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Abstract: Under the pressure of limited arable land and increasing demand for food, improving the
quality of existing arable land has become a priority to ensure food security. The Chinese government
gives great importance to improving cropland productivity by focusing on the construction of high-
standard farmland (HSF). The government puts forward the goal of constructing 1.2 billion mu
(100 mu ≈ 6.67 hectares) of HSF by 2030. Therefore, how to apply remote sensing to monitor the
ability to increase and stabilize yields in HSF project regions has become an essential task for proving
the efficiency of HSF construction. Based on HSF project distribution data, Moderate Resolution
Imaging Spectroradiometer (MODIS) data and Landsat-8 Operational Land Imager (Landsat8-OLI)
data, this study develops a method to monitor cropland productivity improvement by measuring
cropland productivity level (CPL), disaster resistance ability (DRA) and homogeneous yield degree
(HYD) in the HSF project region. Taking China’s largest grain production province (Henan Province)
as a case study area, research shows that a light use efficiency model that includes multiple cropping
data can effectively detect changes in cropland productivity before and after HSF construction.
Furthermore, integrated Landsat8-OLI and MODIS data can detect changes in DRA and HYD
before and after HSF construction with higher temporal and spatial resolution. In 109 HSF project
regions concentrated and distributed in contiguous regions in Henan Province, the average cropland
productivity increased by 145 kg/mu; among the eight sample project regions, DRA was improved in
seven sample project regions; and the HYD in all eight sample project regions was greatly improved
(the degree of increase is more than 75%). This evidence from satellites proves that the Chinese HSF
project has significantly improved the CPL, DRA and HYD of cropland, while this study also verifies
the practicability of the three indices to monitor the efficiency of HSF construction.

Keywords: high-standard farmland; cropland productivity; disaster resistance ability; homogeneous
yield degree

1. Introduction

In recent years, the increase in global grain production has reduced the proportion of
hungry people in the world, which has increased the overall level of global food security.
However, with the continued growth of global population and future consumption, global
food security continues to face major challenges [1,2]. The expansion of cultivated land
has become one of the main human activities to surpass the planetary boundary [3,4]. The
yield growth rate per unit of major global cereals (wheat, corn, rice and soybean) is still
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lower than those required to achieve the food security goal [5,6]. Therefore, it is considered
that the first priority is to produce more food on the existing cultivated land by increasing
the cropland productivity [7] and narrowing the gap in agricultural production, rather than
expanding the scale of cultivated land [8,9].

According to the China Economic Bulletin (2014) published by the World Bank, China’s
demand for grain is expected to be 700 million tons by 2030, when the population reaches
its peak. According to the level of grain production in 2019 (668 million tons), grain output
should increase by about 32 million tons in 2030. To ensure food security, China has set a
red line of 1.8 billion mu (100 mu ≈ 6.67 hectares) of cultivated land and ensured stability
of the total area of cultivated land in the process of urbanization through a policy of balance
between occupation and compensation of cultivated land [10,11]. However, due to the
lack of reserve cultivated land resources in China, it is difficult to supplement the good
quality cultivated land in urbanization. In areas with unfavorable natural conditions, the
cropland productivity occupied by urban expansion is 80% higher than that of newly added
cultivated land [12]. Recent research shows that from 1990 to 2015, the redistribution of
cultivated land “occupying the good quality cultivated land and compensating the low
quality cultivated land” stabilized the total cultivated land area in China to 2–2.1 billion
mu. However, the main area of cultivated land shifted by about 70 km to the northwest
region, resulting in a 4.5% reduction in total grain production capacity [13]. The middle–
low productive cultivated land in China makes up about 80% of the total cultivated land
area [14]. Improving cropland productivity, rather than expanding marginal land, is key to
ensuring food security and an important way to achieve the sustainable development of
China’s agriculture.

Since 2008, the Chinese government has attached great importance to improving
the cropland productivity with the transformation of middle–low productive farmland
(MLPF) and the construction of high-standard farmland (HSF) as the main activities. The
construction goal is to form basic farmland with supporting facilities, high and stable
yields and strong disaster resistance through land regulation and construction, improving
or eliminating the main limiting factors of grain production and breaking the bottleneck
in grain production. According to the National High-Standard Farmland Construction
Plan (2021–2030), China will build a total of 1.2 billion mu of high-standard farmland by
2030 [15]. China’s MLPF transformation and HSF construction projects were officially
implemented in 2010, and from 2011 to 2014, 2,330 project regions were built. However, it is
not yet known whether the MLPF and HSF project regions have reached the expected grain
production capacity and whether the construction of HSF has effectively achieved a stable
and balanced yield increase. Therefore, the application of remote sensing technology for
comprehensive monitoring and the assessment of capacity improvements of each project
region has become a necessary measure to master food security.

