employed in agriculture for large-scale inspections as well
as irrigation [73] and fertilization [74]. A drone’s payload is made up of all the sensors and
actuators attached to it, i.e., (i) multispectral and hyperspectral cameras, (ii) infrared cam-
eras and RGB cameras, (iii) light detection and ranging (LiDAR) systems [75], and global
navigation satellite system (GNSS). More research into the integration of multi-sensors on
a UAV platform, such as RGB cameras, LiDAR, thermal cameras, and multi/hyperspectral
cameras, is needed to improve PA estimate accuracy [76]. The necessity for a thermal
camera aboard a UAV can be reduced by using the technique outlined in [77]. Due to
the restricted area available for picture collection, UAV photos seldom catch well-watered
plants or arid areas. The thermal camera is not required in the approach such as the one
described in [77], which focuses on certain mapping using just multispectral pictures, might
considerably decrease operating and investment expenses. A good quality image can be
achieved utilizing the suggested methods and control approaches of [78]. This research
also shows that the suggested methods can handle various image datasets, such as those
acquired by frame cameras with variable sensor-to-object distances over some crop fields.

When evapotranspiration is involved, it is sometimes apparent to utilize thermal
cameras. The current conventional technique for aligning thermal imaging employs GPS
logger data for the initial imagery spot; however, it does not account for changes in
meteorological conditions during the flight, leading to unsatisfactory outcomes. To improve
this scenario, three alignment and calibration techniques based on RGB image alignment
were developed in [79]. According to the findings of [80], the suggested thermal calibration
technique based on temperature-controlled standards can provide appropriate precision
and accuracy for UAV-based canopy temperature estimates applied to PA.

4. Why UAV in PV?

The key to success for any PV strongly depends on the collection of the maximum
amount of geo-referenced information of the whole vineyard and the technologies used
to monitor. Since the late twentieth century, UAVs have advanced quickly. UAV remote
sensing has been swiftly put into reality as agricultural remote sensing has improved.
Vegetation coverage monitoring, growth tracking, and yield estimates are among the most
common types of field growth data collected using UAV platforms [81]. In addition, UAVs
have partially solved terrestrial and high-altitude remote sensing shortcomings, offering
substantial support for PA crop information monitoring technologies [82].

4.1. Technologies of UAV in PV

The initial phase in the wine-making process is viticulture. The circumstances of the
vineyard and human decisions in the vineyard determine the quality of wine [83]. The
human decision for PV is based on the data received from the UAV sensors and attached
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tools [84]. The location of the vineyard influences the flavor of the grapes grown. The
majority of PV research is focused on vegetation index information [85]. The vegetation
index data may be gathered using multispectral cameras placed on the UAVs [86]. Changes
in items that affect our environment, such as water quality and plant cover, are measured
using these cameras. It is now feasible to build maps of vegetation coverage for the whole
region under examination using these cameras on UAVs. Using remotely sensed data, the
NDVI has been utilized to reveal discrepancies in grapevine performance. The NDVI is
calculated using the formula

NDVI =
ρnir − ρred
ρnir + ρred

, (1)

where ρnir and ρred are the reflectance levels in the near-infrared and in the red spectrum,
respectively [87]. In numerous investigations, NDVI readings in vineyards have been
related to leaf area index (LAI). The relationship between NDVI and vineyard LAI is well
known because NDVI is strongly linked to the gross quantity of chlorophyll. Increasing
leaf area leads to a higher gross quantity of chlorophyll per unit area of the vineyard. LAI
is a major physiological component for characterizing crop growth models and vegetation
indices for expressing crop growth status. The NDVI does not have a linear connection with
LAI. Using UAV platforms, many studies on spectral data monitoring growth indicators
such as LAI [88,89] have been conducted. Authors in [90] describe three models that use
a quad-rotor UAV platform with a digital camera to examine the link between LAI and
canopy coverage. A UAV fitted with hyperspectral cameras was deployed to evaluate
different cultivars to illustrate the feasibility of LAI monitoring in the context of PA [91].
Various methods of calculating vegetation indices have been used throughout history;
however, the most often researched vegetation indices are given in [92].

Multispectral cameras collect data from the electromagnetic spectrum across different
bands, or frequency intervals [93]. In particular, they are used for the NIR spectrum,
specifically in the range 800–850 nm, since this band is important for determining the health
of plants [94]. In the NIR spectrum, plants emit up to 60% of their total electromagnetic
radiated energy [95]. For measuring vegetation on the ground, differences in reflected
light in the NIR part of the spectrum are critical. Multispectral remote sensing datasets
are used to detect light energy reflected from objects on the earth’s surface and estimate
various physical and chemical characteristics of things that are not visible to the naked
eye. Following that, the measurements provide us with information about what is on the
ground. For example, vegetation is typically indicated by pixels with a spectrum containing
much NIR light energy.

