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Abstract: As rapid urbanization occurs in cities worldwide, the importance of maintaining updated
digital elevation models (DEM) will continue to increase. However, due to the cost of generating
high-resolution DEM over large spatial extents, the temporal resolution of DEMs is coarse in many
regions. Low-cost unmanned aerial vehicles (UAS) and DEM data fusion provide a partial solution
to improving the temporal resolution of DEM but do not identify which areas of a DEM require
updates. We present Rapid-DEM, a framework that identifies and prioritizes locations with a high
likelihood of an urban topographic change to target UAS data acquisition and fusion to provide
up-to-date DEM. The framework uses PlanetScope 3 m satellite imagery, Google Earth Engine, and
OpenStreetMap for land cover classification. GRASS GIS generates a contextualized priority queue
from the land cover data and outputs polygons for UAS flight planning. Low-cost UAS fly the
identified areas, and WebODM generates a DEM from the UAS survey data. The UAS data is fused
with an existing DEM and uploaded to a public data repository. To demonstrate Rapid-DEM a case
study in the Walnut Creek Watershed in Wake County, North Carolina is presented. Two land cover
classification models were generated using random forests with an overall accuracy of 89% (kappa
0.86) and 91% (kappa 0.88). The priority queue identified 109 priority locations representing 1.5%
area of the watershed. Large forest clearings were the highest priority locations, followed by newly
constructed buildings. The highest priority site was a 0.5 km2 forest clearing that was mapped with
UAS, generating a 15 cm DEM. The UAS DEM was resampled to 3 m resolution and fused with USGS
NED 1/9 arc-second DEM data. Surface water flow was simulated over the original and updated
DEM to illustrate the impact of the topographic change on flow patterns and highlight the importance
of timely DEM updates.

Keywords: change detection; digital elevation model; lidar; drone; PlanetScope; GRASS GIS; Google
Earth Engine; OpenStreetMap; urban change

1. Introduction

The sustainable management of urban landscapes is facing a new set of challenges in
the wake of rapid urbanization [1,2]. As new development alters the existing land cover in
these regions, the topography is also often modified, which can have adverse effects on the
surrounding environment, such as altering stream channels in ways that increase flooding and
contribute to water quality degradation [3]. City managers, researchers, and other decision-
makers rely on geospatial models and data in order to better understand the impacts of
urbanization on the landscape [2,4]. However, geospatial models are limited in their ability to
inform decision-making without the availability of relevant, up-to-date geospatial data [5].
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A broad range of cross-disciplinary applications (e.g., classification, change detection)
utilize the synthetic fusion of multi-source data that range in spatial, temporal, and spectral
resolutions [6] to improve the availability and accuracy of geospatial data. In remote sensing,
multi-source data fusion methods have been characterized into three distinct levels: pixel,
feature, and decision [6,7]. Pixel level fusion combines raw data from multiple sources into a
new dataset of the same resolution. Feature level fusion works by combining extracted features
(e.g., texture, edges) from various datasets into a new dataset and helps reduce data with
high dimensionality. Decision level fusion is performed by fusing multiple modeled results
(e.g., confidence intervals, categories) into a new decision dataset. High-level fusion methods
(e.g. feature, decision) combine multiple-source data such as multispectral and hyperspectral
data, GIS data, synthetic aperture radar (SAR), and lidar data to improve the accuracy of
land cover image classification of high-resolution data [6,8]. However, the synthetic utilization
of multi-source data comes with many technical challenges that are only increasing as the
abundance of potential data sources and new sensor systems grow.

Multi-source multi-temporal land cover classification and change detection face challenges
in co-registration as traditional earth observation platforms (e.g., Landsat, Sentinel-2) are fused
or replaced with new satellite constellations. Satellite constellations such as PlanetScope [9]
are made up of many satellites that individually capture small scenes that generally need to
be patched into a mosaic for analysis. However, special consideration is needed to ensure the
geometric and radiometric accuracy of the data because of potential differences in platforms
and sensors and other environmental factors [10]. Current research in deep learning is working
to improve multi-source and multi-temporal image registration by identifying features with a
high degree of self-similarity at multiple spatial scales after traditional geographic registration
is performed [8].

Other research in multi-source multi-temporal land cover classification is examining high-
level fusion methods to utilize crowd-scoured GIS vector data such as OpenStreetMap (OSM)
to enhance and augment land cover classification of remotely sensed imagery. These methods
include augmenting classification results with high accuracy GIS data during post-processing,
the generation of model training samples, and feature level fusion of GIS data to improve image
segmentation [11–13]. Research is also being done on the reverse effect where optical imagery is
being used with modified cyclically-trained generative adversarial networks (CycleGAN) [14]
to update OSM [15].

In addition to optical imagery, the synthetic fusion of multiple-source digital elevation
model (DEM) data requires its own set of considerations. For example, the United States
Geological Survey (USGS) 3D Elevation Program (3DEP), an improvement on the National
Elevation Dataset (NED), serves to combine and standardize localized airborne lidar from
various data sources into a seamless national dataset [16]. The 3DEP program has specific
standards and requirements of source data (e.g., spatial reference system, horizontal resolution,
vertical resolution, etc.) designed to improve the overall quality of the derived multi-source
products [16]. A recent study by Stoker and Miller evaluated assumptions that these data
requirements provide enough standardization to combine these disparate elevation datasets
into a single dataset and whether the fusion of high-resolution lidar data improves the accuracy
of derived products [16]. Their results demonstrated that even with systemic requirements
for data inclusion, errors still exist in the accepted datasets [16]. However, they found that
the vertical accuracy outperforms global DEM datasets and that the fusion of lidar data
increases the overall vertical accuracy of the 3DEP seamless data products [16]. These results
are consistent with other studies that examine fusing high-resolution UAS-based DEM with
lidar-based DEM to improve source data accuracy [17,18]. Recent research in land cover
classification has shown that the fusion of multi-source remote sensing data with elevation data
may increase the accuracy of derived land cover classification products. These studies align
with Stoker and Miller’s results, which identified statistically significant differences between
the mean elevation range and height above ground elevation between distinct land cover
classes [16].
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Digital elevation models have lower temporal resolutions than other types of geospatial
data, such as high-resolution imagery and urban infrastructure data, because topographic
change usually occurs slowly over large spatial extents. Additionally, traditional methods to
update DEMs (e.g., airborne lidar surveys) are costly and therefore performed infrequently.
However, in areas where rapid urbanization is modifying topography, DEMs no longer accu-
rately reflect the landscape, increasing uncertainty in the geospatial models that depend on
them (e.g., stormwater, flooding) [4,19]. These topographic changes are generally limited and
spatially dispersed, covering only a small portion of the total area surveyed by airborne lidar or
long-range unmanned aerial systems (UAS) (i.e., capable of flying entire cities). Satellite-based
land cover change detection [20,21] and DEM data fusion with low-cost UAS provide a toolset
to update these small area changes [17,18] by providing methods to identify where topographic
changes occurred and a method to update an existing lidar-based DEM seamlessly [17,18].
However, the use of these methods alone is limited by the potentially large number of affected
areas combined with the flight time limitations of low-cost UAS.