With the development of remote sensing technology, remote sensing images are widely
used in the estimation and monitoring of cultivated land productivity. Using MODIS NDVI
data to estimate wheat yields in Canada and corn and soybean yields in the United States,
the results showed that there was a good correlation between estimated yield and statistical
yield, which provided support for the establishment of empirical prediction models and
dynamic monitoring systems for main crop yields [16–18]. In the past five years, the
Google Earth Engine (GEE), a remote sensing cloud computing platform, has provided
the possibility for agricultural remote sensing monitoring using high temporal and spatial
resolution remote sensing images [19]. For cultivated land productivity, the distribution
and yield of small-scale farmland have been mapped by using high-precision data, such as
Sentinel-1 on the GEE platform, which provided the possibility for estimating cultivated
land productivity in complex terrain areas and small-scale farmland [20,21]. Meanwhile,
some related studies have begun to focus on how to dynamically monitor cultivated land
productivity by using remote sensing data under frequent extreme climates [22,23].

Over the past 20 years, the Vegetation Photosynthesis Model (VPM) has been vali-
dated in studies of farmland ecosystems around the world. This includes winter wheat



Remote Sens. 2022, 14, 1724 3 of 20

and summer maize rotation farmland at the Yucheng flux station, Yingke farmland (maize)
station and other typical farmland ecosystems in China, and the simulated Gross Primary
Production (GPP) data show good agreement with the site observation data [24–26]. By
considering the type of cropland vegetation and multi-cropping, the Net Primary Produc-
tion (NPP) data generated by VPM can effectively improve the apparent underestimation
of C4 crops and the productivity of multi-cropping agricultural areas [27–29]. However,
the current light-use efficiency (LUE) model is mainly driven by Moderate-Resolution
Imaging Spectroradiometer (MODIS) data, and its field application is limited by low spatial
resolution. With the development of multi-source remote sensing fusion technology, the
integration of remote sensing data with high spatial and temporal resolution has become
an important method for obtaining detailed farmland data, such as farmland productiv-
ity [30,31].

In this study, the VPM that can accurately simulate farmland productivity in multiple
cropping regions and high spatiotemporal resolution based on multi-source remote sensing
fusion technology were applied to construct the remote sensing monitoring index of MLPF
transformation and HSF construction effectiveness. Henan Province, China’s greatest
grain-producing province, was selected as a typical area, and the MLPF and HSF project
regions were selected for remote sensing monitoring and the evaluation of construction
effectiveness to evaluate the improvement of cropland productivity level (CPL), disaster
resistance ability (DRA) and homogeneous yield degree (HYD).

2. Materials and Methods
2.1. Study Area

Henan Province ranks first in China’s grain output. According to the China Statistical
Yearbook, grain output in Henan Province was about 66.49 million tons in 2018, accounting
for 10.1% of the country’s total grain output; wheat and corn are the main food crops in the
province, accounting for 54% and 35% of total food crops output, respectively. Based on data
on the distribution of cultivated land [27], 58.8% of its cultivated land is distributed in plain
areas and 41.2% in hills and mountains; the cultivated land is mainly a double-cropping
system of winter wheat and summer maize, and the double-cropping area accounts for
about 60.35% of the total cultivated land. From 2011 to 2013, 630 project regions are located
in Henan Province, including 288 MLPF transformation project regions and 342 HSF
construction project regions (Figure 1). The number of project regions in the province
accounts for 27.04% of the total number of project regions in China, making it the province
with the greatest number of project regions. It is, therefore, of great significance to evaluate
the effectiveness of MLPF transformation and HSF construction in Henan Province.

2.2. Data

This study evaluated the effectiveness of HSF in Henan Province constructed during
2011–2014 mainly based on the MODIS and Landsat data.

MODIS products. Vegetation indices, such as the Enhanced Vegetation Index (EVI) and
Land surface water index (LSWI), were calculated using MODIS 8-day surface reflectance
products (MOD09A1) at a 500-m resolution. These two vegetation indices were important
inputs for Net Primary Production estimation using the Vegetation Photosynthesis Model
(VPM). Considering the averaged 3-year farmland productivity of the project area was used
to present the productivity before or after HSF project, the MODIS data during 2008–2016
were used for evaluating the effectiveness of HSF.

Landsat images. Landsat images from March to June during 2011–2016 in the 1 × 1 km
around the center point of 630 projects were used in our study for identifying the continuous
grain crops project area. Moreover, all the available Landsat images of the growing season
in the 8 sampled HSF projects area during 2011–2016 were used for producing NPP with
30 m resolution. These data were accessed from United States Geological Survey (USGS)
archives (http://glovis.usgs.gov/, accessed on 23 December 2021). The standard false-color

http://glovis.usgs.gov/
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composite of these images was applied for the visual interpretation of continuous grain
crops in the targeted areas.
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In addition, HSF project distribution, meteorological disasters, grain yield and meteo-
rological data were used in this study. The details of all data used in this study are listed in
Table 1.

Table 1. Types and sources of data in this study.

