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Abstract: Models based on capsule neural network (CapsNet), a novel deep learning method, have
recently made great achievements in hyperspectral remote sensing image (HSI) classification due
to their excellent ability to implicitly model the spatial relationship knowledge embedded in HSIs.
However, the number of labeled samples is a common bottleneck in HSI classification, limiting the
performance of these deep learning models. To alleviate the problem of limited labeled samples
and further explore the potential of CapsNet in the HSI classification field, this study proposes a
multiscale feature aggregation capsule neural network (MS-CapsNet) based on CapsNet via the
implementation of two branches that simultaneously extract spectral, local spatial, and global spatial
features to integrate multiscale features and improve model robustness. Furthermore, because deep
features are generally more discriminative than shallow features, two kinds of capsule residual
(CapsRES) blocks based on 3D convolutional capsule (3D-ConvCaps) layers and residual connections
are proposed to increase the depth of the network and solve the limited labeled sample problem
in HSI classification. Moreover, a squeeze-and-excitation (SE) block is introduced in the shallow
layers of MS-CapsNet to enhance its feature extraction ability. In addition, a reasonable initialization
strategy that transfers parameters from two well-designed, pretrained deep convolutional capsule
networks is introduced to help the model find a good set of initializing weight parameters and further
improve the HSI classification accuracy of MS-CapsNet. Experimental results on four widely used
HSI datasets demonstrate that the proposed method can provide results comparable to those of
state-of-the-art methods.

Keywords: convolutional neural network; capsule neural network; feature aggregation; residual
connection; hyperspectral image classification

1. Introduction

Hyperspectral remote sensing images (HSIs) contain rich spectral and spatial infor-
mation, which can greatly improve ground object recognition and provide a wide range
of applications in many fields [1–5]. In recent decades, various classification methods
based on spectral information have been proposed to perform HSI classification tasks,
such as random forest (RF) [6], support vector machine (SVM) [7], and k-nearest neigh-
bor (kNN) [8]. HSIs provide abundant spatial information, and their spatial resolution
continues to increase with advancements in sensor technology. In the HSI classification
field, the introduction of spatial information can significantly improve the robustness of
classification methods to noise [9–11]. Numerous studies on HSI classification based on
spectral-spatial information have been published. Zhao et al. [12] used a band subset-based
clustering and fusion technique to utilize the spectral and spatial information from HSIs
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simultaneously. As improvements continue to be made in SVMs, some effective techniques,
such as morphological profiles and multiple kernel learning, have been introduced to
accurately obtain the final classification result [13,14]. However, HSI data structures usually
present with high-dimensional and highly nonlinear characteristics, which easily cause the
Hugh phenomenon for supervised learning methods with limited training samples [10,15].

Deep learning methods, such as stacked autoencoders (SAEs) [16], deep belief net-
works (DBNs) [17], recurrent neural networks (RNNs) [18], and convolutional neural
networks (CNNs) [19–21], can automatically extract abstract features from low levels to
high levels and achieve accurate HSI classification results. Typically, CNNs dominate the
field of HSI image processing due to their characteristics of local reception and weight
sharing. For example, in [22], a 1D convolutional neural network (1D-CNN) was proposed
to extract pixel-pair features in the spectral domain to explore the correlation between
pixels and improve the generalization ability of the model. However, 1D-CNN only uses
the eigenvector of the spectral signal as the input data, ignoring much of the spatial infor-
mation. To make effective use of the rich spatial information in HSIs, the 2D convolutional
neural network (2D-CNN) was introduced to extract spectral and spatial information, and
dimension reduction algorithms were used to reduce the spectral dimension in the pre-
processing stage [23,24]. However, these 2D-CNN–based methods still experience spectral
information loss in the image preprocessing stage. Generally, HSI data are represented as
a three-dimensional cube that can be sampled in both the spatial and spectral domains
simultaneously by using a 3D convolution operation to simultaneously extract spectral and
spatial features. To make full use of the spectral and spatial information in HSIs, the 3D
convolutional neural network (3D-CNN) was proposed to extract spectral-spatial features
and further improve performance in the HSI classification field [25]. Li et al. [26] proposed
a lightweight 3D-CNN to classify HSIs that not only used fewer parameters but also greatly
improved the classification accuracy over the 2D-CNN and 1D-CNN. Generally, the quality
of feature representation is related to the depth of the model, but it is difficult to extract
fine deep spectral-spatial features by simply deepening the network through the stacking
of convolution layers [27]. In this instance, some effective techniques were introduced to
strengthen network information transmission, such as residual [28,29] and dense connec-
tions [30,31]. Furthermore, considering the strong complementary relationship between
different features, Zhang et al. [32] discussed the influence of different feature aggregation
methods on HSI classification and proposed a deep feature residual network (DFRN) and
deep feature dense network (DFDN) to fuse low-, middle-, and high-level features, which
significantly improved the HSI classification accuracy. Li et al. [33] proposed a two-stream
2D-CNN method to aggregate the spectral-spatial features extracted from multiple inputs,
achieving good performance. In addition, CNNs can be combined with other powerful
techniques to improve HSI classification performance, such as transfer learning [34], sparse
representation [35], metric learning [36], attention techniques [37], and morphological
profiles [38]. The performance of a deep learning model is related to the number of training
samples. Specifically, the performance is often relatively poor when the number of training
samples is limited. To fully utilize the advantages of a CNN, Chen et al. [39] integrated
ensemble learning and a CNN in the field of HSI classification, in which the final class of
the ground object is determined by voting on several simple CNN models; the final model
achieves a good classification result. Moreover, some learning-based methods were used to
alleviate the risk of overfitting [39,40].