Therefore, a method is needed to prioritize where to send UAS to capture the most
significant topographic changes for fusion and update of existing DEM. With the emergence
of new earth observation satellite constellations (PlanetScope [9]), cloud-based computational
platforms (Google Earth Engine [22]), and open-source UAS flight planning [23], processing,
and data fusion methods [18] (WebODM [24] and GRASS GIS [25]) new opportunities are
available to develop novel methods in DEM data acquisition and fusion. We developed Rapid-
DEM, a framework that prioritizes areas of topographic change for UAS survey and data
fusion using multispectral satellite data to detect, classify, and prioritize land cover change
transitions with a high likelihood of topographic change in a priority queue. The priority queue
utilizes the relationship between land cover data and DEM data as a proxy for the likelihood
and magnitude of topographic change. We demonstrated Rapid-DEM with a case study where
we evaluated the impact of topographic change captured in the fused DEM on spatial patterns
of surface water runoff in the area identified as the highest priority location.

2. Methods
2.1. Rapid-DEM

The developed framework combines multiple geospatial technologies to detect, prioritize,
plan, fly, and fuse elevation data to update a DEM at a location with major topographic
changes (Figure 1). Rapid-DEM works by (1) ingesting PlanetScope 3 m multispectral satellite
data [9] from a user defined time period and area of interest into Google Earth Engine (GEE)
[22] where post-classification thematic change detection is performed to identify land cover
change. (2) Next, the classification data is exported to GRASS GIS [25] where a priority queue
is generated. (3) High-priority locations are then surveyed with UAS and the data is processed
in WebODM using structure from motion (SfM) to generate a DEM of the location. (4) The UAS
DEM is fused with an existing lidar-based DEM and (5) finally, the fused DEM is optionally
uploaded to an open data repository (e.g., OpenTopography) [26].

Figure 1. Rapid-DEM is a five-phase process that detects, plans, flies, fuses, and updates urban
topographic change. Phase (1) generates land cover maps used to identify land cover change.
Phase (2) creates a priority queue that identifies the most important change. Phase (3) uses the
data from the priority queue to fly high priority locations and generate updated elevation models.
Phase (4) fuses UAS-based DEM with an existing DEM dataset and phase (5) shares the updated
fused DEM with the broader community.
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2.1.1. Data

Rapid-DEM utilizes four datasets: satellite imagery from the PlanetScope constella-
tion, crowd-sourced vector data from OpenStreetMap (OSM), existing lidar-based DEM,
and UAS-based DEM. PlanetScope and OSM data are used for thematic change detection,
while the UAS-based DEM and lidar-based DEM UAS are fused to create an updated
DEM (Table 1).

Table 1. Rapid-DEM uses four data sources in order to detect, plan, fuse, and update DEM in areas
experiencing topographic change.

Data Name Data Type Spatial Resolution Temporal Resolution Spatial Extent Data Access

PlanetScope raster 3 m Daily Global GEE
Lidar-based DEM raster Variable >Annually Variable GEE
UAS-based DEM raster Variable NA Local Local
OpenStreetMap vector NA Regularly Updated Global GBQ

GEE (Google Earth Engine); GBQ (Google BigQuery).

PlanetScope is a satellite constellation that provides multispectral daily 3 m resolu-
tion satellite imagery consisting of 4 16-bit bands (red, green, blue, near-infrared) [9,27].
The Surface Reflectance PlanetScope Analytic Ortho Scene image product (Level 3B) was
used for analysis because it does not require additional pre-processing or correction before
analysis [27]. The imagery has a ground sampling distance (GSD) of 3.7 m and positional
accuracy of less than 10 m RMSE [27]. The data is ordered and filtered with the Planet API
Python Client [28] to a specific period and an area of interest. To reduce undesired environ-
mental noise during the change detection process, environmental and mechanical filters
such as cloud coverage and the off-nadir angle are used. The data is stored in a Google
Cloud Storage bucket where GEE accesses it for processing as an ImageCollection [22].

OpenStreetMap (OSM) is a free crowd-sourced map of the world that includes various
geospatial features ranging from transportation networks to land use characteristics. OSM
attribute data is stored as tags, key-value pairs that are spatially linked to geospatial
data structures (node, way, or relation). Nodes are geographic points, ways are lines,
closed ways can be interpreted as polygons, and relations define how other elements work
together. The data for some of these features is close to complete and highly accurate with
worldwide street data being estimated at 80% complete [29]. To automate the development
of training data for thematic land cover classification OSM data is accessed through Google
BigQuery (GBQ) and converted into a GEE FeatureCollection for the analysis. The OSM
data is queried with the tags Natural, Highway, Parking, Building, Surface, and Landuse in
addition to specific values types [11,12,30]. The OSM FeatureCollection is then mapped to
the land cover classification scheme that includes six thematic classes including, buildings,
developed, forest, barren, grass, road, and water (Table 2). Each land cover class is generally
well represented by the OSM data except for the barren class, which requires additional
sources of derived sample data.

Consumer-grade UAS data platforms are capable of generating high quality aerial
imagery and derived elevation products suitable for geospatial analysis [17,23,31]. Sensor
data can vary depending on the UAS platform, but most UAS platforms capture the visible
spectrum of red, green, and blue bands without customization. The resolution and accuracy
of UAS data depend on many factors, including the sensor, flight elevation, image overlap,
flight telemetry, time of day, and weather. Ground control points (GCP) are used to validate,
as well as to improve horizontal and vertical accuracy when generating 3D terrain models
using SfM, but are not always necessary or feasible to utilize [23]. As long as the positional
accuracy of the UAS-generated DEM is acceptable for the specific fusion and modeling
use case, Rapid-DEM does not require a specific UAS platform. Additionally, there are
many existing lidar-based DEMs that can be used to create an updated DEM. However,
the choice of which dataset to use depends on the specific application.
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Table 2. OpenStreetMap keys and tags used to train land class classification model.