Data Name Source Time Range Resolution Usage

Location of the central
point of HSF
project region

The national HSF
construction effectiveness
evaluation project team

2011–2014 - Used for HSF construction
effectiveness evaluation

Vector boundary of
typical HSF

project region

Global Positioning System
(GPS) in field research 2011–2014 - Used for sampling survey

Landsat images United States Geological
Survey (USGS) 2011–2016 30 m, in crop

growth season

Used for selecting the
general survey project

region and estimating the
NPP with high

spatio-temporal resolution
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Table 1. Cont.

Data Name Source Time Range Resolution Usage

Google Earth
High-Definition image Google Earth Engine 2011–2016 per quarter year,

0.5 m

Used for selecting the
general survey
project region

Enhanced Vegetation
Index (EVI)

Calculated using MODIS
8-day surface reflectance

products (MOD09A1)
2008–2016 8-day, 500 m Used for running VPM and

production of NPP data

Land Surface Water
Index (LSWI)

Calculated using MODIS
8-day surface reflectance

products (MOD09A1)
2008–2016 8-day, 500 m Used for running VPM and

production of NPP data

Meteorological data 1 Meteorological stations 2008–2016 daily Used for running VPM and
production of NPP data

Radiation data 2

Food and Agriculture
Organization of the United

Nations (FAO)
Penman model

2008–2016 daily Used for running VPM and
production of NPP data

Grain yield China Statistical Yearbook 2008–2016 yearly, county Use for estimate cropland
productivity from NPP

Agrometeorological
disasters data

Provincial
Agrometeorological

Disaster Bulletin
2008–2016 yearly, county Used for analyzing the

disaster resistance ability

1 Based on 1098 ground meteorological stations, the gridded temperature data was generated by using ANUSPLIN
interpolation computer software [32]. The gridded temperature data have a spatial resolution of 500 m and a time
step of one day. 2 To optimize the model parameters, net radiation data from 53 sites were used, and then the
net radiation data from 699 weather sites were calculated. The gridded net radiation data were obtained using
ANUSPLIN interpolation computer software [33]. The gridded net radiation data have a spatial resolution of
500 m and a time step of one day.

2.3. Methodology
2.3.1. Satellite Monitoring Method of General Survey and Sampling Survey to Evaluate the
Effectiveness of HSF Construction

Satellite monitoring of the effectiveness of HSF construction projects (including the
MLPF transformation project regions) is carried out by a combination of a general survey
and a sampling survey. The general survey can evaluate all projects, fully understand the
overall improvement in cropland productivity after the construction of HSF and master
regional differences in the improvement level. The sampling survey helps to deeply analyze
the construction effectiveness of the project, not only to identify improvements in cropland
productivity levels in each typical agri-ecological region but also to measure disaster
resistance ability and homogeneous yield degree.

(1) General survey

With the reform of agricultural supply, the planting structure in the HSF project region
is changing. Part of it is changing from traditional planting of grain crops to economic crops,
such as vegetables, and facility agriculture, such as greenhouses. In addition, part of it is
changing from continuous agricultural planting to fallow rotation farming. To accurately
understand the improvement capacity of HSF construction, it is necessary to select a project
region with a stable planting structure for comparative analysis before and after project
construction. In order to avoid the impact of mixed pixels obtained from remote sensing
on the evaluation results, the project region participating in the evaluation should have a
concentrated and contiguous distribution of cultivated land.

Based on the above considerations, our team screened 630 project regions in Henan
Province using Landsat8-OLI data with a spatial resolution of 30 m and a Google Earth High-
Definition image. A project region where cultivated land is intensively and continuously
distributed and maintained as a grain crop planting was taken as the project region of
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general survey (the standard of maintained as grain crop planting is the image pixel is
uniform and the proportion of the non-farmland area is less than 10% within 1 × 1 km,
refer to Figure 2). Finally, 109 project regions in Henan Province were determined as the
general survey project regions (Figure 1).
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(2) Sampling survey

To evaluate the effectiveness of HSF construction in disaster resistance and homoge-
neous yield, the sampling method is used for remote sensing with a spatial resolution of
30 m in a typical general survey project region. The project region is selected according to
the following principles:

(1) Taking into account different agri-ecological conditions;
(2) Belonging to the general sample project region;
(3) Taking into account HSF construction projects and MLPF transformation projects;
(4) Taking into account the availability of remote sensing images;
(5) Taking into account the balanced distribution of sampling project regions, with the

number of sampling project regions in each county not exceeding two.

Based on the above sampling principles, a total of eight project regions were selected
in four counties in Henan Province (Table 2, Figure 1). Our team conducted field research
in these eight project regions.
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Table 2. The project regions of sampling survey in Henan Province.