Although outstanding achievements have been made in the use of CNNs in the HSI
classification field, there are still some drawbacks that limit model performance. First,
CNN-based classification methods usually have complex network structures and need a
large number of training samples. Second, CNNs ignore the spatial relationship between
the features of target objects because of the use of the max-pooling operation, which causes
the knowledge of spatial relationships and patterns that are important for identifying
complex objects to be lost. In addition, the scalar-output feature detectors in CNNs poorly
represent complex HSI data. To overcome these limitations, Sabour et al. [41] proposed a
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novel deep learning model, the capsule neural network (CapsNet), which showed more
powerful performance than CNN in the field of image processing. CapsNet uses dynamic
routing-by-agreement and capsules to encode the spatial relationship between different
features and enhance the feature representation ability. The length of the capsule output
activity vector represents the probability that the target object exists in the current input
image, and the direction of the vector represents the properties of the capsule. In the HSI
classification field, CapsNet can effectively extract the spatial relationship and pattern
knowledge between spectral-spatial features, thereby improving the cognitive capacity
of the model [42–45]. Paoletti et al. [46] proposed a spectral-spatial capsule-based net-
work that achieved accurate HSI classification and has a significantly simplified network
structure. Jiang et al. [47] presented a dual-channel CapsNet that extracts the spectral and
spatial features via two streams in the shallow layers of the CapsNet. However, because the
information transmission during dynamic routing between adjacent capsule layers occurs
in a fully connected manner, the model has too many training parameters and a large
calculation cost; this easily causes overfitting and impairs the classification accuracy when
insufficient training samples are available. To mitigate these problems, some powerful
techniques were integrated with CapsNet to enhance the HSI classification performance,
such as transfer learning [48], attention techniques [49], the maximum correntropy criterion
(MCC) [50], and generative adversarial networks (GANs) [51]. To radically overcome the
large number of training parameters of CapsNet, local connections and weight sharing
were introduced in dynamic routing to implement local dynamic routing [52,53]. However,
the simply shared weights in the dynamic routing could not generate a reasonable parent
capsule for each child, limiting model performance. Therefore, Lei et al. [54] introduced the
3D convolutional capsule (3D-ConvCaps) layer to produce a deep convolutional capsule
network (DC-CapsNet), further improving the HSI classification accuracy with limited
training samples. This led to a significant improvement in the performance of CapsNet.
Nevertheless, two important challenges remain in the HSI classification field. First, these
models can extract only one or two of the spectral, local spatial, and global spatial infor-
mation, which makes it difficult to exploit spectral-spatial features effectively. Second, the
shallow network structure constrains the extraction of deep spectral-spatial features.

To overcome the problem above and further explore the potential of CapsNet in
the HSI classification field, this study develops a multiscale feature aggregation capsule
neural network (MS-CapsNet) based on CapsNet via two branches that extract deep
local and global spectral-spatial features simultaneously. The first branch is the local
feature extraction module, designed to extract spectral and local spatial features from a
relatively small sized neighboring pixel block. The second branch is the global feature
extraction module, which is mainly responsible for extracting global spatial features from a
relatively large sized neighboring pixel block. Then, the spectral, local spatial, and global
spatial features are incorporated by concatenation to predict the final HSI classification
result. Furthermore, inspired by the success achieved by the CNN-based methods and
DC-CapsNet by going deeper, two kinds of capsule residual (CapsRES) blocks based on 3D-
ConvCaps layers [54] and residual connections [55] is proposed to further increase the depth
of the network and solve the limited labeled sample problem in HSI classification. Moreover,
we introduce the squeeze-and-excitation (SE) block [56], a lightweight gating mechanism
that emphasizes useful features and suppresses invalid features in the shallow layers of
MS-CapsNet to enhance the feature extraction ability. In addition, we propose a rea-sonable
initialization strategy to further enhance the performance of MS-CapsNet. Specifically, the
local feature extraction module and the global feature extraction module are initialized by
transferring parameters from two well-designed, pretrained deep convolutional capsule
networks, which could help the model find a good set of initializing weight parameters
and improve the HSI classification accuracy of MS-CapsNet.

The major contributions of this paper are listed as follows. (1) We propose a multiscale
feature aggregation capsule neural network based on CapsNet that can simultaneously
extract deep spectral, local and global spatial features via two branches. (2) We present two



Remote Sens. 2022, 14, 1652 4 of 21

kinds of capsule residual blocks based on 3D-ConvCaps layers and residual connections to
increase the depth of the CapsNet and solve the limited labeled sample problem in HSI
classification. (3) An elaborated initialization strategy is developed to further improve the
classification performance using two pretrained deep convolutional capsule networks with
well-designed decoder networks comprised of deconvolutional layers to find a good set of
initializing weight parameters for MS-CapsNet. The remainder of this paper is organized
as follows: Section 2 describes the detailed frame-work of MS-CapsNet, Section 3 presents
the results of experiments and discussion, and Section 4 draws the conclusion of the paper.

2. Multiscale Feature Aggregation Capsule Neural Network for HSI Classification

To make full use of spectral-spatial features in HSIs and capture more robust deep
spectral-spatial features, we implement a multiscale feature aggregation capsule neural
network (Figure 1) based on CapsNet and CapsRES blocks, which can simultaneously extract
the deep spectral, local spatial, and global spatial features from the input HSI data at different
scales through two feature extraction modules, and used an elaborate initialization strategy
to improve the HSI classification accuracy under conditions of limited labeled samples.
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Figure 1. Over framework of the MS-CapsNet. Input_1 and Input_2 denote the input data of the
local feature extraction module (Local) and global feature extraction module (Global), respectively.
w1 is the spatial size of Input_1 and w2 is the spatial size of Input_2. L represents the number of
spectral dimensions of the input data. N denotes the number of principal components of the input
HSI data after dimension reduction using principal component analysis (PCA). ‖L2 ‖ denotes the
L2-norm of a vector.
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2.1. The Capsule Residual Block

CapsNet has shown more powerful performance than CNN in the HSI classification
field with a simple architecture. Typically, the dynamic routing technique, the core of
CapsNet that replaced the max-pooling operation, can capture the spatial relationship
between different features including the spectral, spatial, and spectral-spatial features.
Thus, it can help CapsNet significantly improve the recognized accuracy of the complex
geographical objects and usually provide a better classification result with limited labeled
samples than CNN-based models. The process of dynamic routing can be represented as

sj = G

(
∑

i
cij

^
uj|i

)
(1)

^
uj|i = Wijui (2)

where sj is the vector output of capsule j, ui is the output of capsule i,
^
uj|i is the prediction

vector of ui, Wij is the transform matrix, cij are coupling coefficients determined by the
iterative routing process, and G is the activation function, named Squash [41], to ensure the
length of the sj is between 0 and 1. In this process, the capsule can effectively capture the
part-whole relationships of the geographic object.

