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Abstract: In this study, an unsupervised infrared object-detection approach based on spatial–temporal
patch tensor and object selection is proposed to fully use effective temporal information and maintain
a balance between object-detection performance and computation time. Initially, a spatial–temporal
patch tensor is proposed by performing median pooling function on patch tensors generated from
consecutive frames to suppress sky or cloud clutter. Then, a contrast-boosted approach that incorpo-
rates morphological operations is proposed to improve the contrast between objects and background.
Finally, an object-selection approach is proposed based on the cluster center derived from clustering
locations and gray values, thereby decreasing the search scope of objects in the detection process.
The experiments of five infrared sequence frames confirm that the proposed framework can obtain
better results than most previous methods when handling heterogeneous scenes in terms of gray
values. Experimental results of five real sequence frames also demonstrate that the spatial–temporal
patch tensor, the contrast-boosted approach, and object-selection approach can increase the recall
ratio by 6.7, 2.21, and 1.14 percentage units and the precision ratio by 1.61, 3.44, and 11.79 percentage
units, respectively. Moreover, the proposed framework can achieve an average F1 score of 0.9804
with about 1.85 s of computation time, demonstrating that it can obtain satisfactory object-detection
performance with relatively low computation time.

Keywords: unsupervised infrared object detection; spatial–temporal patch tensor; contrast-boosted
approach; object-selection approach; real infrared image sequences

1. Introduction

Infrared search-and-track systems (ISTS) have been widely applied to military appli-
cations such as missile warning, precision guidance, and space surveillance [1–3]. Infrared
small-object detection is one of the most important techniques that can influence the perfor-
mance of ISTS [4]. Infrared small-object detection aims to detect objects including ships,
airplanes, and vehicles on backgrounds of sea, sky, and land [5,6]. However, as shown
in Figure 1, unmanned aerial vehicle (UAV) objects in infrared images may take up only
several pixels, with little structural or texture information because they are far from the
imaging sensor [7,8]; thus, they may reduce the detection robustness. Moreover, complex
backgrounds, such as cloud clutter and sea clutter, may lead to low signal-to-clutter ratio
(SCR) [9,10], which may increase the difficulty of detecting small objects in infrared images.
For example, artificial heat sources and heavy clouds may increase the false-alarm rates [11].
Therefore, detecting objects with infrared image sequences is still a difficult problem.

Infrared object-detection methods usually consist of single-frame-based methods and
sequence-based methods according to the number of frames used for detecting objects in
infrared images [12]. Sequence-based methods including 3D matched filter [13], dynamic
programming [14], pipeline filter [15], and Kalman filter [16], assume that the background
is static between adjacent frames of the same image sequence. Nevertheless, the back-
ground usually changes rapidly in military applications because sensor platforms used for

Remote Sens. 2022, 14, 1612. https://doi.org/10.3390/rs14071612 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071612
https://doi.org/10.3390/rs14071612
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5006-0840
https://doi.org/10.3390/rs14071612
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071612?type=check_update&version=1


Remote Sens. 2022, 14, 1612 2 of 20

ISTS move fast even though the objects to be detected may remain static [17]. Therefore,
sequence-based approaches are unsuitable for potential applications. Single-frame-based
methods that detect objects in each frame by exploring the consistency between back-
ground pixels are investigated because they can represent the background information
more accurately.
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Figure 1. UAV objects in infrared images and their intensity distributions. (a) UAV object under the
sky background. (b) UAV object under the ground background. (c) Intensity distribution of infrared
image (a). (d) Intensity distribution of infrared image (b).

The prior information is one of the most important components in single-frame-based
infrared object-detection methods [18]. The infrared object-detection approaches can be
categorized into two types based on the type of prior information used, namely, local
prior-based methods and nonlocal prior-based methods [19].

Local prior-based approaches exploit a local background consistent prior that assumes
the background is slowly transitional and close background pixels are highly correlated [20].
However, real objects may break the local correlation hidden in the background pixels.
Under this assumption, traditional local prior-based approaches include 2D least-mean-
square filter [21], morphological filter [22], max-median filter [23], and their improved
methods. Unfortunately, traditional filters improve the edges of objects as well as the
sky–sea surface or heavy cloud clutter because these background structures also break
the local correlation. Approaches based on the saliency map that computes the difference
between objects and their neighborhood have been proposed to better distinguish objects
and background structures [24]. Multiscale patch-based contrast measure [25], local contrast
measure (LCM) [26], laplacian of Gaussian filter [27], multiscale gray difference weighted
image entropy [28], nonnegativity constrained variational mode decomposition [29], and
saliency in the Fourier domain [30] are used to obtain saliency maps. The local prior-based
methods may suffer from a nonuniform or heterogeneous background that ruins the spatial
consistency, thereby leading to a high false-alarm rate [31].