The growers starts with the grape variety, and once that is achieved, understanding
the soil for them becomes important. Figure 5 shows a block diagram of the decision
making process for the categorization of the soil (mainly the field of plots on which the
grapevine is cultivated). The acquisition of aerial photographs takes place in the first block.
The photographs are used in the second block to create a mosaicked image of the site under
consideration [96]. This mosaicked image is also used to analyze the relationship between
various surface soil properties, such as organic matter, moisture, clay, silt, sand, and other
soil content, and then, the soil is categorized accordingly. When the vegetation indices value
were utilized as input data in trained techniques, the best performance in the categorization
of vineyard soil RGB pictures was obtained, with overall accuracy values around 0.98 and
high sensitivity values for the soil [97]. To monitor farmland soil parameters and crop
growth, the UAV’s remote sensing have been equipped with high-resolution hyperspectral
sensors [98].
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Image from UAV Image Processing Unit

Soil AnalysisSoil Categorization

Figure 5. Decision on soil categorization.

The use of UAVs equipped with RGB cameras has some limitations; indeed, during
the first tillage process when the fields are usually covered in vegetation and/or crop
leftovers, soil images cannot be shot. In addition, sometimes it is challenging to take
photographs in uneven terrain that affects the grape production. Elevation, latitude, slope,
and aspect are among the geographical elements that influence grape production [99]. For
instance, in many of the world’s best wine areas, nearby water and mountains have a strong
impact [100] as also temperature, sunshine, and wind [36]. Degree days are used to quantify
the amount of heat that accumulates over the course of the growing season [101]. The
amount of heat necessary for grapes to reach maturity varies depending on the grape type.

Photosynthesis and taste development require sunlight [102]. However, too much
exposure to sunlight might result in sunburn and shriveling of grapes. So, when planning
a vineyard, row orientation and sunshine are critical considerations. It is required to make
sure the afternoon sun is shining on the non-exposed section of the fruit [103]. In [104], a
technique for evaluating heat and radiative stress impacts in terms of temperature at the
cluster and canopy level is suggested. A high-resolution thermal monitoring method is
described, which uses a UAV and a wireless sensor network (WSN) to integrate remote
and proximal sensing.

Irrigation is required frequently in the summer due to dry weather or a lack of water-
holding capacity while, on the other hand, it is a common practice to give a vine as little
water as possible once it has reached full maturity [105]. In this regards, the amount of
water stress is crucial in order to decide when the irrigation should start, as well as its
duration. Furthermore, in this case, UAV-endowed image acquisition equipment can be
fruitfully exploited for the inspection of the targeted area, as sketched in Figure 6. For
example, in [106], a model utilizing UAVs is developed to evaluate on a plant-by-plant
basis stress sectors within the vineyard for optimal irrigation management and to detect
geographic variability within the vineyards.

The quantity of water accessible to the vine and the nutrients it requires are determined
by the soil type [107]. The macronutrients that we require are mostly nitrogen, phospho-
rus, and potassium [108]. From vineyard architecture to clonal and rootstock selection,
viticultural decisions are made to suit the specific characteristics of each location [109].
For example, because grapevines are sensitive to phylloxera, a soil parasite, the resistant
rootstock is frequently utilized to protect the vine [110].

Growers must consider vine density, row spacing, and direction while creating a
new vineyard so that distant sensing would be simple [111]. Canopy management is
one of the important measures to take by the growers. It requires continuous inspection
throughout the year. However, these operations are time-consuming and difficult for the
entire vineyard. The use of photogrammetric methods has shown to be effective to this
aim [27]. Increased airflow and sunshine in the fruiting zone and lower disease pressure
may be achieved by canopy management [112]. By maintaining the vineyard floor, farmers
may impact soil fertility and water availability [113]. Cover crops are mowed to limit
competition or used to reduce surplus soil moisture. Plants that affect the growth of the
vine are removed by tilling nitrogen-rich cover crops into the soil [114]. In [30], a novel
approach for assessing vineyard trimming is suggested, wherein UAV technology is used
to produce photogrammetric point clouds, which are then analyzed using object-based
image analysis algorithms.



Remote Sens. 2022, 14, 1604 13 of 30

Figure 6. A schematic of inspection from the drone.