Project No. Project Name Construction
Year

Construction Area
(10,000 mu)

Project A HSF construction project in Fengcun
Township, Fengqiu County 2012 1.00

Project B HSF construction project in
Liuguang Town, Fengqiu County 2012 2.00

Project C
HSF construction project in

Longtang town (Yegang township),
Minquan County

2012 2.00

Project D
MLPF transformation project in

Hongniwan Town,
Wancheng District

2011 1.00

Project E
HFS transformation project in

Hongniwan Town (South),
Wancheng District

2012 1.00

Project F HSF construction project in Jiangliji
Town, Xuchang County 2011 2.00

Project G HSF construction project in
Wunvdian Town, Xuchang County 2012 1.00

Project H HSF construction project in Yegang
Township, Minquan County 2013 1.00

2.3.2. Remote Sensing Monitoring and Detection of Cropland Productivity

(1) Remote sensing estimation of cropland productivity based on VPM

The Vegetation Photosynthesis Model (VPM) is a light use efficiency model for es-
timating GPP based on satellite remote sensing data [34,35]. Its theoretical basis is the
light use efficiency theory proposed by Monteith, which divides the vegetation canopy
into photosynthetic and non-photosynthetic parts. NPP is part of GPP, and its formula is
as follows:

NPP = GPP × CUE (1)

GPP = εg × FPARchl × PAR (2)

εg = εmax × Tscalar × Wscalar × Pscalar (3)

Tscalar =
(T − Tmin)× (T − Tmax)

(T − Tmin)× (T − Tmax)−
(
T − Topt

)2 (4)

Wscalar =
(1 + LSWI)

(1 + LSWImax)
(5)

Pscalar =
1 + LSWI

2
(6)

where Carbon Use Efficiency (CUE) represents a strictly linear relationship between daytime
cumulative photosynthesis and cumulative nighttime respiration based on observation
data [36], εg is the light use efficiency, FPARchl is the fraction of photosynthetically active
radiation (PAR) absorbed by leaf chlorophyll in the canopy, εmax is the maximum light use
efficiency and Tscalar, Wscalar and Pscalar are scalars for the effects of temperature, water and
leaf phenology on the efficiency of light use in vegetation, respectively [34,35,37]. T is the
air temperature, Topt is the optimal temperature for photosynthesis, Tmax is the maximum
temperature for photosynthesis and Tmin is the minimum temperature for photosynthesis.
LSWI is the land surface water index, while LSWImax is the maximum LSWI during the
growing season [34,35,37]. The temporal resolution of the model outputs was 8 days, and
the spatial resolution was 500 × 500 m.

The NPP data simulated by the VPM were applied as a basic index that reflects the
cropland productivity level. Based on the statistical data on the main crop sowing areas in
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counties of Henan Province, the main grain-producing counties with grain sowing areas
larger than 80% of the total sowing area were selected as the sample counties. According to
the statistics on main crop productivity and NPP data of each sample county, the regression
relationship between the cropland productivity and the NPP per unit cropland area was
established in order to calculate the cropland productivity (Figure 3) as follows (Cropland
productivity = 0.9735 × NPP).
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Henan Province.

(2) Time series linear fitting model

For the project region of the sampling survey, the time series fitting method is used
to integrate spatial accuracy information of Landsat8-OLI data with a spatial resolution
of 30 m and the high temporal information of MODIS data with a spatial resolution of
500 m and a time step of 8 days. Accordingly, the cropland productivity data with a spatial
resolution of 30 m and a time step of 8 days were produced [30,31,38].

The input data include one pair of coarse resolution (500 × 500 m) NPP and fine
resolution vegetation index (30 × 30 m) calculated from Landsat at time k1 and one coarse
resolution NPP at time k2. The output data are predicted as fine resolution NPP at time
k2. The time series linear fitting model includes three main steps: (1) Extraction of pure
pixels based on a vegetation type map with a resolution of 30 m at time k1; (2) based on
pure pixels, the fitting relationship between NPP and EVI at time k1 was obtained; and
(3) based on the constructed fitting relationship, we used Landsat EVI to calculate the fine
resolution NPP at times k1 and k2. Based on the assumption that the temporal trends of
vegetation productivity are similar in the same period for the same type of vegetation and
with the same spatial resolution, the formula can be obtained:

mNPP30(k2) =
mNPP30(k1)× mNPP500(k1)

mNPP500(k2)
(7)

where mNPP30(k2) and mNPP30(k1) represent fine resolution NPP at times k1 and k2, while
mNPP500(t2) and mNPP500(t1) represent coarse resolution NPPs at times k1 and k2. For
more details, see Luo et al. (2018) [31] and Figure 4.



Remote Sens. 2022, 14, 1724 9 of 20

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 21 
 

 

pixels, the fitting relationship between NPP and EVI at time k1 was obtained; and (3) based 
on the constructed fitting relationship, we used Landsat EVI to calculate the fine resolu-
tion NPP at times k1 and k2. Based on the assumption that the temporal trends of vegetation 
productivity are similar in the same period for the same type of vegetation and with the 
same spatial resolution, the formula can be obtained: 

 𝑚𝑁𝑃𝑃ଷሺ𝑘2ሻ = ேయబሺଵሻ×ேఱబబሺଵሻேఱబబሺଶሻ  (7)

where 𝑚𝑁𝑃𝑃ଷሺ𝑘2ሻ and 𝑚𝑁𝑃𝑃ଷሺ𝑘1ሻ represent fine resolution NPP at times k1 and k2, 
while 𝑚𝑁𝑃𝑃ହሺ𝑡2ሻ and 𝑚𝑁𝑃𝑃ହሺ𝑡1ሻ represent coarse resolution NPPs at times k1 and 
k2. For more details, see Luo et al. (2018) [31] and Figure 4.  