Different from local priors, nonlocal priors explore the nonlocal self-correlation prop-
erty of background patches by taking advantage of target sparsity and low-rank of back-
ground pixels in infrared images [32]. Essentially, these types of methods model objects
in infrared images as a sparse representation of the input data. A classical nonlocal
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prior-based approach called the infrared patch image (IPI) model [33] is proposed by
taking advantage of the nonlocal relation between background images. However, it suf-
fers from over-shrinking of targets and noise residual due to the nuclear norm of the
low-rank regularization term. Therefore, some improved versions of IPI are proposed
by better reconstructing a low-rank matrix. The patch tensor model [34] can explore
the nonlocal information on the assumption of low-rank unfolding matrices. Dictionary
learning and principal component pursuit approaches can separate the background and
target matrix from the original image. However, they cannot effectively handle infrared
images with complex background. Total variation should be combined with principal
component pursuit to address this problem [35]. However, the result may be a local
minimum because it approximates the l0 − norm [36] that represents the total number of
nonzero elements as the l1 − norm [37], representing the sum of the magnitudes. More-

over, lp − norm= (
n
∑

i=1
|xi|p)

1
p [38] is used to optimize the infrared small-object detection

approaches to better reach the global minimum [39]. To accurately detect the small target
located in a highly heterogeneous background, a low-rank and sparse representation model
is proposed under the multi-subspace cluster assumption [40]. The nonlocal priors are
more powerful and fit the real scenes effectively, but still suffer from sparse edges and
noise [41]. Moreover, existing approaches are faced with two drawbacks, namely, target
edges highlighted along with background edges, as shown in Figure 2a, and no clear edges,
as shown in Figure 2b.
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Figure 2. Drawbacks of existing prior-based methods. (a) Target edges highlighted along with
background edges. (b) No clear edges but the target is similar to the background.

A novel infrared object-detection approach based on spatial–temporal patch tensor
and object selection is proposed to fully use effective information in the temporal domain
and to maintain a balance between the object-detection performance and computation time.
Using the spatial–temporal patch tensor, color-boosted and object selection approach, UAV
targets under sky or cloud background can be detected in target images reconstructed from
original infrared images. The major contributions of this study are as follows:

1. The proposed framework is an unsupervised infrared object-detection method which
can provide effective means for infrared small-object detection when no labeled
information of true UAV targets is acquired.

2. The proposed spatial–temporal patch tensor can dig out the spatial and temporal evi-
dence hidden in infrared image sequences by performing median pooling operations
on three adjacent frames to further suppress the sky or cloud clutter and enable a
better target-detection performance.

3. An object-selection approach is proposed to automatically extract objects from infrared
images based on the cluster center derived from unsupervised clustering, which can
decrease the search scope of objects and the false-alarm rates.

This paper is organized as follows. Section 2 introduces the proposed framework for
infrared small-object detection consisting of constructing spatial–temporal patch tensor,
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contrast-boosted, and object-selection approach. Then, the dataset description and experi-
mental setup are depicted in Section 3. Experimental results and their analysis are shown
in Section 4. Section 5 concludes the study, and is then followed by future directions.

2. Materials and Methods

An unsupervised infrared UAV target-detection method based on spatial–temporal
patch tensor and object selection is proposed in this study. Figure 3 shows that the proposed
method can be divided into the following steps.
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Figure 3. The overall architecture of the proposed framework.

1. Constructing spatial–temporal patch tensor for each frame of infrared image se-
quences. For each frame of the infrared image sequence, its temporal window is
constructed with three adjacent frames. Patch tensor is constructed for each frame of
the temporal window with t sliding windows whose size is k× k. Median pooling
is applied to the patch tensor of all frames in the temporal window to obtain the
spatial–temporal patch tensor P ∈ Rk×k×t.

2. Calculating prior weight map and its patch tensor. The prior weight maps that can
reflect the background and object information in infrared images to some extent are
calculated for each temporal frame by combining local and nonlocal priors. Patch
tensor of prior weight map WP ∈ Rk×k×t is constructed for each temporal frame with
t sliding windows with a size of k× k.

3. Decomposing background and target patch tensor from the spatial–temporal patch
tensor P and patch tensor of prior weight map WP. The patch tensor of temporal
frame P ∈ Rk×k×t is separated into a sparse patch tensor T ∈ Rk×k×t and a low-rank
patch tensor B ∈ Rk×k×t with the constraint of WP, which can be considered a target
and background patch tensor.

4. Reconstructing background and target images from background and target patch ten-
sors. Background image IB and target image IT are reconstructed from the background
patch tensor B and target patch tensor T.

5. Performing the proposed contrast-boosted method on reconstructed target images. To
enhance the contrast between gray values of background pixels and target pixels, the
contrast-boosted approach that combines Tophat operations with Bothat operations
are performed on reconstructed target images to obtain enhanced target images.
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6. Segmenting UAV targets from the enhanced target images by the object-selection
approach based on the cluster center. Candidate pixels that satisfy the threshold of
prior weight map are obtained for each frame. Then, the object-selection approach is
proposed to determine the optimal object number by clustering the candidate object
pixels. Each cluster center is considered a detected object.

2.1. Construction of Spatial–Temporal Patch Tensor and Prior Weight Map

Construction of spatial–temporal patch tensor: The existing infrared object-detection
methods are usually based on the spatial patch tensor, which may ignore the temporal
information hidden in infrared image sequences. Therefore, a spatial–temporal patch tensor
is proposed to solve this problem.