The biggest obstacle for viticulturists is the weather, also because they have no control
on it. In a particular year, hail, spring frost, drought, extreme heat, and rain can lower
yields or degrade fruit quality. Pests and diseases also pose a danger to the vineyard’s
long-term viability. Powdery mildew is the most prevalent illness in most cases. In [115],
the authors propose a spatial-spectral segmentation technique for analyzing hyperspectral
imaging data obtained from UAVs and applying it to predicting powdery mildew infection
levels in undamaged grape bunches before veraison. Beginning with bud break, farmers
must be proactive in planning for and responding to this situation. Grapes are filled with
sugar as they get closer to ripeness, and when the fruit ripens, the sugar will leak through
the skin, providing a valuable food supply for the naturally existing fungus in the vines.
When this happens, it gets a disease called Botrytis bunch rot [116]. Grapevine viruses such
as leafroll, and bacterial infections like Pierce’s are spread by insects and require special
care [117]. It is required to employ integrated pest management to identify the appropriate
treatment approach. Control measures include anything from cultural techniques to canopy
management, vineyard floor operations, and perhaps, pesticides.

One of the most severe obstacles to present grapevine farming practices is a lack
of personnel. As technology develops and labor prices rise, we may expect increased
mechanization in the vineyard. As a result, growers must now address the problem of
sustainability and consider using an alternate strategy that incorporates UAVs to save time.

5. Results

This section provides results of the biblometric study on the popular trends globally
on adopting UAV-PA and UAV-PV, popular journals for academicians to submit their work,
available funding organizations, popular nations, institutions, and authors conducting
research on utilizing UAV-PA and UAV-PV.

5.1. Global Trends in Adopting the UAV-PA

The global trend in adopting UAV-PA is more inclined towards the USA, where many
researchers are working, followed by China, and then, Italy, as also Figure 7 depicts.
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Figure 7. Network showing the co-occurrence of the keywords PA and UAVs in the world (created
using VOSviewer https://www.vosviewer.com// accessed on 15 November 2021).

5.1.1. Worldwide Published Documents by Countries on Adopting UAV-PA

More than 80 nations are working on adoption of the UAV-PA, with the top ten
countries shown in Figure 8. This research was conducted using the Scopus database. As
of database, a total of 1084 relevant papers had been published globally, with ten nations’
publications depicted in Figure 8.

The USA has contributed a total of 238 papers. It is the leading country in releasing
documents on the use of UAV-PA, followed by China, which has published 202 documents,
and Italy, which has published 120 documents. Spain is in fourth place to release high-
quality publications, with 91 documents contributed, followed by Brazil in fifth place with
74 documents.

5.1.2. Worldwide Published Documents by Authors on Adopting UAV-PA

Around the world, numerous researchers have published research articles based on
the use of UAV-PA. The year-wise publication is shown in Figure 9. It can be observed from
the figure that the trend in the research towards the use of UAV-PA is increasing as the
year changes.

United States
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Figure 8. Published documents worldwide on adopting UAV-PA.
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Figure 9. Year-wise published documents worldwide on adopting UAV-PA (until 15 November 2021).

We classified leading authors on adoption of the UAV-PA into three categories, (i) on
the basis of the author’s citation count, (ii) on the basis of the number of documents
produced by an author, and, (iii) on the basis of the author’s most cited documents, and we
presented the results accordingly.

The top 15 most popular authors are represented in Figure 10 based on their citations
in the PA. According to Scopus, Dr. Francisca López Granados is the leading researcher
in this subject, with a total of 1525 citations in this field, and also she produced maximum
number of the documents compared to other researchers in the same field, see Figure 11.
She is a scientific researcher and member of the Imaging Group: Remote sensing applied
to Precision Agriculture and Malherbology at Institute for Sustainable Agriculture (IAS)
of the Spanish Council for Scientific Research (CSIC). If we refer to Table 2, the highest
cited article on adopting UAV in PA is titled on “Estimating biomass of barley using crop
surface models (CSMs) derived from UAV-based RGB imaging” with a total citation count
of 371 and is authored by Juliane Bendig, Andreas Bolten, Simon Bennertz, Janis Broscheit,
Silas Eichfuss and Georg Bareth, all associated with Institute of Geography (at the time of
publication of this article), GIS & RS, University of Cologne, Germany.
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Figure 10. Most cited authors on adopting UAV-PA.
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Table 2. Most cited documents on adopting UAV-PA.

Article Title Author Details Journal Name Year Citation Count

Estimating biomass of barley using crop sur-
face models (CSMs) derived from UAV-based
RGB imaging [118]

Bendig J., Bolten A., Bennertz S.,
Broscheit J., Eichfuss S., Bareth G. Remote Sensing 2014 371

Evaluating multispectral images and vege-
tation indices for precision farming applica-
tions from UAV images [119]

Candiago S., Remondino F., De Giglio
M., Dubbini M., Gattelli M. Remote Sensing 2015 335

Processing and assessment of spectromet-
ric, stereoscopic imagery collected using a
lightweight UAV spectral camera for preci-
sion agriculture [120]

Honkavaara E., Saari H., Kaivosoja J.,
Pölönen I., Hakala T., Litkey P.,
Mäkynen J., Pesonen L.