Land Cover OSM Tag OSM Value(s)

Water Natural Water
Roads Highway Residential, Motorway, Trunk, Primary

Developed Parking Surface
Buildings Building House, Residential, Retail, Public

Barren Surface Sand, Dirt
Grass Surface Grass
Grass Landuse Grass, Meadow
Grass Natural Grassland
Forest Natural Wood

2.1.2. Land Cover Classification and Change Detection

To utilize GEE’s computational resources and modeling capabilities, the PlanetScope
data ImageCollection is divided at the temporal midpoint and converted into two mosaic
images using the median pixel value. These two mosaics represent the before and after
images used for classification and change detection. Several change detection methods
were explored (e.g., change vectors, multi-date composites), however, the combination of
binary and pixel-based post-classification thematic change detection provided the most
reliable results. Image differencing is performed on the mosaic images creating a binary
change mask by subtracting the red band of the after image from the red band of the
before image [32]. A statistical threshold is then set to include pixels less than −2.5 the
standard deviation [33,34]. The threshold and choice of the band are based on visual
analysis of the data. The remaining pixels are then clumped into discrete change objects
using a plus-shaped kernel with a one-pixel radius, and an adjustable maximum object size
(i.e., 128 pixels). The objects are areas that mask the pixel-based change detection and are
not used to define segments (i.e., objects or polygons) used in object-based classification.

The Bare Soil Index (BSI) [35] and Normalized Difference Vegetation Index (NDVI) [36]
are used to differentiate between vegetated and unvegetated surfaces. The BSI is a normal-
ized index that separates bare soil by separating different canopy backgrounds (e.g., bare,
sparse, and dense) using the red, green, blue, and near-infrared bands [35]. NDVI uses
the red and near-infrared bands to distinguish vegetation health based on the reflectance
properties of chlorophyll on visible and near-infrared light [37]. We represented barren
land cover using BSI and NDVI thresholds, where bmin and bmax represent the BSI upper
and lower threshold and nmin and nmax represent the upper and lower NDVI threshold.

Barren Land = (bmin ≤ BSI ≤ bmax) AND (nmin < NDVI < nmax) (1)

To generate barren training samples patches of barren land cover greater than 500 m2

(e.g., the area of a small parcel) is created by joining connected components with a 1 m
kernel. The barren land threshold values are determined through expert interpretation
of the data [38] and would require modification to match the spectral characteristics of
disparate spatial regions. In some cases, this method may not be applicable to the given
dataset and a different method will be needed to supplement barren land cover training
samples. The barren land patches and OSM features collection are then combined, and the
binary change mask is used to remove features in areas with likely thematic change.
The road and water classes are also removed from the training dataset because of their
complete and stable representation and are re-included post-classification [11,29].

The features used for classification are generated separately for the before and after
mosaics to account for spatial–temporal non-stationarity of multispectral satellite imagery
caused by heterogeneous landscapes and seasonal effects reducing noise during post-
classification comparison [20,39]. The features included summary statistics, low pass
filters, spectral indices, and texture (Table 3). The median, standard deviation, minimum,
and maximum values are calculated only from the blue and near-infrared bands because
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of their high correlation with the red and green bands. The spectral indices, NDVI [36,37],
normalized difference water index (NDWI) [40], BSI [35] are also used in addition to the
textural features contrast, angular second moment, and correlation generated from the
gray-level co-occurrence matrix (GLCM) [41,42].

Table 3. Classification Features.

Feature Bands Kernel Source Equation

Original B, NIR - -
Median B, NIR Square-5 pixels -

Minimum B, NIR Square-5 pixels -
Maximum B, NIR Square-5 pixels -

NDVI - - [36] NDVI = NIR−Red
NIR+Red

NDWI - - [40] NDWI = Blue−NIR
Blue+NIR

BSI - - [35] BSI = ((Red+Green)−(Red+Blue))
((NIR+Green)+(RED+Blue)) × 100 + 100

GLCM R Square - 3 pixels [41]

A random forest model is used to create a pixel-based thematic classification model
using training samples from a weighted stratified random sample to ensure all land cover
classes were represented. The sample sets are segmented into 70% training and 30% testing
datasets [43] and the features are selected based on the evaluation of feature importance.
Multiple random forest models are created at multiple tree levels (10, 50, 100, 250, 500, 1000)
before the final model with the greatest overall accuracy is chosen to classify the image.
During post-classification, water and street features from OSM are superimposed onto
the classification results [11,29]. The two thematically classified images are then used to
develop the priority queue using the priority queue algorithm during the planning phase.

2.1.3. Prioritizing and Contextualization

The priority queue algorithm involves seven steps to transform the two thematically
classified land cover maps into the priority queue. The before and after land cover maps
are transformed into a priority change map (PC) using the priority change table (Table 4).
The priority change table maps land cover transition types based on expert knowledge using
a seven-point Likert Scale [0, 7]. Zero represents land cover transitions that are not a priority,
1 represents the lowest priority change or noise, and 7 represents the highest priority change.
The highest priority change is considered a change in land cover with a high likelihood of
modifying the urban topography. For example, cells that change from forested to developed
or barren land cover would have a high priority change because they likely indicate new
development, which often includes site grading leading to change in topography. The PC
map and binary change mask are combined to calculate the mean priority change for each
object identified in the binary change mask producing the mean object priority change
(MOPC) map. To account for different sized change objects, the product of the MOPC
map and the area of each change object (COA) are used to produce the priority (P) map.
The priority queue (PQ) map is created by normalizing the values in the P map to real
numbers ranging between [0.0, 1.0] using MinMax normalization to improve the PQ map’s
interpretability. We smoothed irregular boundaries and removed small gaps of each priority
object by applying a four-cell buffer computing mode values from surrounding cells. These
modifications produce objects that overlap bordering areas (i.e., unchanged) required for
data acquisition and fusion. Finally, change objects that do not represent likely topographic
change (mean priority value of zero) are removed, and the PQ is converted to vector
polygons (VPQ) and sorted in descending order of importance DESC(VPQ).
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Table 4. Priority Change Table.