 
Figure 4. The process diagram of estimate 30 m NPP using time series fitting method. 

2.3.3. Indicators and Algorithms for Remote sensing and Evaluation of HSF Construction 
Effectiveness  

(1) Improvement of cropland productivity level (CPL) 

Increasing the productivity of cropland refers to improving the output capacity of 
grain or cash crops in the region. It is a direct indicator for measuring the effectiveness of 
HSF projects. In this study, the change in cropland productivity before and after the con-
struction of the HSF project was selected as an index to measure the level of cropland 
productivity improvement. The formula for changing cropland productivity is as follows: ∆𝑃 = 𝑃ଶ − 𝑃ଵ    (8)

Figure 4. The process diagram of estimate 30 m NPP using time series fitting method.

2.3.3. Indicators and Algorithms for Remote Sensing and Evaluation of HSF
Construction Effectiveness

(1) Improvement of cropland productivity level (CPL)

Increasing the productivity of cropland refers to improving the output capacity of
grain or cash crops in the region. It is a direct indicator for measuring the effectiveness
of HSF projects. In this study, the change in cropland productivity before and after the
construction of the HSF project was selected as an index to measure the level of cropland
productivity improvement. The formula for changing cropland productivity is as follows:

∆P = P2 − P1 (8)

where ∆P represents the change in farmland productivity, P2 refers to the averaged multi-
year farmland productivity of the project area after the HSF project (3 years, not counting
the year of project construction) and P1 refers to the averaged multi-year farmland produc-
tivity of the project area before the HSF project (3 years, not counting the year of project
construction). A positive value of ∆P indicates an increase in cropland productivity in the
project region, and a negative value indicates a decrease in cropland productivity in the
project region.

(2) Improvement of disaster resistance ability (DRA)

The stability of cropland production can reflect the range of cropland productivity
fluctuations between years and seasons. It is an index to evaluate the ability of cropland
to resist disasters and achieve a stable and high yield after the HSF construction. In this
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study, the difference in improvement level of cropland production stability between normal
years and disaster years after the HSF construction is selected as an index to evaluate the
improvement level of DRA of cropland after construction. The formula for the difference in
the improvement level of cropland production stability (Sp) is as follows:

Sp = Rn − Rh (9)

Rn =
(

NPnormal − NPdrought

)
∗ 100/NPnormal (10)

Rh =
(

HPnormal − HPdrought

)
∗ 100/HPnormal (11)

where Rn is the change in productivity rate of drought-affected cropland in the non-project
region, Rh is the change in productivity rate of drought-affected cropland in the project
region, NPnormal is the productivity of the non-project region in normal years, NPdrought is
the productivity of the non-project region in disaster years, HPnormal is the productivity of
the project region in normal years and HPdrought is the productivity of the project region in
disaster years.

Improving the stability of cropland productivity is an index for evaluating the ability
of the cropland to resist disaster and achieve stable and high yields after HSF construction.
The higher the value of Sp, the more stable cropland productivity due to HSF construction
in the project region in dry years.

(3) Improvement of homogenous yield degree (HYD)

Homogenous yield degree refers to the degree of uniformity and dispersion of high-
yield fields after HSF construction, which can be used to measure the balanced yield
increase capacity of HSF projects. If the cropland area of medium–low productivity de-
creases in the project region and the cropland area of high productivity increases, the
effectiveness of the HSF project construction will be reflected in improved productivity.
Based on this, the proportion index of cropland of medium–low productivity before and
after the construction is selected to measure the balanced yield increasing the capacity of
HSF construction projects. The formula for the proportion index change of medium–low
productivity cropland is as follows:

LP =

(
La

Sa
− Lb

Sb

)
∗ 100 (12)

where LP is the change in the percentage of medium–low productivity cropland before
and after the project construction, Sa is the total cropland area in the project region before
the project construction, La is the total area of medium–low productivity cropland in the
project region before the project construction, Sb is the total cropland area in the project
region after the project and Lb is the total area of medium–low productivity cropland in the
project region after the project construction. The greater of LP, the higher the homogenous
yield degree of HSF construction.

3. Results
3.1. Improvement of Cropland Productivity Level after HSF Construction

Among the 109 project regions of the general survey in Henan Province, there is no
region with reduced productivity. Increased cropland productivity is from 77 to 552 kg/mu,
while average cropland productivity increases by 145.0 kg/mu after HSF construction
(Table 3, Figure 5). Among them are 86 project regions with a level of productivity increase
of more than 100 kg/mu, which is 78.9% of all project regions with an average productivity
increase of 160.7 kg/mu. Among these 86 project regions, there are 75 HSF construction
projects (82.4% of all HSF construction projects) and 11 MLPF transformation projects
(61.1% of all MLPF transformation projects). There are 23 project regions with a level of
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productivity increase from 50 to 100 kg/mu, accounting for 21.1% of all project regions,
and the average productivity increase is 86.2 kg/mu.