Remote Sensing 2013 334

Intercomparison of UAV, aircraft and satel-
lite remote sensing platforms for precision
viticulture [36]

Matese A., Toscano P., Di Gennaro S.F.,
Genesio L., Vaccari F.P., Primicerio J.,
Belli C., Zaldei A., Bianconi R., Gioli B.

Remote Sensing 2015 312

UAVs challenge to assess water stress for sus-
tainable agriculture [73]

Gago J., Douthe C., Coopman R.E.,
Gallego P.P., Ribas-Carbo M., Flexas J.,
Escalona J., Medrano H.

Agricultural Water
Management 2015 281

Assessment of unmanned aerial vehicles im-
agery for quantitative monitoring of wheat
crop in small plots [121]

Lelong C.C.D., Burger P., Jubelin G.,
Roux B., Labbé S., Baret F. Sensors 2008 278

Generating 3D hyperspectral information
with lightweight UAV snapshot cameras for
vegetation monitoring: From camera calibra-
tion to quality assurance [91]

Aasen H., Burkart A., Bolten A.,
Bareth G.

ISPRS Journal of
Photogrammetry and
Remote Sensing

2015 273

Multi-temporal mapping of the vegetation
fraction in early-season wheat fields using
images from UAV [122]

Torres-Sánchez J., Peña J.M., de Castro
A.I., López-Granados F.

Computers and
Electronics in
Agriculture

2014 267

Assessment of vineyard water status variabil-
ity by thermal and multispectral imagery us-
ing an unmanned aerial vehicle (UAV) [123]

Baluja J., Diago M.P., Balda P., Zorer
R., Meggio F., Morales F., Tardaguila J. Irrigation Science 2012 250

Estimating leaf carotenoid content in vine-
yards using high resolution hyperspectral im-
agery acquired from an unmanned aerial ve-
hicle (UAV) [124]

Zarco-Tejada P.J., Guillén-Climent
M.L., Hernández-Clemente R.,
Catalina A., González M.R., Martín P.

Agricultural and Forest
Meteorology 2013 198

Sensor Planning for a Symbiotic UAV and
UGV System for Precision Agriculture [125] Tokekar P., Hook J.V., Mulla D., Isler V. IEEE Transactions on

Robotics 2016 197
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Figure 11. Most documents published by an author on adopting UAV-PA.
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5.1.3. The Top Ten Journals with the Most Publications and Top Funding Sponsors on
Adopting UAV-PA

Researchers’ top chosen journals for publishing their work on UAV adoption in PA are
shown in Table 3. The ranking provided in the table is based on the number of documents
published in adopting UAV-PA.

Table 3. Most preferred journals on adopting UAV-PA.

Rank Journal Name Documents h-Index

1 Remote Sensing 111 124
2 Computers and Electronics in Agriculture 33 115
3 Nongye Gongcheng Xuebao Transactions of the Chinese

Society of Agricultural Engineering
30 51

4 Sensors 27 172
5 Precision Agriculture 23 63
6 Nongye Jixie Xuebo Transactions of the Chinese Society

for Agricultural Machinery
15 42

7 ISPRS Journal of Photogrammetry and Remote Sensing 13 138
8 IEEE Access 13 127
9 Agronomy 13 30
10 Drones 10 18

Researchers choose to publish their work on using UAV-PA for Remote Sensing, which
has a total of 111+ papers. With over 33 papers, Computers and Electronics in Agriculture
is the second most popular journal in this subject.

The top ten funding agencies in the world that have provided grants for the use of
UAV-PA are listed in Figure 12. China’s National Science Foundation leads the way in
financing research on using UAV-PA, with 51 articles published, followed by the European
Commission with 37 documents. According to papers released and available in the Scopus
database, most of the financing came from Europe, the United States, Brazil, and China
in UAV-PA.

51National Science Foundation of China

37European Commission

32Ministry of Science and Technology of the People’s Republic of China

25CAPES Foundation Brazil

25Ministacrio da Ciaancia Tecnologia e Inovasalo Brazil

24Council for Scientific and Technological Development Brazil

24National key Research and Development Program of China

23US Department of Agriculture

22European Regional Development Fund

19National Science Foundation (USA)

0 5 10 15 20 25 30 35 40 45 50
Documents

Figure 12. Popular funding sponsors with the most publications on adopting UAV-PA.

5.2. Global Trends in Adopting the UAV-PV

PV is fast acquiring international recognition. The worldwide trend in using UAV-PV
is leaning towards Italy, where many academics are working, followed by Spain, and finally,
the United States in the top three spots. The global trend in UAV-PV is shown in Figure 13.
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Figure 13. Network showing the co-occurrence of the keywords PV and UAVs in the world (created
using VOSviewer https://www.vosviewer.com// accessed on 15 November 2021).