However, the adjacent capsule layers are fully connected to each other for information
transfer in CapsNet, which results in more parameters and computations and easily leads
to overfitting when the number of training samples is too small. The 3D-ConvCaps layer
implements local routing by combining the 3D convolutional operation with dynamic
routing, greatly reducing the number of parameters and mitigating the risk of overfitting.
The 3D-ConvCaps layer encapsulates the child capsules into groups, named capsule tensor,
during the routing process and uses several adjacent groups of capsules to generate a
parent capsule. Thus, the model can focus on more detailed spectral-spatial information
during the information transfer process and generate a more robust parent capsule. The
process of 3D-ConvCaps layer can be represented as

Φl+1 = G

(
∑
s

Ks ·Us

)
(3)

U = Conv3D
(

Φl
)

(4)

where Φl and Φl+1 denote the output of capsule layer l and l + 1, respectively. U denotes
the prediction tensor and Us denotes the prediction tensor of capsule tensor s. Ks represents
the coupling coefficients corresponding to capsule tensor s and determined by the iterative
routing process.

Inspired by the success achieved by the CNN-based methods and DC-CapsNet by
going deeper and the fact that the deep features are generally more discriminative than
shallow features, we want to implement a deeper CapsNet to further explore the potential
of CapsNet in the HSI classification field. For the CNN-based methods for HSI classification,
residual connections are usually used to capture more discriminative deep spectral-spatial
features without excessively increasing the number of trainable parameters. In practice,
these connections could enhance the depth of the network, strengthen the flow of infor-
mation in the network, make the network easier to optimize, and effectively improve the
final classification accuracy. Therefore, this paper proposes two kinds of CapsRES blocks
based on the 3D-ConvCaps layer and residual connections (Figure 2) to obtain a deeper
CapsNet for HSI classification with limited training samples. CapsRES_A is used when the
spatial dimensions, the number of feature maps, and the dimension of the feature maps
of the residual block’s input xl and output xl+1 are the same. Otherwise, CapsRES_B is
used. These two CapsRES blocks help us build a deep capsule network with good HSI
classification performance when there are few training samples.
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2.2. Local Feature Extraction Module

In this study, the purpose of the local feature extraction module (the top elements in
Figure 1) is to extract the spectral and local spatial features from a relatively small sized
neighboring pixel block. The input data of the local feature extraction module (Input_1)
is a 3D cube from the original HSI with size w1 × w1 × L, that contain both the local
spatial information and all spectral information of the original HSI. Different from previous
methods based on spectral information that only extract features from the spectral domain
of HSIs, the introduction of local spatial information can help the MS-CapsNet model learn
the correlations between spectral bands, thereby improving the feature extraction ability
of the model. Given the complexity of HSIs, we use two traditional convolutional layers
(Conv_L1 and Conv_L2) in the shallow layers of the local feature extraction module to
transfer the image to obtain more abstract deep spectral-spatial features. It is worth noting
that each convolutional layer is followed by an SE block to refine the shallow local spectral-
spatial features of MS-CapsNet. Typically, the attention behavior of the SE block enhances
the feature extraction ability of the network by emphasizing valid features and suppressing
invalid features for current tasks, which is beneficial for the capsule layer to further explore
the spatial relationship between spectral-spatial features. The third layer, PrimaryCaps
(PrimaryCaps_L), is the first capsule layer, which converts neurons into capsules. Next,
two contiguous CapsRES blocks are used to obtain more robust high-level capsules. Finally,
the output of the CapsRES blocks is flattened to the same dimensions to prepare for feature
fusion. Furthermore, considering Input_1 is a relatively small sized neighboring pixel
block, the method of padding two shallow convolutional layers and PrimaryCaps_L is
set to “same”, which can enable the spatial shape of the input and output, to reserve the
boundary information and retain more local spatial information.

2.3. Global Feature Extraction Module

The global feature extraction module (the bottom elements in Figure 1) in this paper is
mainly responsible for extracting the global spatial information from the input HSI data.
The input data of the global feature extraction module (Input_2) are different from those of
the local feature extraction module. In practice, PCA is used to reduce the dimensionality
of the original HSI data by retaining only a few principal components. Then, a relatively
large sized neighboring pixel block with the target pixel as the center, mainly containing
the global spatial information of the geographic object, is used as the input data. In
practice, the shape of Input_2 can be expressed as w2 × w2 × N. Generally, the number of
dynamic routing iterations can seriously affect the calculation speed of the MS-CapsNet
model. Thus, we chose a similar model structure to the local feature extraction module but
with different parameters for the global feature extraction module; that is, the network is
composed of two traditional convolution layers (Conv_G1 and Conv_G2), two SE modules,
one PrimaryCaps (PrimaryCaps_G), and two consecutive CapsRES blocks to balance the
computational efficiency and classification accuracy for HSIs. It is worth mentioning that a
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large convolutional kernel is used in the traditional convolution layers and PrimaryCaps of
the global feature extraction module to extract the global spatial information. The relatively
large size of the neighboring pixel block and convolutional kernel help the global feature
extraction module extract more relevant global spatial features in the shallow layer and
transport them to the subsequent capsule layers to deeply mine the spatial relationships
and patterns that are important for the recognition of complex geographic objects and
further improving the classification accuracy with the HSI data. Moreover, due to Input_2
having a large spatial size, the method of padding two shallow convolutional layers and
PrimaryCaps_G is set to “valid”, which can reduce the time for training by losing the
boundary information.

2.4. Framework of the Proposed Model

As shown in Figure 1, the overall framework of MS-CapsNet is composed of the
local feature extraction module (Local) and the global feature extraction module (Global).
The local feature extraction module is mainly responsible for extracting spectral features
and local spatial features from the original HSI data. Its input data are a small portion
of adjacent pixel blocks that contains the spectral information of all pixels in the local
region. This branch uses a small convolutional kernel for local feature extraction. The
global feature extraction module extracts global spatial features from HSIs with only a
few principal components after dimensionality reduction. Its input data are adjacent
pixel blocks with a relatively large spatial size. To capture global information in the
shallow layer of the network, a large convolutional kernel is used for feature extraction.
Finally, the local features and global features extracted by the two branches are aggregated
using concatenation to predict the final classification result. Therefore, MS-CapsNet can
simultaneously extract spectral features, local spatial features and global spatial features
and capture the relationship between these features, which can effectively improve the
classification performance and alleviate the overfitting problem under conditions of limited
training samples in HSI classification.