Table 3. Statistics of the improvement level of cropland productivity in the HSF construction project
regions and the MLPF transformation project regions.

Productivity
Improvement

(kg/mu)

High-Standard Farmland
Construction Projects

Middle–Low Productive Farmland
Reconstruction Projects Total

Propor-
tion(%)

Average
Productivity

Increase (kg/mu)2011 2012 2013 2014 Subtotal Proportion 2011 2012 2013 2014 Subtotal Proportion

<0 0 0 0 0 0 0% 0 0 0 0 0 0% 0 0 0
0–50 0 0 0 0 0 0% 0 0 0 0 0 0% 0 0 0

50–100 1 5 3 7 16 17.6% 2 1 4 0 7 38.9% 23 21.1 86.2
>100 0 7 10 58 75 82.4% 1 3 7 0 11 61.1% 86 78.9 160.7
Total 1 12 13 65 91 100% 3 4 11 0 18 100% 109 100 145.0
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The improvement level of cropland productivity in eight project regions of the sample
survey is from 120 to 263 kg/mu, and the maximum productivity reaches 907 kg/mu
(Project A). The productivity of six HSF project regions increased from less than 750 kg/mu
to more than 850 kg/mu, and the increase was from 120 to 185 kg/mu. The two MLPF
transformation project regions have a higher increase in cropland productivity than the six
HSF project regions, which have increased by 261 and 263 kg/mu, respectively. However,
although the transformation of middle–low productive farmland has achieved remarkable
results, the cropland productivity of MLPF is still lower than that of cropland in HSF
(Table 4).
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Table 4. Statistics of the improvement level of cropland productivity before and after the construction
of sampling project regions.

Sampling Area Construction Year Before (kg/mu) After (kg/mu)
Productivity

Improvement
(kg/mu)

Project A 2012 722 907 185
Project B 2012 704 867 163
Project C 2012 742 862 120
Project D 2011 508 769 261
Project E 2012 506 769 263
Project F 2011 733 866 133
Project G 2012 729 851 122
Project H 2013 737 857 120

3.2. The Improvement of Disaster Resistance Ability of Cropland after HSF Construction

According to the Henan Province disaster information statistical yearbooks (2011–2015)
(Table 5), the province experienced different degrees of drought in 2013 and severe drought
in 2014. To evaluate the drought resistance of the project construction, nine croplands were
selected around each sampling project region and compared with the productivity stability
of the project region. To exclude the HSF project regions for water conservancy, land and
other relevant departments, we selected cropland located around the project region with
a productivity of less than 20% of the project region as a non-project region (Figure 6). In
addition, we compared and analyzed the difference in stability of crop productivity inside
and outside the HSF project region under the drought stress in 2014.

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 6. Distribution of sample points within and outside the HSF project region in the evalua-
tion of productivity stability improvement (Project B as an example). 

According to the time series curve of crop growth during the drought in 2014 
(March–early April, June–mid-August) (Figure 7), the growth of spring and summer crops 
in the project region is significantly better than in the non-project region. Furthermore, the 
time series of crop growth in the project region in 2013 and 2014 are basically the same, 
which indicates that the severe drought in 2014 does not have a significant impact on the 
project region. However, crop growth was significantly worse on five plots (sample points 
2, 5, 6, 7 and 8) in the non-project region compared to that in the project region during the 
spring drought of 2014 (March–early April); the crop growth on five plots (sample points 
3, 4, 5, 6 and 8) was also significantly worse than that in the project region during the 
summer drought in 2014 (June–mid-August) (Figure 7). From the above results, it can be 
seen that the crop growth in the disaster year (2014) in the project region is equivalent to 
that in the normal year (2013), while in the region surrounding the project region, the crop 
growth in disaster years (2014) is worse than that in the normal year (2013). This indicates 
that the HSF construction makes the cropland productivity more stable, i.e., the HSF con-
struction not only improves cropland productivity but also enhances DRA. 

Among the eight sample project regions, seven project regions showed higher stabil-
ity of cropland productivity than the non-project regions in case of severe drought. 
Among them, Project F had the highest level of productivity stability, which increased by 
23.87% compared to the surrounding non-project regions. This is followed by Projects D 
and G, where the productivity stability improvement level increased by 18.46% and 
17.87%, respectively, compared to the surrounding non-project regions. Only Project H 
(constructed in 2013) had slightly lower productivity stability (−1.25%) compared to the 
surrounding non-project regions during the 2014 drought (Table 6), indicating that the 
benefits of water and soil coordination and management measures in the newly built pro-
ject region have not been fully brought into play and DRA has not been improved. 

Table 6. Statistics of productivity stability improvement in sampling project region. 

Figure 6. Distribution of sample points within and outside the HSF project region in the evaluation
of productivity stability improvement (Project B as an example).