The main idea of spatial–temporal patch tensor is shown in Figure 4. Given an infrared
image sequence consisting of three frames Ik−1, Ik, Ik+1 in a sliding window ω × h× 3, a
temporal window is initially constructed for each frame, namely, Ik−1, Ik, Ik+1. Then, a
spatial patch tensor is constructed for each frame of the temporal window. Finally, median
pooling is performed on all spatial patch tensors to obtain the spatial–temporal patch tensor.
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Figure 4. Sketch map of constructing spatial–temporal patch tensor.

The idea of constructing a spatial patch tensor should be explained prior to illustrating
a spatial–temporal patch tensor. Overlapped local patches may contain spatial information
hidden in pixels because different patches may include the same pixel in one image.
Therefore, a spatial patch tensor from generated overlapped local patches in infrared
images is constructed. The procedure can be illustrated as follows. Initially, overlapped
local patches are generated from left to right and top to bottom in each frame of infrared
image sequences. Then, gray values of each pixel in the overlapped local patches are
vectorized as a column of a tensor. Finally, vectors of all local patches in the frame form the
spatial patch tensor.

The details of constructing a spatial–temporal patch tensor can be illustrated as follows.
A temporal window Ik−1, Ik, Ik+1 is constructed for frame Ik to fully use the temporal
information. For each frame in the temporal windows, spatial patch tensors Pk−1, Pk, Pk+1
are constructed. Three patch tensors in the temporal window that are generated by the
local patch located in the same place of image are highly correlated because adjacent frames
are usually highly correlated in image sequences. Therefore, the spatial patch tensors in the
temporal may be redundant. To reduce the redundancy of the spatial patch tensor and fully
use temporal information, median pooling is performed on three spatial patch tensors, as
shown in Equation (1), as follows:

Pmedian = median(Pk−1, Pk, Pk+1), (1)
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where the median value of corresponding elements of three spatial patch tensors is consid-
ered the value of the spatial–temporal patch tensor.

The size of the spatial–temporal patch tensor is the same as that of the spatial patch
tensor for each frame but with richer temporal information. The spatial–temporal patch
tensor can enrich the temporal information and better represent each frame of infrared
image sequences.

Construction of prior weight map: Existing prior weight-based methods use structure
tensors [42] to distinguish between image boundaries and real objects. Structure tensors
are widely used in many partial differential equation (PDE)-based methods [43] to estimate
the local structure information in the image, including edge orientation. To integrate the
local information, the structure tensor is constructed based on a local regularization of a
tensorial product, which is defined in Equation (2), as follows:

Jα(∇Iσ) = Gα ∗ (∇Iσ ⊗ Iσ) =

(
J11 J12
J21 J22

)
(2)

where Iσ is a Gaussian-smoothed version of a given image I. σ > 0 is the standard deviation
of the Gaussian kernel; it denotes the noise scale, making the edge detector ignorant of
small details. Jα is a symmetric and positive semi-definite matrix.

Two highest eigenvalues λ1 and λ2 of the structure tensor can be used as two feature
descriptors of the local geometry structure, which can be calculated as Equation (3).

λ1, λ2 = (J11 + J22)±
√
(J22 − J11)

2 + 4J2
12 (3)

A combination of eigenvalues can enhance image boundaries, which can distinguish
image boundaries similar to those of targets. The existing local prior is designed in
Equation (4).

WLP = exp(h× (L1 − L2)− dmin

dmax − dmin
) (4)

where L1 and L2 can be calculated by applying Equations (2) and (3) to every pixel in the
input image I, h is a weight-stretching parameter, dmax and dmin are the maximum and
minimum of eigenvectors L1 and L2, respectively.

However, λ1− λ2 operator cannot identify whether image boundaries are background
or targets. As a result, objects located at corner regions disappear or over-shrink.

To address these problems, the prior weight map WP improves the corner strength
function Wcs [44], as shown in Equations (5) and (6).

WP(x, y) = max(λ1, λ2)Wcs (5)

Wcs =
λ1λ2

λ1 + λ2
(6)

where (x, y) represents the location of pixel. The prior weight map WP consists of two
parts. The first part max(λ1, λ2) replaces the λ1 − λ2 operator with the maximum operator
max(λ1, λ2) to suppress the problem in the λ1 − λ2 operator to some extent. In the second
part, λ1 + λ2 and λ1λ2 denote the trace and determinant of the structure tensor, respectively.
The second part, namely, Wcs can not only highlight object information as expected, but
also identify the objects located at corner regions.

Then, the prior weight map WP is normalized with Equation (7).

WP =
WP −Wmin

Wmax −Wmin
, (7)

where Wmin and Wmax represent the minimum and the maximum of the prior weight map
WP, respectively.
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2.2. Reconstructing Background and Target Images from Spatial–Temporal Patch Tensor

Reconstructing background and target patch tensor: Existing methods impose tensor
robust principal component analysis [45] to separate sparse and low-rank tensors, as shown
in Equation (8).

min
B,T

rank(B) + λ‖T‖0 s.t.D = B + T, (8)

where D, B and T represent the input, background, and target patch tensor, respectively; λ
represents the tradeoff parameter between the background patch tensor and target patch
tensor. ‖ ‖0 represents the number of nonzero elements. However, the low-rank of tensors
cannot be evaluated in a mathematical approach.