The main architecture of MS-CapsNet for HSI classification is shown in Table 1. In the
local feature extraction module, the first two layers use 1× 1 (128 filters) and 3 × 3 (64 filters)
convolutional kernels to extract the low-level local spectral-spatial features from the input
HSI data. In practice, each convolutional layer is followed by an SE block. The third layer
is PrimaryCaps, which adopts a 3 × 3 kernel size to generate a total of 8 feature channels,
each of which contains 4 feature maps. Then, there are two consecutive CapsRES blocks.
The first block is CapsRES_A, which uses two 3D-ConvCaps layers with 3 × 3 × 4 kernels
to output eight 4D convolutional capsule units. The second block is CapsRES_B, which
contains three 3D convolutional layers. The first 3D convolution capsule layer of the
network backbone and the 3D convolution capsule layer of the residual mapping branch
output eight 8D convolutional capsule units through 3 × 3 × 4 kernels, while the second
3D convolution capsule layer of the network backbone uses a 3 × 3 × 8 kernel to generate
eight 8D convolution capsule units. The global feature extraction module is similar to the
local feature extraction module in structure. It starts with two 5 × 5 convolution layers
(128 and 64 filters), both of which is followed by an SE block. The third PrimaryCaps
layer uses a 9 × 9 kernel to output 8 feature channels, each with a dimension of 4. Next
are two contiguous capsule residual blocks, CapsRES_A and CapsRES_B, with the same
parameter settings as in the local feature extraction module. Compared with the local
feature extraction module, the global feature extraction module has a larger input data
space size and richer spatial information, so we set the padding as “valid” in the two
traditional convolutional layers and PrimaryCaps to reduce the computational cost and
accelerate the training process. Finally, the outputs of the local feature extraction module
and the global feature extraction module are stretched to 32 8D capsules and 72 8D capsules,
respectively. After feature fusion, 104 8D capsules containing local and global spectral-
spatial features are imported into a fully connected capsule layer, ClassCaps, to obtain the
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final HSI classification results. Typically, ClassCaps contains n_class (the number of classes)
capsules, each of which outputs a 16D vector to represent the corresponding ground object.

Table 1. Architecture of the MS-CapsNet framework.

Layer Kernel Size Stride Batch Normalization Padding Activation Function SE

Local Feature Extraction Module

L1 (1 × 1) × 128 (1, 1) YES YES Mish [57] YES

L2 (3 × 3) × 64 (1, 1) YES YES Mish YES

L3 (3 × 3) × 4 × 8 (2, 2) YES YES Mish, Squash NO

L4-L5 (3 × 3 × 4) × 4 × 8 (1, 1, 4) NO YES Squash NO

L6-L8 (3 × 3 × 4) × 8 × 8
(3 × 3 × 8) × 8 × 8

(2, 2, 4)
(1, 1, 8) NO YES Squash NO

Global Feature Extraction Module

L1 (5 × 5) × 128 (1, 1) YES NO Mish YES

L2 (5 × 5) × 64 (1, 1) YES NO Mish YES

L3 (9 × 9) × 4 × 8 (2, 2) YES NO Mish, Squash NO

L4-L5 (3 × 3 × 4) × 4 × 8 (1, 1, 4) NO YES Squash NO

L6-L8 (3 × 3 × 4) × 8 × 8
(3 × 3 × 8) × 8 × 8

(2, 2, 4)
(1, 1, 8) NO YES Squash NO

Feature Fusion Module

Layer Output size Activation function

L1 nclass × 16 Squash

2.5. Initialization Strategy

In this paper, the primary components of MS-CapsNet are a global feature extraction
module and a local feature extraction module. The local spatial information and spectral
information are extracted by the local feature extraction module, and the global feature
extraction module is responsible for extracting the global spatial information from HSIs. To
obtain more robust local and global spectral-spatial features, two well-designed pretrained
deep convolutional capsule networks are further trained to separately extract local and
global spectral-spatial information. In practice, inspired by [54], we propose two light
decoder networks composed of deconvolutional layers to further improve the feature ex-
traction ability of the pretrained deep convolution capsule networks. The main architecture
of the detailed decoder network for the pretrained models is shown in Table 2. Then, we
transfer all the optimal weight parameters of the two models before the classifier to the
local feature extraction module and global feature extraction module of MS-CapsNet to
initialize the weight parameters to help the model extract more expressive spectral features,
local spatial features, and global spatial features before feature aggregation. Finally, we
obtain MS-CapsNet-WI, an extension of MS-CapsNet with well-initialized weight parame-
ters, by fine-tuning the trainable parameters. The workflow of MS-CapsNet-WI for HSI
classification is illustrated in Figure 3.
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Table 2. Architecture of the decoder network for the pretrained models.

Local Feature Extraction Module

Fully connected layer

Layer Number of Neurons Batch Normalization Activation Function

L1 3 × 3 × 16 YES ReLU

Deconvolutional layers

Layer Kernel Size Stride Batch Normalization Activation Function

L2 (3 × 3) × 64 (1, 1) NO ReLU

L3 (3 × 3) × 32 (1, 1) NO ReLU
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Table 2. Cont.

Local Feature Extraction Module

L4 (3 × 3) × 16 (1, 1) NO ReLU

L5 (1 × 1) × L (1, 1) NO ReLU

Global feature extraction module

Fully connected layer

Layer Number of Neurons Batch Normalization Activation Function

L1 7 × 7 × 16 YES ReLU

Deconvolutional Layers

Layer Kernel Size Stride Batch Normalization Activation Function

L2 (3 × 3) × 64 (1, 1) NO ReLU

L3 (5 × 5) × 32 (1, 1) NO ReLU

L4 (5 × 5) × 16 (2, 2) NO ReLU

L5 (3 × 3) × N (1, 1) NO ReLU

3. Experimental Results and Analysis

To evaluate the performance of MS-CapsNet and MS-CapsNet-WI in HSI classification,
four public HSI datasets are introduced in this paper, i.e., Kennedy Space Center (KSC),
Pavia University (UP), Salinas (SA), and WHU-Hi-LongKou (LK) [58]. To increase the
training speed and avoid the risk of overfitting risk with limited training samples, early
stopping and a dynamic learning rate are introduced for MS-CapsNet. Under these condi-
tions, the training process stops if the validation loss does not decrease for 50 epochs, and
the learning rate is reduced by half if the validation loss does not decrease for 10 epochs.
The maximum number of epochs is set to 200, and the initial learning rate is 0.001. For
MS-CapsNet-WI, we use the same early stopping mechanism as MS-CapsNet but not the
dynamic learning rate, and the learning rate is set to 0.0001 after the experiments. During
the test, we use the overall accuracy (OA), average accuracy (AA), and kappa coefficient
(K) to quantitatively appraise the classification performance of the proposed models.