Remote Sens. 2022, 14, 1724 13 of 20

Table 5. Summary of the drought disasters in Henan Province in the period 2011–2014.

Year Region Time Disaster Situation

2011

Northern Henan, east of
middle Henan (Sanmenxia,

Luoyang, Zhengzhou,
Puyang, Pingdingshan,
Zhumadian, Nanyang)

Oct–Feb Winter drought was
more serious

2012 Some areas are dry, Xinyang
was seriously dry May–June Drought in early summer

2013
Different degrees of drought
with Xinyang affected by the

most serious drought

March–mid-April,
late-July–late August, Oct Drought

2014 Different degrees of drought March–early April,
June–mid-Aug Severe drought

According to the time series curve of crop growth during the drought in 2014 (March–
early April, June–mid-August) (Figure 7), the growth of spring and summer crops in the
project region is significantly better than in the non-project region. Furthermore, the time
series of crop growth in the project region in 2013 and 2014 are basically the same, which
indicates that the severe drought in 2014 does not have a significant impact on the project
region. However, crop growth was significantly worse on five plots (sample points 2, 5, 6, 7
and 8) in the non-project region compared to that in the project region during the spring
drought of 2014 (March–early April); the crop growth on five plots (sample points 3, 4, 5,
6 and 8) was also significantly worse than that in the project region during the summer
drought in 2014 (June–mid-August) (Figure 7). From the above results, it can be seen that
the crop growth in the disaster year (2014) in the project region is equivalent to that in the
normal year (2013), while in the region surrounding the project region, the crop growth in
disaster years (2014) is worse than that in the normal year (2013). This indicates that the
HSF construction makes the cropland productivity more stable, i.e., the HSF construction
not only improves cropland productivity but also enhances DRA.

Among the eight sample project regions, seven project regions showed higher stability
of cropland productivity than the non-project regions in case of severe drought. Among
them, Project F had the highest level of productivity stability, which increased by 23.87%
compared to the surrounding non-project regions. This is followed by Projects D and
G, where the productivity stability improvement level increased by 18.46% and 17.87%,
respectively, compared to the surrounding non-project regions. Only Project H (constructed
in 2013) had slightly lower productivity stability (−1.25%) compared to the surrounding
non-project regions during the 2014 drought (Table 6), indicating that the benefits of water
and soil coordination and management measures in the newly built project region have not
been fully brought into play and DRA has not been improved.
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Table 6. Statistics of productivity stability improvement in sampling project region.

Project

Cropland Productivity in
Project Region (kg/mu)

Change Rate of
Cropland Productivity
under Drought Stress
in Project Region (%)

Cropland Productivity in
Non-Project Region (kg/mu)

Change Rate of
Cropland Productivity

under Drought Stress in
Non-Project Region (%)

Productivity
Stability Im-
provement
Level (%)

Drought
Year

Normal
Year

Drought
Year

Normal
Year

Project A 950 889 6.42 741 753 −1.62 8.04
Project B 983 931 5.29 784 865 −10.33 15.62
Project C 880 897 −1.93 663 758 −14.33 12.40
Project D 928 803 13.47 702 737 −4.99 18.46
Project E 867 807 6.92 685 727 −6.13 13.05
Project F 974 794 18.48 687 724 −5.39 23.87
Project G 888 793 10.70 711 762 −7.17 17.87
Project H 871 917 −5.28 694 722 −4.03 −1.25
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3.3. The Improvement of Homogenous Yield Degree of Cropland after HSF Construction

The HSF construction enables the irrigation facilities to completely cover all crops in
the project region. Furthermore, the conditions and levels of crop irrigation are evenly
distributed. Concentrated and contiguous cropland in the project region has been promoted
to highly productive land, and the construction of homogeneous and highly productive
land has achieved remarkable results. Regarding the proportion of middle–low productive
cropland, seven of the eight project regions had more than 95% of middle–low productive
cropland before the HSF construction. After the implementation of the project, the HYD
increase in the eight project regions is more than 75%; among them, the proportion of
middle–low productive cropland decreased from more than 80% to less than 10% in three
project regions, and the proportion of middle–low productive cropland decreased from
more than 95% to less than 20% in five project regions (Table 7). Taking Projects A and
B as examples, the proportion of middle–low productive cropland decreased from 95.9%
and 84.9% to 1.8% and 3.2%, respectively. Furthermore, the proportion of middle–low
productive cropland decreased by 94.1% and 81.7%, respectively (Figure 8).

Table 7. Statistical data on the proportion of middle–low productive cropland before and after the
sampling project regions.