To approximate the rank of the patch tensor more accurately and to incorporate prior
information into the model that separates low-rank and sparse matrices, the objective
function is modified in Equation (9), as follows:

min
B,T

n3

∑
i=1

min(n1,n2)

∑
i=N+1

σi(B) + λ‖T ⊗Wrec‖1, B ∈ Rn1×n2×n3 (9)

where ⊗ represents the Hadamard product [46], and ‖ ‖1 represents the sum of absolute
values of all elements in the tensor. Each element in Wrec represents the reciprocals of the
corresponding element in WP. N represents the preserved target rank, and σi(B) is the
i-th largest singular value of B. The objective function Equation (9) can be solved with
alternating direction method of multiplier (ADMM) solver [47] whose procedure is shown
in Algorithm 1.

Algorithm 1. ADMM solver

Input: Patch tensor of original image D, prior weight map Wp, tradeoff parameter λ, penalty factor µ0,
preserved target rank N, stopping threshold ξ, and learning rate of penalty factor ρ.
Output: Patch tensor of target and background images Tk and Bk .
Initialize: Bk = Tk = 0, µ0 = 3× 10−3, ρ = 1.1, k = 0.

(1) Calculate the Langrangian function of Equations (9) with Equation (10).

L(B, T, W, M) =
n3

∑
i=1
‖B‖p=N + λ‖T ⊗Wrec‖1 + (B + T − D)⊕ y +

µ

2
‖B + T − D‖2

F (10)

where y represents the langrangian multiplier. ⊕ is the inner product of two tensors and ‖‖F is the Frobenius
norm.
(2) While not end of convergence do
(3) Calculate Tk+1 when fixing other parameters by solving Equation (11).

Tk+1 = argmin
T

λ‖T ⊗Wrec‖+
µk
2
‖Bk + T − D +

yk
µk
‖

2

F
(11)

(4) Calculate Bk+1 when fixing other parameters by solving Equation (12).

Bk+1 = argmin
B

n3

∑
i=1
‖B‖p=N +

µk
2
‖B + Tk+1 − D +

yk
µk
‖

2

F
(12)

(5) Calculate yk+1 and µk+1 with Equations (13) and (14), respectively.

yk+1 = yk + µk(D− Bk+1 − Tk+1) (13)

µk+1 = ρµk (14)

(6) Check the stopping criterion shown in Equation (15).

‖Tk+1‖0 − ‖Tk‖0
‖Tk‖0

≺ ξ (15)

(7) k = k + 1
(8) End while
(9) Return: background and target patch tensor Bk+1 and Tk+1
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As shown in Figure 5, diverse types of patches may include the same pixel because
local patches generated by the spatial patch tensor are usually overlapped. As a result, a
pixel in infrared images may have several pixel values due to overlapped local patches.
To determine pixel values from overlapped patches, a median function is introduced to
reconstruct each pixel value as the median values of pixel values from overlapped patches,
as shown in Equation (16).

v = median(x) (16)

where v ∈ R and x ∈ Rp are vectors including pixel gray values from p local patches.
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Figure 5. Reconstruction of pixel values from patch tensor.

Contrast-boosted approach for target images: When reconstructing target and back-
ground images from original images, gray values of objects are lost in the background
image to some extent because parts of objects are similar to the backgrounds. Therefore,
target images should be enhanced in terms of the contrast between object and background
to better distinguish between target and background pixels. Therefore, a contrast-boosted
approach that combines Tophat [48] with Bothat [49] operations is proposed.

The contrast-boosted approach is performed to achieve an enhanced target image TE,
as shown in Equation (17), as follows:

TE = T + Ttophat − Tbothat (17)

where Ttophat and Tbothat can be computed as Equations (18) and (19).

Ttophat = T − (T ∗ b)÷ b, (18)

Tbothat = (T ÷ b)× b− T, (19)

where b represents the structure elements, × represents the dilation operation, and ÷
represents the erosion operation.

As shown in Figure 6, the gray values of objects are improved after performing
the contrast-boosted method shown in Equation (17) on target images. The enhanced
target images can better distinguish between background pixels and object pixels, thereby
decreasing the false-alarm rate.

2.3. Object-Selection Approach Based on the Cluster Center

After obtaining enhanced target images, objects should be detected. When detecting
objects in target images, the number of objects should be determined. Therefore, an object-
selection approach is proposed for improving target images based on the cluster center
derived from clustering locations and gray values. The main idea of determining the
optimal number of objects is shown in Figure 7. The object selection approach can be
divided into the following steps:
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Figure 7. Determination of object number from candidate objects.

A predefined threshold τ is used to select candidate object pixels because the prior
weight maps calculated can reflect the possibility that one pixel belongs to the target.

Then, the optimal number of objects is determined by clustering candidate object
pixels in terms of locations and gray values with k-means based on the assumption that
close candidate object pixels are likely to belong to the same object. The procedure of
determining the optimal number of objects is shown in Algorithm 2.

Finally, cluster locations of candidate object pixels with the determined optimal object
number. Each cluster is considered a detected object.

The object-selection approach can decrease the false-alarm rate and the search scope of ob-
jects to obtain satisfactory object-detection performance with relatively low computation time.
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Algorithm 2. Determination of optimal object number

Input: Locations and gray values of candidate objects Lc and Gc, the stopping threshold τ1 and τ2.
Output: The optimal object number Ok.
Initialize: Cluster number k = 1.