3.1. Experimental Datasets

The KSC dataset, which consists of images of 512 × 614 pixels and 176 bands and
includes 13 types of ground objects, was obtained in Florida in 1996. The UP dataset was
collected in Pavia, northern Italy. It consists of 103 bands with 610 × 340 pixels images
and 9 ground-truth classes. The SA dataset was gathered over Salinas Valley, California. It
has images of size 512 × 217 pixels and 204 bands, and 16 different land-cover classes are
included. The LK dataset was acquired in Longkou Town, Hubei province, China in 2018.
It contains 550 × 400 pixels images with 270 effective bands and nine land-cover classes.

3.2. Influence of Parameters

In this paper, the input data of MS-CapsNet are a set of neighboring pixel blocks
separated from the original HSI image. The larger the spatial size of the pixel block, the more
spatial-spectral information the model will extract. Therefore, the size of the neighboring
pixel block will influence the final classification result of MS-CapsNet. Moreover, the
input of the global feature extraction module is the HSI following dimension reduction
using PCA. The spatial information contained in the input data is related to the number of
principal components; thus, it is an important factor for MS-CapsNet. Furthermore, the
depth of the MS-CapsNet model generally has a great impact on its feature extraction ability.
Deeper spectral-spatial features tend to be more discriminant, but when the model depth is
too large, the number of model parameters will increase, which can easily cause overfitting
when the number of training samples is insufficient. The proposed model combines a local
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feature extraction module and a global feature extraction module; thus, the ability to extract
the spectral, local spatial, and global spatial features is related to the depths of these two
modules. So, the number of CapsRES blocks directly affects the depth of the model, and
further influence the classification performance of the model. Below, we analyze these
factors on the four HSI datasets to select the optimal network settings for MS-CapsNet.
In addition, the influence of the SE block and the feature aggregation are also explored in
this paper.

For all experiments in this section, 5% of the KSC datasets, 1% of the UP and SA
datasets, and 0.2% of the LK dataset are used for the training and validation sets, and the
remaining labeled samples are used as test samples to evaluate the performance of the
MS-CapsNet model.

3.2.1. Neighboring Pixel Block Size

In this section, we discuss the classification performance with different neighboring
pixel block sizes in the local feature extraction module and the global feature extraction
module. The numbers of principal components and CapsRES blocks in the two branches
are set to 3 and 2, respectively. The classification result as shown in Table 3, the global
block size is set to 27 × 27 when the OA varies as local block size varies, and the local
block size is set to 7 × 7 when the global block size is discussed. It is obvious that OA
generally increases as the spatial size of neighboring pixel blocks increases, and a significant
threshold effect is observed. However, slight fluctuations are observed when neighboring
pixel block size is set to 5 × 5 and 25 × 25 for the KSC dataset and to 25 × 25 for the SA
dataset, but the overall trend does not change. For the local branch, the highest OA is
obtained when the neighboring pixel block size was 7 × 7 for the KSC, UP, and LK datasets,
with a slight increase in the classification performance when we choose a neighboring
pixel size of 9 × 9 on the SA dataset. For the global branch, MS-CapsNet achieves the
best results with the KSC, UP, and LK datasets when the neighboring pixel size is 27 × 27.
In general, pixel blocks with large spatial sizes contain more global spatial information,
but more irrelevant information can also be introduced, which poses certain obstacles to
the classification performance of the model. Therefore, the OA decreases when the size
of the pixel block is set to 29 × 29. For the SA dataset, we observe a similar situation as
with the local branch; that is, the OA is the highest when the largest spatial size is chosen
for the neighboring pixel blocks. This may be related to the geography types and sample
distribution of the HSI dataset. Overall, we believe that setting the spatial size of the input
cube to 7 × 7 and 27 × 27 for the local and global feature extraction modules, respectively,
may be a good choice for MS-CapsNet.

Table 3. Overall accuracy (%) for different spatial sizes of neighboring pixel blocks with the Kennedy
Space Center, Pavia University, Salinas, and WHU-Hi-LongKou datasets.

Dataset
Local Global

3 × 3 5 × 5 7 × 7 9 × 9 23 × 23 25 × 25 27 × 27 29 × 29

KSC 98.63 98.61 99.27 98.72 98.33 98.10 99.27 97.86
UP 97.83 97.97 98.94 98.83 98.35 98.55 98.94 98.42
SA 96.74 97.31 98.58 98.65 98.05 97.92 98.58 98.61
LK 98.26 98.35 98.47 98.14 98.36 98.43 98.47 97.58

3.2.2. Number of Principal Components

In this section, we explore the performance of the MS-CapsNet model by setting the
number of principal components to 1, 3, 5, 7, and 10. The number of CapsRES blocks in
two branches is set to 2, and the spatial sizes of the neighboring pixel blocks are 7 × 7 and
27 × 27 for the local and global feature extraction modules. The classification results as
shown in Table 4. For the KSC, UP, and LK datasets, the OA increases at first and then
decreases with increasing numbers of principal components. The best results, 99.44%,
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99.19%, and 98.78%, respectively, are obtained when we choose the first seven principal
components. This is because the first few principal components in the HSI dataset generally
contain most of the spatial information. An excessive number of principal components will
increase the dimensionality of the input data and require more trainable parameters for
fitting; therefore, the classification accuracy of MS-CapsNet is reduced. For the SA dataset,
the optimal performance is achieved for 9 principal components, but it is only slightly
better than the performance for 5 and 7 principal components. Therefore, we choose 7 as the
number of principal components for the global feature extraction module of MS-CapsNet.
Notably, there is a sudden decline in the OA when the number of principal components
for the KSC dataset is 5. This may be related to the large similarity of the spectral-spatial
information of certain object classes (e.g., Slash pine, Oak, and Hardwood) in the images
for this number of principal com-ponents, leading to misclassification. For the SA dataset,
similar fluctuations occur when the number of principal components is 7.