From/To Road Building Developed Barren Grass Forest Water

Road NA 7 4 4 1 1 0
Building 1 NA 5 7 3 3 0

Developed 3 7 NA 7 3 3 0
Barren 3 7 5 NA 2 2 0
Grass 3 7 5 3 NA 3 0
Forest 3 7 7 7 3 NA 0
Water 0 0 0 0 0 0 NA

Priority Queue Algorithm:

1. Create a new Priority Change (PC) map from date 1 and date 2 thematic classifications
using priority change table expression

2. Create Mean Object Priority Change (MOPC) map by calculating the weighted mean
for each labeled object in the PC map

3. Create Change Object Area (COA) map

(a) Create Object Size (OS) map by counting the number of pixels per object
(b) Create Object Pixel Area (OPA) map by calculating the area per pixel for the

resolution
(c) Calculate the Object Area (COA) map as OPA x OS

4. Create Priority (P) map as COA x MOPC
5. Generate Priority Queue (PQ) by normalizing the P map to real numbers between [0.0, 1.0]

(Equation (2)).
6. Export PQ to a vector polygon Vector Priority Queue (VPQ)
7. Sort queue in descending order DESC(VPQ)

PQ =
P − min(P)

max(P)− min(P)
(2)

The priority queue is contextualized through a priority context map (PCM) that
explains the type of land change. The PCM is created by assigning each land cover change
transition and action. These actions are defined by two base types of land change: New
features and removed features (Table A1). New features are represented by changes such
as the construction of a new building, road, parking lot, while removed features represent
change such as forest clearings or demolished buildings. Static land cover and land change
likely due to noise (e.g., seasonal variation, misclassification) are not included. To assign
a final context to each priority change object the mode land cover change context class is
calculated for each object in the priority queue.

2.1.4. UAS Data Acquisition and Processing

A flight plan of a selected high priority area is generated with a priority queue defined
polygon or a manually defined area determined by the UAS pilot using a flight planning
and control application such as Drone Deploy [44]. However, other UAS flight planning
and mapping software solutions would work to capture the updates. Additionally, to en-
sure safety and compliance with local UAS regulations, a qualified UAS pilot should review
all flight plans generated using priority queue-defined polygons. The use of GCPs is recom-
mended to improve horizontal and vertical accuracy of the flight data, but is not necessary
to produce a DEM with acceptable vertical accuracy for fusion in all locations [45,46].

The collected UAS data is processed using the open-source photogrammetry software
WebODM [24], which provides a web user interface to OpenDroneMap’s (ODM) [47]
implementation of SfM. SfM processes images with embedded positional information
from the UAS GNSS receiver and outputs an orthomosaic and DEM(s), e.g., bare ground
digital terrain model (DTM) and a digital surface model (DSM) with above-ground features.
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The UAS-based DEM can also be generated from other photogrammetric software solutions
that generate comparable accuracy in output DEM [48].

2.1.5. DEM Fusion

UAS-based DEMs for modeling applications are limited due to their small spatial
coverage and often irregular boundaries. Merging UAS-based DEM with existing, typically
lidar-based DEM allows for more accurate viewshed or water flow analysis where larger
spatial context plays an important role. However, simple mosaicing can lead to artifacts in
the resulting DEM and subsequent analyses due to elevation differences along the irregular
edge of the UAS-based DEM. DEM fusion [18], in which the transition between surfaces
is controlled by distance-based weighted averaging along the DEM’s blending overlap is
applied to minimize these artifacts and generate a seamless DEM. More formally, given
elevation surfaces DEMlidar and DEMUAS, we compute the euclidean distance d from the
edge of the surface DEMUAS and use it as weight coefficients w for the linear combination
of the two surfaces:

DEMnew = DEMUAS · w + DEMlidar(1 − w) (3)

Weight w is a function of overlap width s and distance d. We assume w to be linearly
dependent on distance d, resulting in w = d/s for d in [0, s) and w = 1 for d > s. In the
simplest case, s denotes a constant overlap width, however, s can be also spatially variable,
derived from varying elevation differences along the blending seam. Spatially variable
overlap width allows for a more gradual transition along the overlap where elevation
differences are large while keeping a small overlap width and preserving the subtle features
of both DEMs where differences are small.

The fusion process has been developed as GRASS GIS addon r.patch.smooth for raster-
based elevation surfaces using basic GIS functionality such as raster algebra. Thanks to that,
the fusion process is relatively fast compared to other methods e.g., based on merging point
clouds [18]. However, it assumes both surfaces have been resampled to the same resolution.
Resolution can match the UAS-based DSM to preserve all features captured by the UAS,
however since the ultra-high resolution of the UASDSM does not always correspond to the
actual level of detail of the DEM, reducing the resolution is typically needed. The fusion
process also presupposes good vertical alignment of the two DEMs. When GCPs are
not available when capturing the images and processing the DSM, the UAS-based DEM
typically does not vertically align with the lidar-based DEM. To proceed with the fusion
process we estimate the vertical shift and correct for it by subtracting it from the UAS DEM.
In case the surveyed area has been locally altered, for example by raising a new building,
a simple mean or median of the elevation differences between UAS- and lidar-based DEM
would not accurately represent the shift and GCPs or unaltered features can be used to
ensure adequate alignment.

2.2. Case Study

Rapid-DEM was implemented and tested at the Walnut Creek Watershed (119 km2) in
Wake County, North Carolina, USA (Figure 2). The Walnut Creek watershed is part of the
Neuse River Basin and includes parts of the City of Raleigh and the Town of Cary, North
Carolina. The watershed is predominately developed, but still partially forested, with open
water [49] and includes Walnut Creek, which is a tributary to the Neuse River. Based on
the National Land Cover Dataset (NLCD) high and medium intensity development are the
fastest growing land classes between 2016 and 2019 in the Walnut Creek watershed [49,50].
Medium intensity land cover increased 40.9% from 14.4 km2 to 20.2 km2 mostly converting
low intensity development (6.6 km2). Similarly, high-intensity land cover increased 57.5%
from 4 km2 to 6.4 km2 mostly converting medium intensity development (1.9 km2). The data
suggests the development density and total amount of impervious surface in Walnut Creek
are increasing. We chose the Walnut Creek watershed as the study area because it enabled
us to perform UAS flights on locations identified by the priority queue.
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2.2.1. Priority Queue Data

The data used for the case study was collected from 2003 to 2021 during a period of
rapid urban growth (Figure 3). The priority queue of the Walnut Creek watershed was
developed for the period 1 June 2018 to 26 August 2020 using 500 images from PlanetScope
(Table 5). From these images 180 were used to create a before (1 June 2018–14 July 2019)
image and 168 were used to create an after (15 July 2019–26 August 2020) image.