(1) Cluster locations and gray values of candidate object pixels with k-means and cluster number
k, respectively.
(2) While not end of convergence do
(3) k = k + 1.
(4) Calculate the distance between each cluster center derived from clustering locations and
locations, respectively, with Equations (20) and (21).

Dl
c = ‖cl

i − cl
j‖2

(20)

Dg
c = ‖cg

i − cg
j ‖2

(21)

where cl
i and cg

i represent the i-th cluster center derived from locations and gray values of
candidate object pixels, respectively.
(5) Check the stopping criterion shown in Equation (22).

‖Dl
c‖ ≤ τ1 & ‖Dg

c ‖ ≤ τ2 (22)

(6) End while
(7) Return: optimal object number k − 1

3. Results
3.1. Description of the Datasets and Experimental Setup
3.1.1. Description of the Datasets

Five infrared approaches are employed to evaluate the performance of the proposed
infrared UAV target-detection method. The first dataset [50] is aimed at detecting and
tracking small UAV targets under the ground or sky background. This dataset is denoted
as dataset 1. Four representative image sequences are selected from 22 image sequences
to evaluate the proposed method under various scenes, namely, Sequence 3, Sequence
4, Sequence 16, and Sequence 18. Dataset 1 can be downloaded at the web address
of http://www.dx.doi.org/10.11922/sciencedb.902 (accessed on 6 March 2022). Table 1
describes the detailed information about all five infrared image sequences, and Figure 8
shows the examples and ground truth of four infrared image sequences in dataset 1. All
thermal images have the same size of 256 × 256. The spatial resolution of this dataset
ranges from 10 m to 100 m. The distance to targets ranges from 50 m to 500 m. The object
in this dataset ranges from 3 pixels to 10 pixels due to diverse distances to targets. The
ground truth of the dataset provides each image frame with its number of objects and the
center of object.

Table 1. Details of five representative infrared image sequences.

Sequences Number of Frames Average SCR Values Description of Scenes

3 100 2.17 Single object, close imaging distance, mixed sky and ground background, no
objects in some scenes.

4 399 3.75 Two objects, close imaging distance, sky background, cross flight

16 499 2.98 Single extended object, fast moving speed of objects, from close to far imaging
distance, ground background,

18 500 3.32 Single mobile object, from close to far imaging distance, ground background

1 70 5.11 Single mobile object, sky background, cloud clutter

http://www.dx.doi.org/10.11922/sciencedb.902
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Figure 8. Image samples of four infrared image sequences in dataset 1. Frames without objects
contain no red rectangles.

Another infrared image sequence that contains airplane targets under a complex sky
background has been experimented on to evaluate the robustness of the proposed method.
This sequence is denoted as dataset 2. All images in this dataset have a size of 256 × 200.
All images have the same spatial resolution, and the object size is 6 pixels. Examples of the
sequence along with their ground truth are shown in Figure 9.
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3.1.2. Experimental Setup

To prove the superiority of the proposed unsupervised infrared small-object detection
method, it is compared with seven publicly available infrared object-detection approaches
that reconstruct the background and the target from original infrared images and two deep-
learning-based approaches. The compared approaches include sequence-based approaches,
mixture of Gaussians (MOG) [51], nonlocal prior weight-based approaches IPI model [33],
non-convex rank approximation minimization (NRAM) [39], local prior weight-based
approaches tri-layer local contrast measure (TLLCM) [52], weighted scale local contrast
measure (WSLCM) [53], generalized structure tensor (GST) [54], and partial sum of the
tensor nuclear norm (PSTNN) [55] that combines local and nonlocal prior weights and deep-
learning-based approaches, you only look once (YOLO), and single-shot detector (SSD).
The target images obtained from seven methods not based on deep-learning approaches
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and the proposed framework are used to detect objects by using Algorithm 2. A window
with size of 5× 5 is used after ADMM is solved.

Table 2 describes the computer settings of the proposed framework and compared
methods. All experiments are implemented under MATLAB 2016a on a PC (Core i7-6700
CPU @ 3.40 GHz, 16.0 GB of memory) with Windows 7 x64 operating system.

Table 2. Parameter settings of state-of-the-art infrared small-object-detection approaches.

Type State-of-the-Art Methods Abbreviations Parameter Settings

Nonlocal prior weight

Infrared Patch-Image IPI Patch size 50, slide step 10,
λ = 1√

min(m,n)
, ε = 10−7

Non-Convex Rank
Approximation Minimization NRAM Patch size 50, slide step 10,

λ = 1√
min(m,n)

Sequence based approaches Mixture of Gaussians MOG
Temporal step 3, patch step 5, patch

size 50, component number 3,
maximum iterations 300

Local prior weight

Tri-Layer Local Contrast
Measure TLLCM

Gaussian kernel


1 2 1
2 4 2
1 2 1


16

Weighted Scale Local Contrast
Measure WSLCM

Gaussian kernel


1 2 1
2 4 2
1 2 1


16

Generalized Structure Tensor GST σ1 = 0.6, σ2 = 1.1, boundary width
5, filter size 5

Deep learning You Look Only Once YOLO

Batch size 32,initial learning rate
0.001,weight decreases 50% every

2000 iterations, maximum iterations
= 12,000, momentum = 0.9, weight

decay = 0.0005

Single-Shot Detector SSD

Batch size 32, initial learning rate
0.0005, weight decreased by 10%

every 500 iterations, 2000 max
iterations

Local and nonlocal prior
weights

Partial Sum of the Tensor
Nuclear Norm PSTNN Patch size 40, slide step 40, λ = 0.7

The proposed framework -
Patch size 40, slide step 40,

temporal size 3,
λ = 0.7, τ1 = 3.85, τ2 = 4.2, τ = 0.5

The precision ratio, recall ratio, F1 score, and average computation time are used to
evaluate the performance of infrared object-detection performance. The recall ratio (RR),
precision ratio (PR), and F1 score can be calculated according to Equations (23)–(25).