5.2.1. Worldwide Published Documents by Countries on Adopting UAV-PV

Over 22 countries are working on UAV adoption in PV, with the top 10 countries
indicated in Figure 14. Referring to the Scopus database, a total of 182 articles related to
the use of UAV-PV had been published internationally as of 15 November 2021, with 10
countries’ publications shown in Figure 14.
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45
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31
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5

Figure 14. Published documents worldwide on adopting UAV-PV.

Italy has contributed a total of 63 papers. It is the leading country in terms of document
release on UAV-PV, followed by Spain (45 documents) and the United States (31 documents).
With 15 papers, Australia is the fourth and most popular country for issuing high-quality
publications, followed by France and Portugal with 13 and 11 documents, respectively.

5.2.2. Worldwide Published Documents by Authors on Adopting UAV-PV

Over hundreds of academicians from around the world have published articles on the
use of UAV-PV. Figure 15 shows the number of publications by year. The graph depicts the
research trend toward the usage of UAV-PV, increasing as the year passes. According to the
database, the trend towards using UAV-PV began in 2011.

According to the articles published, the top 10 highly cited researchers in PV are
listed in Figure 16. Dr. Alessandro Matese of the National Research Council’s Institute
of BioEconomy (CNR-IBE) in Florence, Italy, is the most cited researcher in the topic of
UAV adoption in PV, with a total of 777 citations to his name. He also has the most
articles published in this field (Figure 17), with 19, making him the most prolific author
in this field. Referring to Table 4, the highest cited article on adopting UAV-PV is titled
on “Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision
viticulture” with a total citation count of 312 and is authored by Alessandro Matese, Piero
Toscano, Salvatore Filippo Di Gennaro, Lorenzo Genesio, Francesco Primo Vaccari, Jacopo
Primicerio, Alessandro Zaldei, Beniamino Gioli who are associated with IBIMET CNR—
Istituto di Biometeorologia, Consiglio Nazionale delle Ricerche, Firenze, Italy (at the time

https://www.vosviewer.com//
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of publication of this article), and Claudio Belli, Roberto Bianconi who are associated with
Terrasystem s.r.l., Italy (at the time of publication of this article).
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12011
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Figure 15. Year-wise published documents worldwide on adopting UAVs for PV (until 15 November
2021).
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Figure 16. Most cited authors on adopting UAV-PV.
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Figure 17. Most documents published by an author on adopting UAV-PV.
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Table 4. Most cited documents on adopting UAV-PV.

Article Title Author Details Journal Name Year Citation Count

Intercomparison of UAV, aircraft and
satellite remote sensing platforms for pre-
cision viticulture [36]

Matese A., Toscano P., Di Gennaro S.F.,
Genesio L., Vaccari F.P., Primicerio J.,
Belli C., Zaldei A., Bianconi R., Gioli B.

Remote Sensing 2015 312

Assessment of vineyard water status vari-
ability by thermal and multispectral im-
agery using an unmanned aerial vehicle
(UAV) [123]

Baluja J., Diago M.P., Balda P., Zorer R.,
Meggio F., Morales F., Tardaguila J. Irrigation Science 2012 250

Estimating leaf carotenoid content in
vineyards using high resolution hyper-
spectral imagery acquired from an un-
manned aerial vehicle (UAV) [124]

Zarco-Tejada P.J., Guillén-Climent M.L.,
Hernández-Clemente R., Catalina A.,
González M.R., Martín P.

Agricultural and Forest
Meteorology 2013 198

A PRI-based water stress index combin-
ing structural and chlorophyll effects: As-
sessment using diurnal narrow-band air-
borne imagery and the CWSI thermal in-
dex [126]

Zarco-Tejada P.J., González-Dugo V.,
Williams L.E., Suárez L., Berni J.A.J.,
Goldhamer D., Fereres E.

Remote Sensing of
Environment 2013 173

Visualizing and quantifying vineyard
canopy LAI using an unmanned aerial ve-
hicle (UAV) collected high density struc-
ture from motion point cloud [127]

Mathews A.J., Jensen J.L.R.
Remote Sensing

2013 160

High-resolution UAV-based thermal
imaging to estimate the instantaneous
and seasonal variability of plant water
status within a vineyard [128]

Santesteban L.G., Di Gennaro S.F.,
Herrero-Langreo A., Miranda C., Royo
J.B., Matese A.

Agricultural Water
Management 2017 124

Relationships between net photosynthe-
sis and steady-state chlorophyll fluores-
cence retrieved from airborne hyperspec-
tral imagery [129]

Zarco-Tejada P.J., Catalina A., González
M.R., Martín P.

Remote Sensing of
Environment 2013 105

Detection of Flavescence dorée grapevine
disease using Unmanned Aerial Vehicle
(UAV) multispectral imagery [57]

Albetis J., Duthoit S., Guttler F., Jacquin
A., Goulard M., Poilvé H., Féret J.-B.,
Dedieu G.