Table 5. Raw PlanetScope Imagery Characteristics.

Type Cloud Cover GSD Sun Azimuth Sun Elevation View Angle

count 500 500 500 500 500
mean 0.01 3.78 131.96 44.37 0.59

std 0.01 0.17 18.12 15.79 0.54
min 0.00 3.50 89.90 15.90 0.00
25% 0.01 3.60 113.65 27.70 0.10
50% 0.01 3.80 132.05 45.50 0.40
75% 0.02 3.90 149.53 60.73 1.00
max 0.05 4.70 160.80 70.40 1.90

The before and after satellite imagery was thematically classified from training samples
generated from 12,363 OSM objects and barren land cover data captured as areas with
BSI = <103, 105.5> and NDVI = <0.16, 0.22> (Figure 4).

Figure 2. The study area is located in the (A) Walnut Creek Watershed (Neuse River Basin) of
(B) Wake County, (C) North Carolina, United States of America. The most recent land cover provided
by NLCD 2019 shows that the watershed is highly developed, but remains mostly forested in the
south east.
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The priority queue was manually evaluated by reviewing if the identified locations
contained change. The review was conducted using GRASS GIS to toggle the before and
after satellite imagery mosaics used during classification with the areas classified as high
priority. Locations that were identified as errors were flagged and used to validate the
accuracy of the priority queue at detecting change.

Figure 3. The datasets used for the case study were generated over a wide variety of spatial–
temporal scales.

Figure 4. The spatial distributions of land cover samples from OSM inside of Walnut Creek.

2.2.2. UAS Flight Data and Fusion

A DJI Phantom 4 Pro was used with DroneDeploy [44] software to acquire aerial
imagery in the area identified as a high priority for DEM update. The flight included areas
outside the bounds of the priority queue to ensure sufficient overlap with the unchanged
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area and to represent the entire planned construction area, which may be used in future
studies involving the site. Ground control points were not collected or used in processing
because the busy construction site was inaccessible to the public.

The Phantom 4 Pro has a max flight time of 30 minutes, uses a 20-megapixel RGB
sensor and a GPS and GLONASS (Globalnaya Navigatsionnaya Sputnikovaya Sistema)
GNSS receiver. It has a ground sampling distance of 1.91 cm/px at 70 m altitude, a GNSS
vertical accuracy of ±0.5 m and horizontal accuracy of ±1.5 m [46]. The survey was
autonomously flown at 116 m above the ground altitude in a linear pattern to reduce flight
time. Front and side overlaps were set to 75% and 65% each and the gimbal angle set to
90 degrees, nadir, manual focus set to infinity, ISO set to auto, and shutter priority mode
set to 1/800 s. During the 25 min flight, 322 images were collected and covered 0.63 km2 of
the area. The resulting UAS data was processed in WebODM using customized parameters
(Table A2) to improve the accuracy of the resulting DEMs [24].

The processed data included a 15 cm resolution DTM, DSM, and orthoimagery with
an average ground sampling distance of 6.2 cm. A full flight report is available in the
Supplementary Materials (Report S1). The UAS DTM generated from WebODM was not a
true DTM because vegetation and buildings were only partially removed. To account for
this the DSM was further processed to generate a smoothed (i.e., 5-pixel moving window
mean) bare ground DEM (UAS DEM)(Figure A1).

The UAS DEM was fused with a DEM from the United State Geological Survey (USGS)
National Elevation Dataset (NED) (USGS NED DEM) (Table 6). The GRASS GIS [25]
tool r.in.usgs [51] was used to directly download and import USGS NED DEM at 1/9
arc second (3 m) resolution for the study area (Table 6). The data uses a geographic
coordinate system (GCS) with elevation units in meters and the NAD83 horizontal datum
and NAVD88 vertical datum. The data was reprojected to the Lambert Conformal Conic
projection (NAD83(HARN)/North Carolina, EPSG:3358) and resampled to 3 m resolution
using bilinear interpolation. The USGS NED DEM was selected because of its ubiquitous
availability and wide use.

The UAS DEM was prepared for fusion by resampling the resolution to match the
3 m USGS NED DEM data using bilinear interpolation. The UAS DEM was vertically
registered using the overlapping lidar data, imagery, and surveyed points [52] along a
stable road feature along the southern edge of Site 1 to calculate a median vertical shift of
−79.97 m. The difference found between the UAS DEM and USGS NED DEM was caused
by an ellipsoid/datum difference between the UAS (i.e., Phantom 4 Pro) and USGS NED
DEM. The fusion process utilized a 13 pixel (3 m resolution) moving window to define
the spatially variable overlap zone with a 30 degree transition angle and 9 m difference
reach. The moving window, transition angle, and difference reach were selected based
on a visual comparison of multiple fusions. The large transition angle and difference
reach improved fusion along borders with large elevation differences along the edge of the
fusion. The vertical elevations in the fused DEM were validated against a limited number
of available surveyed stormwater inlet elevations, clustered along the southern edge of the
site [52].

Table 6. Case Study Data.

Data Name Data Type Spatial Resolution Acquisition Data Spatial Extent Source

USGS NED DEM raster 1/9 arc-second 2001–2003 Walnut Creek Watershed [25,53]
PlanetScope raster 3 m 2018–2020 Walnut Creek Watershed [9]
UAS DEM raster 15 cm 22 November 2021 Local

Stormwater Inlets vector NA 29 January 2022 Town of Cary, NC [52]
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2.2.3. Assessment of the Change Impacts

The land cover data created for the before and after images during the thematic
change detection were used to quantify how much and what type of land cover changed.
The fused DEM provided input for assessment of changes in slope, surface water flow
patterns, stream channels, and watershed boundaries caused by the new development.
Slope maps for the original and fused DEMs were calculated using the GRASS GIS module
r.slope.aspect. Surface water flow patterns were simulated with GRASS GIS module
r.sim.water. The module solves the bivariate form of shallow water flow equation using
the Green’s function Monte Carlo method (path sampling approach [54]), which makes the
simulations feasible even on high resolution, noisy surfaces.