RR =
TP

TP + FN
, (23)

PR =
TP

TP + FP
, (24)

F1 =
2TP

2TP + FN + FP
(25)
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where TP represents the number of objects that are correctly classified, FP represents the
number of background objects that is classified as objects, and FN represents the number of
undetected objects.

3.2. Comparison with State-of-the-Art Methods in Five Sequences

Tables 3 and 4 show the recall ratio and precision ratio of the proposed framework com-
pared with competitive infrared object detection approaches. As shown in Tables 3 and 4,
the proposed framework achieves the highest precision ratio and relatively high recall
ratio, demonstrating that it is suitable for heterogeneous scenes, where the background
can be distinguished from the targets. The proposed framework can improve the recall
ratio by the proposed spatial–temporal patch tensor or the contrast-boosted approach and
increase the precision ratio by the object-selection method. SSD and YOLO achieve higher
recall ratio and lower precision ratio in most sequences because they do not have clutter
samples. The MOG algorithm achieves the highest recall ratio in four sequences but the
lowest precision ratio in sequences 3, 16, and 18, demonstrating that it is more suitable for
scenes, where background is different from objects in gray values. The MOG approach
delivers poor precision ratio because it considers the temporal information hidden in ad-
jacent frames, which may enhance the background information and cause false alarms.
PSTNN and GST approaches deliver poorer performance in terms of recall and precision
ratio because they lose object information when suppressing background information. IPI
and NRAM methods perform worse than the proposed framework in sequences 3, 4, and
16 but better than the proposed framework in sequence 18, demonstrating that they are
more suitable for sequences, where each frame contains only one object, and unsuitable for
scenes, where multiple objects or no object exists. TLLCM and WSLCM deliver acceptable
object detection performance in sequences 3, 16, and 18 but unsatisfactory performance in
sequence 4, demonstrating that they cannot handle scenes, where multiple objects exist.

Table 3. The recall ratio compared with state-of-the-art infrared object detection approaches.

Method
Dataset 1

Dataset 2
Sequence 3 Sequence 4 Sequence 16 Sequence 18

IPI 0.8235 0.9925 0.9879 0.942 0.986
NRAM 0.84 0.9013 0.9212 0.858 0.8861

GST 0.92 0.6875 0.9454 0.928 0.986
MOG 1 1 0.9919 0.99 0.7778

TLLCM 0.9867 0.7775 0.9798 0.906 0.875
WSLCM 0.8267 0.7488 0.9697 0.926 0.9589
PSTNN 0.9730 0.9525 0.9615 0.868 0.986

SSD 0.9941 0.9782 0.9580 0.9539 0.9857
YOLO 0.9962 0.9887 0.9639 0.9633 0.9929

The proposed framework 0.9865 0.9988 0.9838 0.938 1

Table 4. The precision ratio compared with state-of-the-art infrared object detection approaches.

Method
Dataset 1

Dataset 2
Sequence 3 Sequence 4 Sequence 16 Sequence 18

IPI 0.8046 0.9975 0.8989 0.9058 0.6863
NRAM 0.9843 0.9986 0.8686 0.8597 0.7527

GST 0.6330 0.9667 0.8014 0.7669 0.6863
MOG 0.4310 1 0.4630 0.4778 0.7778

TLLCM 0.8314 1 0.9291 0.8580 0.6667
WSLCM 0.7126 0.9967 0.9143 0.8820 0.986
PSTNN 1 0.9987 0.9327 0.9061 0.729

SSD 0.9902 0.9913 0.9194 0.9266 0.9929
YOLO 0.9773 0.9945 0.9266 0.9129 0.9857

The proposed framework 1 1 0.9898 0.938 0.986



Remote Sens. 2022, 14, 1612 14 of 20

Table 5 shows the comprehensive evaluation metric F1 score of the proposed frame-
work compared with state-of-the-art infrared object-detection approaches. The proposed
framework achieves an F1 score comparable or even higher than deep-learning-based
approaches SSD and YOLO, demonstrating that it can adapt to sequences when faced
with multiple objects and complex background. SSD and YOLO can achieve an F1-score
comparable to the proposed framework because object samples are used to train the object-
detection model. The MOG achieves the highest F1 score in sequence 4 and the lowest F1
score in other sequences, indicating that it is suitable for scenes, where objects are highly
different from the background. PSTNN performs effectively in sequences 3, 4, and 16
but delivers poor performance in sequence 18, indicating that PSTNN is unsuitable for
scenes, where objects are similar to backgrounds to some extent. The IPI approach delivers
satisfactory performance in sequences 4, 16, and 18 but unsatisfactory performance in
sequence 3. This condition is caused by the nonexistence of objects in some frames of
sequence 3. NRAM achieves a relatively high precision ratio at the sacrifice of the recall
ratio in five sequences. TLLCM and WSLCM are more appropriate for scenes, where only
one object exists, and these methods may suffer from multiple objects and no objects in
some frames of image sequences.