Remote Sensing 2017 84

A novel methodology for improving
plant pest surveillance in vineyards and
crops using UAV-based hyperspectral
and spatial data [95]

Vanegas F., Bratanov D., Powell K.,
Weiss J., Gonzalez F. Sensors 2018 81

5.2.3. The Top Five Journals with the Most Publications and Funding Sponsors on
Adopting UAV-PV

Table 5 shows the top journals chosen by researchers for publishing their work on
UAV adoption in PV. The ranking provided here in the table is based on the number of
documents published in adopting UAV-PV.

Table 5. Most preferred journals on adopting UAV-PV.

Rank Journal Name Documents h-index

1 Remote Sensing 29 124
2 Acta Horticulturae 9 58
3 Computers and Electronics in Agriculture 7 115
4 Precision Agriculture 4 63
5 Sensors 4 172

Researchers choose to publish their study on utilizing UAV-PV in the journal Remote
Sensing, containing 29+ papers. On the other hand, Acta Horticulturae and Computers
and Electronics in Agriculture are the second and third most popular journals, with 9 and
7 articles, respectively.
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Figure 18 depicts the top five funding agencies on the globe that have given grants for
the use of UAV-PV. With 16 papers, the European Commission leads funding research on
the use of UAV-PV, followed by the European Regional Development Fund with 10 articles.
According to articles published and available in the database, the majority of the funding
came from Europe.

15European Commission

11European Regional Development Fund

7MIUR Italy

6NASA US

5U.S. Department of Agriculture

5Ministry of Economy (Spain)

0 3 6 9 12 15 18
Documents

Figure 18. Popular funding sponsors with the most publications on adopting UAV-PV.

6. Findings and Discussion

This bibliometric analysis is intended to provide scholars working in this field with
an update on UAV-PA and UAV-PV. This survey also recommended the popular journal
favored by researchers to publish their work, the popular funding agencies accessible,
popular nations, and popular authors based on their citations leading the research in using
UAVs for PA. This survey revealed the use of UAV-PA and UAV-PV plays an essential
role in increasing crop quality and yield by remote sensing the farm’s health and status.
This approach greatly reduces labor costs, manpower, and time for growers and vineyard
managers. Growers increase their production potential by using this approach since it
keeps the plants healthier and longer, allowing them to supply to the world, which is
the primary goal of using UAVs in PA. Viticulture is a key economic element in several
European nations. PV refers to the practice of grape growers and winemakers of using
various information technology tools. These tools required to better sense and grasp
variability in their production systems and then using that knowledge to better match
production inputs to desired or expected outputs. Crop sensors and yield monitors, remote
sensors, GIS, and GNSS systems rely on PV technical advances, which is a growing trend
in the wine business. The enhanced and cost-effective sensors, methods, and equipment for
data gathering from UAVs are driving significant growth in PV. In a sense, the UAVs are
proving to be the backbone of PA. Furthermore, there are many other options of sensors for
vineyards available. Especially, the proximal sensors that have proved to be one of the key
elements for the management of treatments and interventions within the vineyards. For
example, tractors and also unmanned ground vehicles have been designed to be able to
perform site-specific tasks without human intervention, credit to sensors that can keep an
eye on the plant’s health on-the-go [130]; an experiment was carried out without human
intervention during the night using an all-terrain vehicle developed in [131] to which
various sensors were attached to obtain an image of the vine in order to identify the berries;
in [132], a technique based on optical sensors is proposed for different irrigation treatments
to vineyards, allowing a non-invasive evaluation of plant water stress dynamics in a timely
manner; in [133], an experiment is conducted on 21 individual branches under various
canopy treatments, utilizing the proximal sensor to improve the accuracy of vineyard
yield estimation.

In the field of PV, there have been numerous developments in the use of UAV-PV. A
few of these are mentioned here, although there are more throughout the paper.

• Soil categorization: When the vegetation indices values were utilized as input data in
trained techniques, the best performance in the categorization of vineyard soil RGB
pictures was obtained, with overall accuracy values around 0.98 and high sensitiv-
ity values for the soil [97]. To monitor farmland soil parameters and crop growth,
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the UAV’s remote sensing have been equipped with high-resolution hyperspectral
sensors [98].