Table 4. Overall accuracy (%) for different numbers of principal components with the Kennedy Space
Center, Pavia University, Salinas, and WHU-Hi-LongKou datasets.

Dataset 1 3 5 7 10

KSC 98.31 99.27 99.02 99.44 99.11
UP 97.85 98.94 99.04 99.19 99.00
SA 97.55 98.58 98.97 98.82 99.04
LK 98.23 98.47 98.54 98.78 98.53

3.2.3. Number of Capsule Residual Blocks

We assess the impact of the number of CapsRES blocks on the HSI classification
performance of MS-CapsNet in this section. The spatial sizes of the neighboring pixel
blocks for the local and global feature extraction modules are 7× 7 and 27× 27, respectively.
The number of principal components is set to 7. The classification results are shown in
Table 5. We use L1 + G2 to represent the model with one CapsRES block in the local feature
extraction module and two CapsRES blocks in the global feature extraction module. For
the KSC dataset, when the number of model layers is relatively small, an increase in the
number of CapsRES blocks in the global feature extraction module is often accompanied by
an improvement in model classification accuracy, while a decrease in the model accuracy
occurs when the number of CapsRES blocks in the local feature extraction module is
increased. The model achieves a peak accuracy of 99.44% with the L1 + G2 configuration.
The UP dataset contains urban images taken over a university. It contains many ground
objects with relatively small areas, such as Painted metal sheets, Asphalt, and Bitumen, as
well as classes with a relatively large area, such as Meadows. Therefore, the classification
accuracy increases as the number of CapsRES blocks in the two feature extraction modules
increases. With this dataset, MS-CapsNet achieves a peak classification accuracy of 99.30%
when the CapsRES block configuration is L2 + G3. For the SA dataset, when the model is
shallow, the classification accuracy increases as the number of CapsRES blocks in the local
feature extraction module increases. For the L2 + G1 CapsRES block configuration, the
model has the highest classification accuracy, 98.95%, decreasing as the number of CapsRES
blocks in the global feature extraction module increases. This may be related to the type of
geography in the SA dataset. Moreover, the model has the highest classification accuracy
for the LK dataset, reaching 98.28% when the number of CapsRES blocks in both feature
extraction modules is 2. Furthermore, the use of an excessive number of CapsRES blocks
will result in overfitting and the classification accuracy will be significantly decreased on
all four datasets. Taken together, the use of the L2 + G2 configuration for the number of
CapsRES blocks in the two feature extraction modules may be a good choice.
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Table 5. Overall accuracy (%) for different numbers of capsule residual blocks with the Kennedy
Space Center, Pavia University, Salinas, and WHU-Hi-LongKou datasets.

Dataset L1 + G1 L1 + G2 L2 + G1 L2 + G2 L2 + G3 L3 + G3

KSC 99.35 99.48 99.05 99.44 99.34 98.76
UP 99.05 99.17 99.07 99.19 99.30 99.08
SA 98.89 98.40 98.95 98.82 98.44 98.56
LK 98.75 98.67 98.38 98.78 97.86 98.10

3.2.4. Squeeze-and-Excitation Block

In this section, we discuss the impact of the SE block on the HSI classification per-
formance of MS-CapsNet. The numbers of principal components and CapsRES blocks
in the two branches are set to 3 and 2, respectively. The spatial sizes of the neighboring
pixel blocks are 7 × 7 for the local feature extraction module and 27 × 27 for the global
feature extraction module. The experimental results are shown in Table 6. The SE block
significantly improves the classification performance of MS-CapsNet with the four HSI
datasets. Specifically, the OA of MS-CapsNet with the SE block reached 99.27%, 98.94%,
98.58%, and 98.47% with the KSC, UP, SA, and LK datasets, respectively.

Table 6. Overall accuracy (%) without and with the SE block with the Kennedy Space Center, Pavia
University, Salinas, and WHU-Hi-LongKou datasets.

Dataset NO YES

KSC 98.87 99.27
UP 98.77 98.94
SA 98.32 98.58
LK 98.33 98.47

3.2.5. Feature Aggregation

In this section, the influence of feature aggregation is explored. The spatial sizes of the
neighboring pixel blocks are 7 × 7 and 27 × 27 for the local and global feature extraction
modules, respectively. The number of principal components is 7, and CapsRES block
configuration is set to L2 + G2. As shown in Table 7, feature aggregation results in higher
classification accuracy than use of the local feature extraction module or global feature
extraction module alone, achieving OA values of 99.44%, 99.19%, 98.82%, and 98.78% with
the KSC, UP, SA, and LK datasets, respectively. This is because the spectral and local spatial
features extracted by the local feature extraction module are complementary to the global
spatial features extracted by the global feature extraction module. Feature aggregation
helps MS-CapsNet exploit the local and global spectral-spatial features more effectively
and enhances its generalizability for limited training samples.

Table 7. Overall accuracy (%) for different feature fusion methods over the Kennedy Space Center,
Pavia University, Salinas, and WHU-Hi-LongKou datasets.