The model was parameterized to simulate an extreme rainfall event with a steady,
spatially uniform rainfall excess rate of 100 mm/hr, the infiltration rate of overland flow
set to 0 mm/hr, and the Manning’s n roughness coefficient uniformly set to 0.1. The model
was run with 1 million walkers over a 60 min period producing six, ten minute water depth
output maps. The simulations were performed with USGS NED DEM (3 m), UAS DEM
(3 m), and the fused DEM (3 m) as input elevation datasets. Changes to the watershed
boundaries and stream channels were evaluated using the GRASS GIS module r.watershed.

3. Results
3.1. Land Cover Classification and Change Detection

The classification model of the before image had an 89% overall accuracy (kappa
0.86), and the after image had a 91% overall accuracy (kappa 0.88). The land cover of the
before image was 49% forested, 16% developed, 8% grass, 6% buildings, and 3% barren,
while the land cover of the after image classification showed that the buildings class
increased from 7.1 km2 to 9.7 km2, and the barren class decreased from 3.6 km2 to 3.0 km2

(Figure 5). The building class of the before land cover had user accuracy of 0.88 and a
producers accuracy of 0.44, while the after classification had a user accuracy of 0.85 and
a producers accuracy of 0.68. Grassland cover also contained greater uncertainty with
producer accuracies ranging from 0.79 (before) to 0.75 (after). These discrepancies likely
account for the larger variations found in these classes.

Figure 5. The (A) before mosaic (1 June 2018–14 July 2019) and (B) after mosaic
(15 July 2019–26 August 2020) land cover classification results were used to develop the priority
map of the Walnut Creek watershed.

3.2. Priority Queue

The binary change mask (Figure 6A) masked 0.19km2 or 1.47% of the Walnut Creek
watershed resulting in 162 change objects, while the priority change map (Figure 6B)
indicated that 83% of the study area had no change and 7.41% had high priority change.
The priority change objects had a mean priority change of 3.7 ± 2.1 (Figure 6C) and a mean
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area of 0.056 km2 ± 0.076 km2 (Figure 6D). The priority queue contained 109 locations
(Figure 6E), 51 (47%) were validated as containing change while 58 (53%) were deemed as
noise. However, filtering the priority queue to only include locations with priority values
(0.016) and areas (0.04 km2) greater than the median improved the accuracy of the results
(Figure 7). The filtered priority queue contained 42 locations with 9.5% error and a 25.5%
loss of valid low priority area.

Figure 6. By zooming in on the northwest corner of the Walnut Creek watershed the steps involved
in calculating the priority queue are illustrated as follows: (A) binary change mask was used to
filter noise seen in the (B) priority change map. The (C) mean priority change of each of these
objects was then calculated and weighted by the (D) change objects area producing the (E) priority
queue. The priority queue was then converted to (F) priority queue vector for use with UAS flight
planning software.
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Figure 7. Median thresholds of the priority value and site area improved the overall accuracy of the
priority queue.

The priority context map revealed that the priority queue identified 26 forest clearings,
six new buildings, seven demolished developments, and three newly developed areas
(e.g., parking lot). Forest clearings were the most important type of change identified
by the priority queue and represent 9 of the top 10 identified locations (Figure 8). New
buildings represented the second most highly ranked topographic change detected by the
priority queue with an average rank of 20th ±10 in the priority queue. While demolished
developments and newly developed areas were the third and fourth ranked changes
detected by the priority queue.

The top priority area (Site 1) was identified as a forest clearing in the western head-
water region of the Walnut Creek watershed. Site 1 is planned to be a large multi-
purpose development with mixed residential and commercial accommodations, and the
construction is scoped to be completed in the Spring of 2022 (Figure 9). The before
(1 June 2018–14 July 2019) and after (15 July 2019–26 August 2020) mosaics visually show
that the land cover changed from forested to mostly barren. The classification maps identi-
fied the change as a 96% decrease in forest land cover to barren, developed, and grass land
cover types giving the object a mean priority change value of 5.2. Site 1 had a priority value
of one and an area of 0.5 km2.

Figure 8. The top ten priority areas labeled with additional context to the type of change that occurred
at each location.
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Figure 9. The priority queue vector map shows that Site 1 transitioned from a (A) forested area
to a (B) forest clearing in preparation for new development in the headwaters of the Walnut
Creek watershed.

3.3. Updated DEM

Visual analysis of the UAS survey results showed that additional development had
occurred since the priority queue was generated (Figure 10). The updated site data con-
tained multiple new structures, retaining walls, and vehicles including large cranes. Two
stormwater control ponds that are required to minimize runoff and sediment transport from
the construction sites were present in both the Planet imagery and the UAS derived-DEMs.

Figure 10. WebODM processed data generated from the UAS flight: (A) orthomosaic, (B) DSM,
(C) DTM at 15 cm resolution.

Resampling the bare earth UAS DEM to 3 m resolution reduced the high level of detail
captured in the 15 cm (Figure 11).

The fused DEM (i.e., UAS DEM fused with the USGS NED DEM) had a mean difference
in elevation of 0.12 ± 2.52 m with the USGS NED DEM. Large variations in elevation were
due to the cutting and filling of the terrain during construction (Figure 12). The mean
edge elevation difference was 0.59 ± 2.61 m, with the greatest edge elevation differences
occurring along edges with grading, retention walls, or forest. The fused DEM had a
vertical RMSE of 0.5 m and the USGS NED DEM a had RMSE of 3.71 m based on the
surveyed stormwater inlet rim elevations (Table A3). The large error in the USGS NED
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DEM reflects the impact of topographic change on the accuracy of the available DEMs and
highlights the need for DEM updates in rapidly developing regions.

Figure 11. UAS DEM resampled to 3 m resolution with vegetation and structures removed before
fusion with the USGS NED DEM.

Elevation profiles of the USGS NED DEM, UAS DEM (i.e., registered, but not fused),
and the fused DEM were run through two cross-sections of Site 1 (Figure 13). The profiles
showed where the fusion process had to make adjustments to compensate for differences
between the USGS DEM and UAS DEM. One difference of note occurs near FACILITYID
DP77305094 where there was a significant difference (5.22 m) between the vertically cor-
rected UAS DEM and the USGS NED DEM where grading had occurred on the hillside.