Table 5. The F1 score compared with state-of-the-art infrared object detection approaches.

Method
Dataset 1

Dataset 2
Sequence 3 Sequence 4 Sequence 16 Sequence 18

IPI 0.8140 0.9950 0.9413 0.9235 0.8092
NRAM 0.9065 0.9474 0.8941 0.9060 0.8139

GST 0.75 0.8035 0.8675 0.8398 0.8092
MOG 0.6 1 0.6033 0.6445 0.7778

TLLCM 0.9024 0.8748 0.9538 0.8813 0.7568
WSLCM 0.7654 0.8551 0.9412 0.9251 0.9722
PSTNN 0.9863 0.9750 0.9469 0.8866 0.838

SSD 0.9921 0.9854 0.9316 0.9374 0.9893
YOLO 0.9887 0.9921 0.9471 0.9415 0.9893

The proposed framework 0.9932 0.9994 0.9789 0.938 0.9929

3.3. Ablation Experiments

Tables 6 and 7 show the recall and precision ratio of ablation experiments. Table 6
shows that the spatial–temporal tensor, the contrast-boosted, and the object-selection ap-
proach can increase average recall ratio by 6.7, 2.21, and 1.14 percentage units, respectively,
in five sequences. The spatial–temporal patch tensor increases the recall ratio the most
because it considers the temporal information hidden in adjacent frames. The contrast-
boosted approach increases the recall ratio the second most in 3, 4, and 16 and dataset 2 but
reduces the recall ratio in sequence 18 because it may enhance the object and background
information. Thus, the possibility of detecting objects may increase. The object-selection
approach increases the recall ratio the least because it does not increase the possibility of
detecting objects.

Table 6. The recall ratio of the ablation experiments.

Method
Dataset 1

Dataset 2
Sequence 3 Sequence 4 Sequence 16 Sequence 18

Without spatial–temporal patch tensor 0.9067 0.9362 0.9313 0.888 0.9091
Without the contrast-boosted approach 0.9467 0.97 0.9757 0.958 0.9459
Without the object selection approach 0.9733 0.9812 0.9676 0.932 0.986

The proposed method 0.9865 0.9988 0.9838 0.938 1
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Table 7. The precision ratio of the ablation experiments.

Method
Dataset 1

Dataset 2
Sequence 3 Sequence 4 Sequence 16 Sequence 18

Without spatial–temporal patch tensor 1 1 0.9527 0.9217 0.9589
Without the contrast-boosted approach 1 0.9987 0.9306 0.8772 0.9333

Without object selection approach 0.869 0.9033 0.8615 0.8258 0.8642
The proposed method 1 1 0.9898 0.938 0.986

Table 7 indicates that the spatial–temporal tensor, the contrast-boosted approach, and
the object-selection approach can improve an average precision ratio by 1.61, 3.44, and
11.79 percentage units, respectively. The object-selection approach can increase the precision
ratio the most because it predicts the most suitable number of objects, thereby decreasing
the possibility of detecting background pixels as objects. The contrast-boosted approach
can increase the precision ratio because they can increase the possibility of detecting objects
by enhancing the gray value of objects. The spatial–temporal tensor slightly increases
precision ratio because more temporal information may enhance the object and background
information, thereby increasing the possibility of detecting background as objects.

3.4. Computation Cost

Table 8 shows the computation cost of the proposed framework along with other state-
of-the-art infrared object-detection methods. The computation time of deep-learning-based
methods only consists of time for testing each frame in the image sequence without the time
for training an object-detection model. Table 8 shows that the proposed framework achieves
a relatively balanced computation time of 1.85 s compared with existing approaches. GST
and PSTNN obtain lower computation time than the proposed framework but delivers
unsatisfactory object-detection performance. The MOG, IPI, and WSLCM require higher
computation time, which cannot satisfy the requirements of real-time object detection.
NRAM and TLLCM have computation time comparable to the proposed framework, but
their object-detection performance is worse. Although deep-learning-based approaches
require less than 1 s to test, the training time is thousands of seconds.

Table 8. The average computation time compared with state-of-the-art infrared object-detection
approaches.