• Weed detection and control: In vineyards, bermudagrass is a major issue. The spectral
closeness of grapevines and bermudagrass makes it tough to distinguish the two
species using just spectral information from a multi-band image sensor. Using ultra-
high spatial resolution UAV pictures and object-based image analysis, this problem has
been solved and the accuracy of this approach to distinguishing between grapevines
and bermudagrass (Cynodon dactylon) is better than 97.7% [134]. Additionally, an al-
gorithm is proposed in [135] for detecting and mapping the presence of bermudagrass
based on spatial information, as well as for accurately mapping the presence of vines,
cover crops, Cynodon dactylon, and bare soil in order to apply site-specific treatment
to the vegetation. Furthermore, this research claims to be effective in controlling
bermudagrass in a short amount of time. As a result, the combination of UAV imagery
and the algorithm would enable farmers to continue cover crop-based management
schemes in their vineyards while also controlling bermudagrass.

• Disease detection: Disease detection is essential in preventing the disease from spreading
further in the vineyard. If the disease spreads in vineyards, it has severe economic
effects for the growers, and detecting the disease in the vineyard is one of the most
difficult tasks for viticulturists. A deep learning technique was reported in [136] to
identify areas of infection in the grapevine using the UAV by taking images in the
visible domain and then processing them with convolution neural networks to detect
the symptoms. This paper also claims that the technique used is more than 95.8%
accurate in detecting the infection. Flavescence dorée, a form of grape vine disease,
that can be identified using UAV multispectral data as reported in [57]. This study also
examines the potential for 20 variables, i.e., 11 related to vegetation indices, 5 depend
on spectral bands, and 4 associated with biophysical parameters, to be computed
from UAV multispectral imagery in order to remotely identify symptomatic from
asymptomatic areas in a vineyard.

• Monitoring the vegetation and irrigation control: Due to the direct relation between ra-
diation interception and evaporative surface, the canopy cover maps are used for
irrigation management primarily in order to calculate the basic evapotranspire coeffi-
cient. Crop size and temporal development rely on the water supply, and crop canopy
maps are accordingly measured to identify spatial irrigation system consistency. The
results of [137] showed that the green-red vegetation index (GRVI) is appropriate for
assessing vegetation cover. When it came to recognizing phenological crop changes
and detecting variety in field irrigation, the GRVI outperformed the NDVI. Motohka
et al. [138] suggested the usage of GRVI, which may be calculated using the formula

GRVI =
ρgreen − ρred

ρgreen + ρred
, (2)

where ρgreen is green reflectance, and ρred is reflectance of visible red. This GRVI is
used to determine (i) Green vegetation: ρgreen is higher than ρred, (ii) Soils: ρgreen is
lower than ρred, and (iii) Water or snow: ρgreen and ρred are almost the same.

• Grapevine maturity: It was discovered in [139] that by using spectral information
gathered from a UAV, it is possible to distinguish between vines of various vigor in
a Guyot-trained, mature vineyard of ‘Sangiovese’ located in Tuscany. A system for
determining the ripeness of grape clusters has been developed by the researchers in
Spain [140]. When a grape begins to become bluish, it is presumed to be ripe, and
using simple image processing and filtering, it is possible to identify mature grape
clusters in a short amount of time.

• Yield estimation: Forecasting yields is critical for harvest management and scheduling
wine-making activities. Traditional yield prediction approaches are time-consuming
and depend on manual sampling, making it challenging to account for vineyards’
inherent geographical variability. In [140], an unsupervised and automated method for
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detecting grape clusters in red grapevine types is established using UAV photogram-
metric technique and color indices, with R2 values greater than 0.82. This precision
gained in grape detection opens the door to red grape vineyard production prediction.
Every farmer aspires to forecast their vineyard’s yield estimation in advance, and
hence yield prediction is an important issue in vineyard management in order to
achieve the required grape production and quality. In [141], an automated system is
being developed that can predict yield estimation (5 weeks before harvest) using high-
resolution RGB photos and a UAV platform throughout the vineyard. A technique
has also been developed in [142] for capturing multispectral imagery through UAV,
which is then processed together with artificial neural networks to create a relationship
between the vegetation index, vegetated fraction cover, and yield. This technique
demonstrates that when machine learning is used, the outcomes are significantly
more accurate. Although promising results were obtained earlier in the development
process, more exact yield forecasts were achieved when images were captured nearer
to the harvest date.

During the study and utilizing the Scopus database, it was discovered that more than
80 countries are working on UAV adoption in PA as of 15 November 2021, with a large
number of articles relevant to the use of UAVs for PA having been published internationally.
The United States have provided the most papers and is the country that has released
the most documentation on the use of UAVs for PA, followed by China, Italy, Spain, and
Brazil. The top three publications favored by researchers working on UAV adoption for
PA are (i) Remote Sensing, (ii) Computers and Electronics in Agriculture, and (iii) Nongye
Gongcheng Xuebao Transactions of the Chinese Society of Agricultural Engineering. There
are three major funding agencies in this field: China’s National Science Foundation, the
European Commission, and China’s Ministry for Science and Technology.