Slope maps derived from the USGS NED DEM and the fused DEM highlight the
topographic changes when natural hillslopes with headwater streams are replaced by
a flat area with structural features with steep slopes such as sedimentation ponds, cut-
slopes, and retaining walls (Figure 14). The slope maps also show were portions of the
natural topography were incorporated into the constructed environment with only partial
modifications. These topographic changes increased the average slope of Site 1 from
4.59 ± 4.01 to 5.31 ± 6.73 degrees. The results indicated that fused DEM was appropriate to
model surface water runoff to explore how the changes to the urban topography modified
the urban stream channels and basins.



Remote Sens. 2022, 14, 1718 17 of 26

Figure 12. The difference in elevation of the fused DEM and the USGS NED DEM revealed how
construction has modified Site 1’s topography.

Figure 13. The elevation map with the location of profiles AB and CD, which illustrate the changes in
elevation before and after the site grading (or construction) and the fusion of USGS NED DEM and
UAS DEM along the site edges. Profile AB captures one of the sediment control ponds while Profile
CD includes one of the surveyed inlets.
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Figure 14. Elevation and slope maps at 3 m resolution: (A) USGS NED DEM, (B) Fused DEM,
(C) USGS NED DEM slope, and (D) Fused DEM slope.

3.4. Impacts of Urban Topographic Change on Surface Water Runoff

The results of the surface water flow simulation revealed that the flow patterns within
the USGS NED DEM (Figure 15A) were significantly modified at Site 1 (Figure 15B).
The fused DEM (Figure 15C) shows that the new flow patterns seamlessly transition from
the fused area into the existing landscape without artificial accumulation along the fused
edges. The simulation highlights the impact of grading on water flow, with water pooling
on the graded construction site and capturing surface water runoff in the stormwater
control ponds decreasing both the depth and flow rate into Walnut Creek.

Micro basins derived from the USGS NED DEM and the fused DEM revealed that the
development preserved the existing basins’ flow directions even with some modifications
to the shape of the basins. The basins derived from the fused DEM outline the contributing
areas for each of the stormwater control ponds and areas draining into Walnut Creek or the
road on the southern side of Site 1 (Figure 16).
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Figure 15. Spatial patterns of surface water flow depths computed using the USGS NED DEM (A),
UAS DEM (B) and the fused DEM (C). The fusion ensured smooth flow between the USGS NED
DEM and the area mapped by UAS.

Figure 16. Micro basins derived from the (A) USGS NED DEM and (B) fused DEM indicate that the
development generally preserved the existing basins.

4. Discussion

Rapid-DEM represents a novel framework to identify and contextualize potential
topographic change in rapidly developing regions, prioritizing sites to update DEMs with
fused UAS data. The case study demonstrated the feasibility of the proposed approach,
however, additional improvements in change detection and the priority queue can increase
the efficiency and accuracy of the framework.
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4.1. Land Cover Classification and Change Detection

Random forest is a well established method for land cover classification [39,55,56]
because of its applicability and flexibility, and ability to hand high-dimensional data [57].
Rapid-DEM used a random forest because of its existing implementation in GEE [22] that
does not require the use of additional computational resources to train more advanced
classification models (e.g., UNET, CNN) [8].

Additionally, the resolution of PlanetScope data (3 m) allowed for either pixel-based
or object-based thematic classification. We explored the use of object-based classification in
GEE utilizing SNIC (Simple Non-Iterative Clustering) [58] for object segmentation and a
random forest for classification, but the preliminary results provided less reliable thematic
change and required longer computational run times compared to pixel-based approach.
However, different implementations of object-based thematic change detection may out
perform the pixel-based approach used in Rapid-DEM.

To reduce sources of error that stem from inaccuracies in the thematic land cover
classification improvements could be made in the post-thematic change detection method.
One example would be to utilize the high temporal resolution of PlanetScope data to
create a dense series of land cover maps and integrate approaches such as hidden Markov
models (HMM) to stabilize classifications by limiting noise derived from pixel flipping
(i.e., toggling between thematic classes) [59]. While the binary change mask does re-
move a large proportion of potential error propagated from errors in thematic change
detection the mask can potentially exclude important changes. In the case study system
several areas of new construction were excluded from the priority queue because they
were not identified by the change mask. Additionally, alternative approaches or improve-
ments to post-classification thematic change detection could be used to detect topographic
change. For example, methods used to generate DEMs directly from remotely sensed
imagery [60,61].

4.2. Priority Queue

The presented case study demonstrated how an urban topographic change was de-
tected and prioritized for UAS-based fusion with existing USGS NED DEM data. The prior-
ity queue identified and ranked 109 areas representing 1.5% of the Walnut Creek Watershed
by importance with 47% accuracy that was increased to 90.5% by the use of median filters.
The main causes of error found in the priority queue were small polygons generated when
converting the raster priority queue to a vector polygon, variations in spectral responses
from building rooftops, and seasonal variation of the tree canopy. These results indicate
that a higher threshold could be set to remove small objects from the binary change mask
before object prioritization.

In future work the priority queue could also be expanded to give more detailed
insights into the specific type of change (e.g., construction phase), tracking progress over
time, and use of other methods such Multi-Criteria Decision-Making (MCDM) and analytic
hierarchy process (AHP) could be explored [62]. Participatory approaches could also
be implemented by allowing diverse stakeholders to co-weight the priority change and
priority context tables. The approaches would examine using a grassroots (bottom-up)
approach to site prioritization compared to the current method, which utilized expert
knowledge (top-down) [4]. However, regardless of the prioritization method used the
results from the priority queue should be assessed to ensure that the most important
changes to the urban topography are represented. Conceptually, Rapid-DEM provides
modular flexibility that allows researchers to implement their classification models to
perform thematic classification and set prioritization transition weights in the priority
change table. Some examples of different use cases include priority changes in forest or
agricultural land cover or changes due to natural disasters (e.g., landslides, tornadoes).
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4.3. Data Acquisition and Fusion

Site 1 presented multiple challenges for UAS-surveying and fusion. These challenges
included the size of the site, limited access to surveyed reference points, and a large
vertical shift caused by an ellipsoid/datum difference between the UAS (i.e., Phantom
4 Pro) and USGS NED DEM. Additionally, the DTM generated with SfM in WebODM
was not a true DTM because it still contained remnants of tree canopies and buildings,
which needed to be removed in preparation for fusion. However, even with these less
than ideal circumstances, the fused DEM provided a more accurate representation of the
topography than the outdated NED DEM as confirmed by comparison with a limited
number of available surveyed points. While GCPs are helpful for validation, these results
are in agreement with other studies indicating that they are not essential for accurate
topographic modeling [45].