Dataset Local Global Local + Global

KSC 97.56 99.14 99.44
UP 97.19 98.48 99.19
SA 96.38 98.57 98.82
LK 97.96 98.31 98.78

3.3. Experimental Results and Discusion

To explore the potential of the model in classifying HSI data, we compare the clas-
sification performance of MS-CapsNet and MS-CapsNet-WI with that of SVM [7], 3D-
CNN [27], spectral-spatial residual network (SSRN) [30], DFDN [33], nonlocal CapsNet
(NLCapsNet) [50], and DC-CapsNet [55] methods with the KSC, IN, UP, and SA datasets.
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The architecture of MS-CapsNet and MS-CapsNet-WI is set as follows: the neighboring
pixel block size is 7 × 7 and 27 × 27 for the local and global feature extraction modules,
respectively, the number of principal components is 7, and the capsule residual block
configuration is L2 + G2. For all methods, the percentage of training samples and validation
samples is set to 3% for the KSC dataset, 0.5% for the UP and SA datasets; and 0.05% for the
LK dataset, the remaining labeled samples are used as the test dataset to evaluate the clas-
sification performance of the MS-CapsNet model. Table 8 shows the classification results
for all models with the KSC, UP, SA, and LK datasets. The proposed methods achieve the
best classification results, with substantially higher accuracies than other outstanding HSI
classification methods with the four datasets. The OA reaches 97.67% for MS-CapsNet with
the KSC dataset, with improvements of 15.84%, 10.02%, 4.59%, 9.24%, 4.46%, and 1.7% over
the SVM, 3D-CNN, SSRN, DFDN, NLCapsNet, and DC-CapsNet methods, respectively.
MS-CapsNet-WI further improves the classification accuracy over MS-CapsNet, with OA,
AA, and K reaching values of 98.25%, 96.87%, and 0.9805, respectively. For the UP dataset,
the highest OA was 97.58% for MS-CapsNet and 98.41% for MS-CapsNet-WI, representing
improvements of 0.87% and 1.70% over DC-CapsNet, respectively. With the SA dataset, the
best OA is 97.84% for MS-CapsNet and 98.20% for MS-CapsNet-WI, representing 0.70%
and 1.06% improvements, respectively, over DC-CapsNet. Similarly, the classification
accuracy of the proposed methods is greater than that of the other compared methods
with the LK dataset. The OA is 96.99% for MS-CapsNet and 97.35% for MS-CapsNet-WI.
Furthermore, the deep learning methods perform much better than SVM with all datasets.
The classification accuracy of DC-CapsNet is better than that of the CNN-based methods
and NLCapsNet, a shallower model than the 3D-CNN, SSRN, and DFDN models that
nevertheless outperforms 3D-CNN and DFDN because of the feature extraction capacity of
its capsule layer. Moreover, DFDN seems to overfit due to an excessive number of trainable
parameters.

Table 8. Classification results from different models with the Kennedy Space Center, Pavia University,
Salinas, and WHU-Hi-LongKou datasets.

Dataset Models SVM 3D-CNN SSRN DFDN NLCapsNet DC-CapsNet MS-CapsNet MS-CapsNet-WI

KSC
OA (%) 81.83 ± 0.04 87.65 ± 1.89 93.28 ± 1.25 88.43 ± 0.88 93.21 ± 0.79 95.97 ± 1.16 97.67 ± 0.63 98.25 ± 0.66
AA (%) 73.86 ± 2.33 85.69 ± 2.40 91.62 ± 1.02 87.58 ± 1.44 92.00 ± 0.95 93.43 ± 1.84 96.60 ± 0.71 96.87 ± 1.49
K × 100 79.73 ± 0.05 86.24 ± 2.11 92.51 ± 1.41 87.11 ± 0.96 92.43 ± 0.88 95.51 ± 1.29 97.41 ± 0.69 98.05 ± 0.73

UP
OA (%) 78.53 ± 0.74 86.55 ± 0.97 95.23 ± 0.57 88.77 ± 1.47 89.79 ± 1.96 96.71 ± 0.38 97.58 ± 0.54 98.41 ± 0.58
AA (%) 69.94 ± 0.91 82.76 ± 2.07 93.74 ± 0.52 86.06 ± 1.36 87.87 ± 2.05 95.51 ± 0.41 96.71 ± 1.01 97.59 ± 0.81
K × 100 70.68 ± 0.92 81.96 ± 1.29 93.75 ± 0.77 84.96 ± 2.01 86.42 ± 2.64 95.63 ± 0.50 96.79 ± 0.72 97.89 ± 0.77

SA
OA (%) 83.69 ± 1.39 87.81 ± 1.72 95.29 ± 0.26 88.80 ± 1.78 93.17 ± 1.61 97.14 ± 0.32 97.84 ± 0.74 98.20 ± 0.01
AA (%) 86.34 ± 2.05 92.18 ± 1.81 97.40 ± 0.13 90.53 ± 2.24 94.69 ± 0.71 98.06 ± 0.43 98.67 ± 0.35 98.60 ± 0.16
K × 100 81.75 ± 1.57 86.36 ± 1.96 94.76 ± 0.28 87.51 ± 1.99 92.39 ± 1.79 96.82 ± 0.35 97.60 ± 0.82 98.00 ± 0.01

LK
OA (%) 82.89 ± 0.35 92.60 ± 0.88 95.54 ± 0.48 92.54 ± 0.55 92.16 ± 0.91 94.83 ± 0.66 96.99 ± 0.47 97.35 ± 0.45
AA (%) 45.62 ± 0.52 83.13 ± 1.96 93.75 ± 0.22 80.99 ± 2.17 78.88 ± 1.58 86.56 ± 1.47 93.61 ± 0.44 93.03 ± 1.52
K × 100 76.45 ± 0.48 90.23 ± 1.12 94.10 ± 0.64 90.15 ± 0.74 89.61 ± 1.20 93.19 ± 0.86 96.03 ± 0.63 96.52 ± 0.60

Figures 4–7 show the classification maps of the different models for the KSC, UP, SA,
and LK datasets. SVM only extracts spectral features in classifying HSI data, so its classifica-
tion result exhibits much noise. The methods based on spectral-spatial features, including
3D-CNN, SSRN, DFDN, NLCapsNet, and DC-CapsNet, generate better classification maps
than SVM. Furthermore, due to the robust nature of the extracted spectral-spatial features,
MS-CapsNet and MS-CapsNet-WI achieve more accurate and smoother results that are
more similar to the reference false color image than those of the other compared methods.
Notably, MS-CapsNet and MS-CapsNet-WI are better than the other models in distinguish-
ing Meadows from Bare Soil in the UP dataset, but the distinction between Bricks and Trees
among the unlabeled samples is not ideal. Similar problems also arise with DFDN and
NLCapsNet, which introduce global spatial information during the feature extraction stage.
This may be because the distribution of label samples of these two classes in the dataset is
relatively scattered, and the spatial distance is relatively large. In this instance, the global
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spatial information could cause some confusion regarding the classification of adjacent
Bricks and Trees. In contrast, the methods based on local spectral-spatial features, including
3D-CNN, SSRN, and DC-CapsNet, do not perform well in distinguishing Meadows from
Bare Soil, but they have slight advantages in distinguishing certain unlabeled Trees from
Bricks in the UP dataset. In future research, we plan to develop an effective scheme for the
aggregation of global spatial and local spectral-spatial information.