PV is becoming more popular internationally as well. Globally, the use of UAV-PV is
trending towards Italy, where many researchers and academicians are working, followed
by Spain, and finally, the United States. Researchers preferred journals on using UAV-PV
are (i) Remote Sensing, (ii) Acta Horticulturae, and (iii) Computers and Electronics in
Agriculture. Two primary financing agencies for this area are (i) the European Commission
and (ii) the European Regional Development Fund.

The major institutions working in this field are also worth mentioning (based on their
citations), which are included in Table 6.

Table 6. Leading institutions working on adopting UAV-PA and UAV-PV.

Institutions Working on Adopting UAV-PA Citations Institutions Working on Adopting UAV-PV Citations

Instituto de Agricultura Sostenible—CSIC, Spain 2227 Consiglio Nazionale delle Ricerche, Italy 942
Universidad de Córdoba, Spain 765 Instituto de Agricultura Sostenible—CSIC, Spain 916
Consiglio Nazionale delle Ricerche, Italy 631 Istituto Di Biometeorologia, Florence, Italy 803
China Agricultural University, China 565 Università degli Studi di Torino, Italy 685

6.1. Some Lights on Economic Analysis

This section reports some costs that small growers can incur in case they want to
use/implement UAV-PA technologies, such that a rough idea of a possible investment can
be inferred. In particular, we briefly discuss the economic analysis in [36], where typical
costs of service providers are given, and we also add further information regarding the
costs in case an ad hoc custom solution is going to be implemented.

Farmers using UAVs to perform PA are aiming for high-quality images with high
precision, as well as the ability to take measurements from the field at any time they choose.
Due to high spatial resolution of imagery, high operational flexibility, and low operational
costs, UAVs have demonstrated that they can compete with traditional acquisition plat-
forms (such as satellites and aircraft). It has been observed that for small landholders with
an area of around 5 ha, UAVs appear to be the most cost-effective solution due to their
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low cost in data acquisition and use of advanced sensor technologies [36]. In [36], three
broad categories of cost analysis were considered with 100 images of the crop captured
by UAVs, and this service was purchased from a third party, namely data acquisition,
georeferencing and orthorectification, and image processing. The cost of data acquisition is
e1500, which includes the cost of organizing and carrying out the acquisition campaign
to obtain the raw images; the cost of georeferencing and orthorectification is e500; and
the cost of image processing is e200. Depending on where you live, services from UAV
providers can cost anywhere from $12 per hectare for raw image files to $70 per hectare
for an orthomosaic image in the United States [143]. If one does not wish to use a service
provider, another viable option is the AgriQ [144], which is a $1400 UAV that is developed
for PA. AgriQ consists of three subsystems: the drone, the multispectral imaging system,
and the open-source software that computes useful information for farmers [145]. The
authors approached the problem from four angles: (1) the drone’s construction; (2) the
vision algorithms; (3) the autonomous trajectory taking into account all parameters in
order to properly recover all of the crops’ visual information; and (4) the development of a
low-cost multispectral imaging system with multiple bands.

6.2. Future Possibilities

Acquiring and analyzing spectral data requires considerable additional cost and
skill sets that are frequently unavailable; therefore, the identification of geometric indices
that enable the monitoring of spatial variability using low-cost instruments based on
photogrammetry techniques and high-resolution RGB cameras will be critical in future.
There is a need for the rapid evolution of a yield forecast methodology based on UAV data
and machine learning techniques in order to avoid routine human engagement. Various
techniques for irrigation monitoring in a vineyard using UAVs have been developed, but
research is still lagging, and future research directions could include automated irrigation
based on crop water needs and monitoring of vines based on their physiology, more
precisely, control of grapevine irrigation based on plant-based models. It is now necessary
to develop a web-based one-stop service for UAV adoption in PV (and PA), which will
assist in providing information related to supporting field operations in the vineyard,
health monitoring of the vines and grapes, canopy management, and other key areas, as
well as providing online digital content that is accessible from any location. Finally, but
certainly not least, a UAV system with the bare minimal payload required for maximum
surveillance of the vineyards should be designed so as to make it cost effective and that can
be frequently used by the growers.
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Abbreviations
The following abbreviations are used in this manuscript:

GIS Geographic Information Systems
GPS Global Positioning System
GRVI Green-Red Vegetation Index
GNSS Global Navigation Satellite System
IoT Internet of Things
LAI Leaf Area Index
NIR Near Infrared
NDVI Normalised Difference Vegetation Index
PA Precision Agriculture
PV Precision Viticulture
RGB Red, Green, and Blue
RPA Remotely Piloted Aircraft
UAV Unmanned Aerial Vehicle
UAV-PA Unmanned Aerial Vehicle in Precision Agriculture
UAV-PV Unmanned Aerial Vehicle in Precision Viticulture
WSN Wireless Sensor Network
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