However, the fused DEMs accuracy is lower than the accuracy required for the source
data of the USGS NED DEM (RMSE < 0.25 m) [63,64]. Regardless, our rapid low-cost
approach still had a lower RMSE than the USGS NED DEM (3.36 m), indicating that the
fused DEM successfully captured the changes identified by the priority queue. The large
RMSE of the USGS NED DEM computed using the surveyed stormwater inlets located
within the newly constructed landscape reflects significant topographic modifications
caused by the site grading. The areas with large edge elevation differences between the
UAS DEM and USGS NED DEM are the most likely to contain distorted elevations from
the fusion smoothing process. In future work parameter optimization of the fusion module
will help minimize morphological distortions.

4.4. DEM Updates

Rapid-DEM presents opportunities for government or non-profit organizations to
implement an API to crowd-source patch DEM updates improving national and statewide
DEM databases. The dataset could be filtered by date and return the most updated DEM
mosaics for a requested area. Validation methods should be implemented similar to
other systems such as OpenTopography (https://opentopography.org/data/contribute,
accessed on 6 December 2021) [26]. Additionally, the fused DEM could be added in either
a stable state (i.e., post-construction) or during a period of disturbance to create a robust
spatial–temporal dataset of topographic change.

4.5. Additional Applications of Rapid-DEM

Rapid-DEM could be developed outside of GEE using other open-source cloud-based
geoprocessing solutions such as GRASS GIS’s Actinia (https://actinia.mundialis.de/, ac-
cessed on 6 December 2021) [65] or GeoTrellis (https://geotrellis.io/, accessed on 6 Decem-
ber 2021). In future work Rapid-DEM will be developed into an open-source application
to provide an accessible method to update DEMs. The complete application could be
configured to a specific location as a semi-automated service that continuously updates the
priority queue and context for a given time interval (e.g., monthly, quarterly). As priority
areas are updated with UAS-based data fusion the priority queue is updated moving the
next highest priority location into its place. Over time a time series of location priority and
context will produce a robust database of land change phases that may provide additional
insights into local development trends. The fusion method [18] is also under development
as a standalone plugin for WebODM [24].

5. Conclusions

The Rapid-DEM framework demonstrated the feasibility of prioritized DEM updates
by combining satellite-based change detection with consumer-grade UAS mapping and
open-source DEM fusion. The framework provides tools for addressing the availability of
up-to-date elevation data in areas with changing topography, such as rapidly developing
urban areas where the proposed priority queue helps to direct the mapping and updates to
sites with the highest impact. The case study highlighted the importance of updated DEMs

https://opentopography.org/data/contribute
https://actinia.mundialis.de/
https://geotrellis.io/
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for modeling surface water flow. We consider this framework a first step in developing a
robust, continuous DEM updating system that can be broadly deployed to capture dynamic
landscapes beyond urban regions, such as coastal areas affected by storms and sea-level
rise. As the computational resources, data storage, and UAS become more affordable,
open-source platforms like Rapid-DEM can enable equitable access to up-to-date DEM
data reducing uncertainty in model based decision-making.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14071718/s1, Report S1: WebODM UAS Flight Report.
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Appendix A

Appendix A.1. Priority Context Table

Table A1. Priority Context Table: Land cover transitions listed as NA were land cover transitions
types labeled as noise.

From/To Road Building Developed Barren Grass Forest

Road NA NA NA NA NA NA
Building NA NA Noise Demolished Building NA NA

Developed New Road New Building NA Demolished Development NA NA
Barren New Road New Building New Developed Area NA NA NA
Grass NA New Building New Developed Area Field/Barren NA NA
Forest NA NA Forest Clearing Forest Clearing NA NA

https://www.mdpi.com/article/10.3390/rs14071718/s1
https://www.mdpi.com/article/10.3390/rs14071718/s1
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Appendix A.2. WebODM Processing Parameters

Table A2. WebODM Processing Parameters.

Parameter Value

dem-gapfill-steps 5
dem-resolution 15

depthmap-resolution 1280
feature-quality ultra

ignore-gsd true
pc-classify true

pc-geometric true
pc-quality ultra
pc-rectify true
pc-sample 0.3
smrf-scalar 3
smrf-slope 1.2

smrf-threshold 2
smrf-window 400

Appendix A.3. UAS DSM to UAS DEM Processing Steps

Figure A1. A bare earth DEM of the UAS data was created by hierarchically filtering tall features from
the UAS DEM based on their z-score (A). The resulting DSM (B) contained holes where vegetation,
buildings, and vehicles were removed that were filled through using regularized spline interpolation.

Appendix A.4. Stormwater Rim Elevations Table

Table A3. Details report from surveyed stormwater inlet rim elevation used for DEM z-axis validation.
Facility ids are unique tags used by the Town of Cary, North Carolina to track utility assets.

FACILITYID Inlet Elev USGS DEM Diff UAS DEM Diff Fused DEM Diff

DP77305061 132.66 133.52 −0.86 133.45 −0.79 133.45 −0.79
DP77306010 133.38 138.39 −5.01 134.14 −0.75 134.14 −0.75
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Table A3. Cont.

FACILITYID Inlet Elev USGS DEM Diff UAS DEM Diff Fused DEM Diff

DP77306019 134.50 133.87 0.63 134.36 0.15 134.36 0.15
DP77305094 133.87 139.08 −5.21 133.66 0.22 133.66 0.22
DP77306020 133.61 138.39 −4.78 133.63 −0.02 133.63 −0.02
DP77305095 133.74 137.71 −3.97 133.77 −0.04 133.77 −0.04
DP77305096 133.58 136.83 −3.25 133.79 −0.21 133.79 −0.21
DP77305093 132.96 135.74 −2.78 133.78 −0.82 133.78 −0.82

RMSE 3.71 m 0.50 m 0.50 m
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