Method
Dataset 1

Dataset 2
Sequence 3 Sequence 4 Sequence 16 Sequence 18

IPI 28.10 s 79.76 s 84.68 s 79.14 s 55.99 s
NRAM 1.32 s 1.57 s 1.10 s 1.15 s 1.21 s

GST 0.05 s 0.04 s 0.02 s 0.03 s 0.02 s
MOG 81.26 s 33.21 s 60.25 s 111.81 s 263.86 s

TLLCM 1.49 s 1.62 s 1.54 s 1.57 s 2.22 s
WSLCM 7.16 s 6.79 s 7.13 s 7.25 s 9.54 s
PSTNN 0.37 s 0.26 s 0.39 s 0.48 s 0.31 s
YOLO 0.921 s 0.421 s 0.755 s 0.589 s 0.673 s

SSD 0.04 s 0.04 s 0.02 s 0.03 s 0.04 s
The proposed framework 1.74 s 1.46 s 1.38 s 1.41 s 3.23 s

4. Discussion

Figure 10 shows the performance comparison in the 27th frame of sequence 3 between
the proposed framework and other existing methods. The proposed framework can detect
the actual UAV objects because the contrast-boosted approach can enhance the object
information when parts of object information are lacking. Figure 9 shows that NRAM, IPI,
GST, and WSLCM approaches fail to detect UAV targets because they cannot effectively
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handle scenes, where part of UAV targets is missing. TLLCM MOG and PSTNN approaches
can detect UAV targets but the MOG algorithm detects some background pixels as objects.
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Figure 10. Performance of the proposed method compared with state-of-the-art infrared object
detection methods in the 27th frame of sequence 3. (a) Original image along with its ground truth,
(b) proposed method, (c) IPI, (d) NRAM, (e) GST, (f) MOG, (g) TLLCM, (h) WSLCM, (i) and PSTNN.

Figure 11 shows the performance of the proposed framework in the 165th frame of
sequence 4 compared with other existing infrared object-detection methods. Figure 10
shows that the proposed framework can detect two true UAV targets because the object-
selection approach can determine the number of objects accurately, even though two objects
are close in images. NRAM, GST, TLLCM, WSLCM, and PSTNN approaches may miss
one UAV target because two UAV targets are very close in the 165th frame. The proposed
framework, MOG, and IPI approaches can accurately detect two UAV targets, whereas the
IPI method detects one background object as object.
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Figure 11. Performance of the proposed method compared with state-of-the-art infrared object
detection methods in the 165th frame from sequence 4. (a) Original image along with its ground truth,
(b) proposed method, (c) IPI, (d) NRAM, (e) GST, (f) MOG, (g) TLLCM, (h) WSLCM, and (i) PSTNN.

Figure 12 shows the performance of the proposed framework along with other existing
infrared object detection approaches in the 28th frame of sequence 16. Figure 11 shows
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that all methods including the proposed framework can detect true UAV targets because
the background can be suppressed effectively in this scene. However, IPI, MOG, and
PSTNN approaches detect some background pixels as objects because they do not suppress
background information effectively.
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Figure 12. Performance of the proposed method compared with state-of-the-art infrared object
detection methods in the 28th frame from sequence 16. (a) Original image along with its ground truth,
(b) proposed method, (c) IPI, (d) NRAM, (e) GST, (f) MOG, (g) TLLCM, (h) WSLCM, Additionally,
(i) PSTNN.

Figure 13 shows the error of the proposed framework in five sequences; it is caused
by different reasons. For (a), part of UAV objects is missing, leading to incomplete object
shape information. Objects of (b) are close in infrared images, which may lead to missing
detection of UAV targets. For (c)–(f), objects and background are highly similar in gray
values and may cause confusion between objects and background.
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Figure 13. Major confusion of the proposed framework. (a) 28th frame in sequence 3, (b) 164th
frame in sequence 4, (c) 207th frame in sequence 16, (d) 297th frame in sequence 16, (e) 25th frame in
sequence 18, and (f) 321st frame in sequence 18.

5. Conclusions

An unsupervised infrared object-detection framework based on a spatial–temporal
patch tensor and object-selection approach is proposed to address the problems of ignoring
the temporal information hidden in infrared image sequences, the low contrast between
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objects and background, and the imbalance between real-time processing and satisfac-
tory detection results. The proposed framework mainly consists of three contributions,
namely, the spatial–temporal patch tensor, the contrast-boosted, and the object-selection
approach. The following conclusions can be drawn from experiments performed on five
image sequences.

1. The proposed framework outperforms most previous infrared object-detection ap-
proaches that reconstruct the background and the target from original infrared images
when handling scenes, where the background is heterogeneous compared with objects
in terms of gray values.

2. Spatial–temporal patch tensor and the contrast-boosted approach can increase the
possibility of detecting real objects by utilizing temporal information hidden in ad-
jacent frames and enhancing the contrast between objects and background. The
object-selection approach can decrease the possibility of detecting background as
objects by determining the appropriate number of objects.

3. The proposed framework can achieve the average F1 score of 0.9804 with computation
time of approximately 1.85 s, demonstrating that it can obtain satisfactory object-
detection performance with relatively low computation time.

Section 4 shows that the proposed framework may cause confusion when part of UAV
objects is missing, objects are too close in infrared images or objects are highly similar to
background. More studies are required in the future to address the above-mentioned problems.
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Abbreviations

Abbreviations Explanation
ISTS infrared search and track systems
UAV unmanned aerial vehicle
SCR signal-to-clutter ratio
LCM local contrast measure
IPI infrared patch image
ADMM alternating direction method of multipliers
MOG mixture of gaussians
NRAM non-convex rank approximation minimization
TLLCM tri-layer local contrast measure
WSLCM weighted scale local contrast measure
GST generalized structure tensor
PSTNN partial sum of the tensor nuclear norm
t-SVD tensor-singular value decomposition
RR recall ratio
PR precision ratio
YOLO you look only once
SSD single-shot detector
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