To further evaluate the generalizability and robustness of the proposed MS-CapsNet
and MS-CapsNet-WI, we randomly choose 0.5%, 1%, 3%, 5%, 7%, and 10% of the labeled
samples from the KSC, UP, and SA datasets and 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5%
of the labeled samples from the LK dataset as the training set. Moreover, we introduce
one additional dataset, Indian Pines (IN) [54], to provide an additional verification of the
robustness of the proposed methods. It contains 145 × 145 pixel images with 200 effective
bands and 16 land-cover classes. For IN dataset, the network architecture of MS-CapsNet
and MS-CapsNet-WI is the same with the other four datasets, and the number of training
samples is the same with the KSC dataset. Figure 8 illustrates the OAs of the SVM, 3D-CNN,
SSRN, DFDN, NLCapsNet, DC-CapsNet, MS-CapsNet, and MS-CapsNet-WI methods
using these different numbers of training samples. Compared with the deep learning
models, the SVM typically has inferior accuracy. Thanks to the light and deep network
structure that involves consecutive spectral and spatial residual blocks, the performance
of SSRN is better than other CNN-based methods. When the proportion of the training
set is less than 3% for the KSC, UP, SA, and IN datasets, the classification results of SSRN
are greater than NLCapsNet. For the LK dataset, we choose a much smaller number of
training samples than the other four datasets, so the accuracy of SSRN is always higher
than NLCapsNet. SSRN even performs better than DC-CapsNet when the ratio of training
samples is 0.05% for the LK dataset. Furthermore, DC-CapsNet generally provides better
classification results than CNN-based methods and NLCapsNet due to the light network
structure and powerful feature extracted ability. Moreover, MS-CapsNet and MS-CapsNet-
WI achieve the best classification results among all compared methods with a small number
of training samples because of the more discriminative and robust spectral-spatial features
that they extract, and MS-CapsNet-WI is better than MS-CapsNet. However, because deep
learning models are data-driven methods, their performance is related to the number of
training samples. Therefore, the OA of the deep learning models increases rapidly as the
number of training samples increases, but the improvements in the proposed methods
are not clear. Additionally, the difference in accuracy between the MS-CapsNet and MS-
CapsNet-WI is also not obvious while the number of training samples is relatively large.

To study the complexity and computational efficiency of the proposed methods,
we also quantitatively discuss the training, test time and parameters of different deep
learning models in the following. As shown in Table 9, the time costs and parameters of
SSRN, DC-CapsNet, MS-CapsNet, and MS-CapsNet-WI are acceptable, and our methods
take more computational time and parameters than SSRN and DC-CapsNet. This is
because MS-CapsNet and MS-CapsNet-WI are composed of two branches to extract local
and global spectral-spatial features and have a deeper network framework, thus, they
contain a relatively large number of trainable parameters and need more time to transfer
the local and global spectral-spatial features. Fortunately, the classification accuracy of
MS-CapsNet and MS-CapsNet-WI is as good as we expect. Moreover, MS-CapsNet-WI
uses the elaborated initialization strategy and relatively small learning rate to further
improve the final classification accuracy, but small rate usually causes slow convergence
speed. Therefore, MS-CapsNet-WI has the same number of parameters as MS-CapsNet but
requires more training time. Moreover, the number of parameters for 3D-CNN, DFDN and
NLCapsNet is relatively large compared to other deep learning methods. In addition, the
computational cost of DFDN and NLCapsNet is higher than other methods, while 3D-CNN
takes the least time because of the shallow network structure.
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Table 9. Training, test time, and parameters under different models.

Dataset Methods 3D-CNN SSRN DFDN NLCapsNet DC-CapsNet MS-CapsNet MS-CapsNet-WI

KSC
Train (s) 36.41 60.08 798.56 1492.91 98.40 143.97 269.66
Test (s) 1.54 5.29 35.49 55.50 2.96 10.01 10.09

Parameters 2,087,553 309,845 1,244,410 6,068,096 409,728 716,864 -

UP
Train (s) 46.24 67.65 659.64 1441.15 47.42 132.58 307.78
Test (s) 8.67 11.39 151.76 323.62 20.01 61.77 66.23

Parameters 832,349 199,153 1,239,922 4,429,696 309,248 654,272 -

SA
Train (s) 61.44 125.94 1562.30 3040.28 129.61 283.18 420.32
Test (s) 18.86 26.63 373.50 778.01 32.65 87.96 92.87

Parameters 2,401,756 352,928 1,247,776 7,296,896 454,272 760,384 -

LK
Train (s) 35.29 80.62 2632.34 730.90 57.67 125.84 129.51
Test (s) 60.41 121.66 6011.48 1633.44 131.30 378.15 329.45

Parameters 3,497,949 454,129 1,239,922 4,429,696 501,632 675,648 -

4. Conclusions

In this paper, we proposed a deeper multiscale feature aggregation capsule neural
network based on CapsNet for spectral-spatial feature extraction and HSI classification. MS-
CapsNet can simultaneously extract the spectral, local spatial, and global spatial features
from the input HSI data at different scales through two feature extraction modules. Then,
the model aggregates these three kinds of features and outputs the final classification result.
Moreover, the SE block is introduced in the shallow layers of the MS-CapsNet to optimize
and refine the low-level features and enhance the feature representation ability of the
model. Furthermore, two kinds of capsule residual blocks based on residual connections
are proposed to build the deep capsule network. Then, we construct the deep network
structures of the local feature extraction module and the global feature extraction module
to help the model extract more discriminant deep spectral-spatial features. Additionally, an
extension of MS-CapsNet based on an elaborate initialization strategy, named MS-CapsNet-
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WI, is developed to further improve the classification performance with two pretrained
deep convolutional capsule networks to find a good set of initializing weight parameters for
MS-CapsNet. Experiments with the KSC, UP, SA, and LK datasets show that the proposed
methods achieve substantially better performance than state-of-the-art methods in the HSI
classification field, even with limited training samples.

Inspired by the potential of MS-CapsNet in performing multiscale feature extraction,
we will consider introducing multisource remote sensing images, such as light detection
and ranging (LiDAR), synthesis aperture radar (SAR), and multispectral remote sensing
images, for classification in the future.
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