Sampling Region Construction Year Before (kg/mu) After (kg/mu)

Project A 95.9 1.8 94.1
Project B 84.9 3.2 81.7
Project C 100 10.2 89.8
Project D 97.6 16.2 81.4
Project E 96.1 15.4 80.7
Project F 100 8.9 91.1
Project G 100 23.1 76.9
Project H 100 20.5 79.5
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4. Discussion

With the development of remote sensing, multi-source data provide an opportunity
to directly reflect the real situation of cropland productivity, especially for the continuous
grain crop planting region. The light use efficiency (LUE) models have been widely used to
estimate regional vegetation productivity due to their simple form and the relatively long
period of data availability [39]. At present, the VPM model is widely used to estimate the
productivity of farmland ecosystem and shows good simulation ability [39], such as for
the winter wheat and summer maize rotation farmland at Yucheng flux station [37] and
the VPM simulated productivity of Tongyu farmland (corn) station [40]. In addition, the
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Yingke farmland (corn) station [41] can capture more than 80% of the observed interannual
variation in productivity, and the accuracy can be improved by about 50% compared to
MODIS17 products [42] (Figure 9).
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In this study, we use VPM NPP data that combines MODIS and Landsat8-OLI data to
evaluate the effectiveness of HSF construction in Henan Province. The NPP calculated using
MODIS-OLI fusion data more accurately detects differences in cropland productivity due
to the improvement in the spatial resolution of the data. Simple MODIS data are limited by
low spatial resolution and cannot express spatial details, while high spatial resolution NPP
data calculated using MODIS-OLI fusion data can clearly reflect the difference between
high, medium and low productivity within the field. In addition, the MODIS-OLI fusion
data achieves dynamic and high temporal resolution monitoring in 8-day steps, which can
more accurately describe the impact of drought and floods on vegetation growth during
the crop growth period, thus reflecting changes in DRA of HSF. The obtained results show
that the changes in cropland productivity can be effectively detected, as well as disaster
resistance ability and homogeneous yield degree before and after the construction of HSF.

To confirm the ability of the above methods to detect changes in cropland productivity,
we analyzed the difference in cropland productivity of the three NPP products before
and after the completion of the HSF project region. This was performed by comparing
the NPP with a spatial resolution of 30 m calculated by the VPM after the integration of
MODIS-OLI, the NPP with a spatial resolution of 500 m (VPM-MODIS) calculated by the
VPM and the MODIS NPP standard products. The results of the analysis show that the
ability to detect NPP products obtained by MODIS-OLI fusion is 50% higher than before
the fusion, while MODIS NPP products can hardly detect changes in cropland productivity
before and after HSF construction (Figure 10a). Comparing the 8-day time steps of MODIS-
OLI NPP and VPM-MODIS NPP, it is shown that in the region where the cropland area
accounts for more than 30% of the grid area, two sets of NPP data products maintain good
consistency. However, in the region where the cropland area accounts for less than 30%
of the grid area, the NPP calculated by MODIS-OLI fusion data is significantly higher
than that calculated directly using MODIS data. It reflects the advantages of MODIS-OLI
fusion data NPP products in detecting an HYD of cropland due to its high spatial resolution
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(Figure 10b–e). At the same time, the MODIS-OLI fusion data NPP products have a high
temporal resolution (8 days) and can detect the DRA of cropland [38].
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area, and (b–e) temporal changes in cropland productivity with different cropland coverage (drawing
refers to [38]).

The accuracy of NPP estimation from LUE-based models significantly relies on the
parameter of εmax [43,44]. In most of the current LUE models, the εmax is determined by land
cover types and is considered as a constant. In our previous study, we developed a spatial
dataset of εmax by integrating eddy covariance flux measurement, this dynamic modeling
method recognizes the spatial and temporal heterogeneity of εmax, so as to reduce the
uncertainties by vegetation spatial heterogeneity [27] and crop rotation [37]. Nevertheless,
the fragmentation of cultivated land and the frequent adjustment of agricultural planting
structure still limits the accurate estimation of cropland productivity.

In recent years, the structural reform on the agricultural supply side in China is
powerfully promoting the planting structure change [45,46]. Some cropland has changed
from traditional grain crops to cash crops, such as vegetables, and facility agriculture,
such as greenhouses [47]. This study selects high-quality grain fields for continuous grain
crop planting through fine interpretation using Landsat data and Google Earth High-
Definition images, which can help avoid the uncertainty of the evaluation results caused
by differences in crop types before and after project construction due to adjustment of
the planting structure. The result of this study showed that only 109 project regions are
continuous grain planting regions within the 630 HSF construction project regions in Henan
Province. Although we tried to ensure the reliability by filtering the project’s area without
continuous grain crops through visual interpretation from higher resolution satellite data,
the methodology is still worth improving because it is a time-consuming and laborious
process. The newly developed cropland variation detection technology based on the
Google Earth Engine could improve the efficiency of identifying the continuous grain crops
plots [48].

For Henan Province, located in the central part of China, there are about five to seven
Landsat images for each year that could be used for data fusion with 8-day MODIS data,
which can support the data fusion at each crop rotation season and, therefore, effectively
improve the spatial accuracy of NPP estimation. However, for southern regions with more
cloudy and rainy weather, where only one or two qualified images in the whole growing
season can be used for data fusion [49,50]. Persistent clouds over agricultural fields can
mask key stages of crop growth; the fusional NPP cannot capture the heterology informa-
tion in different crop rotation seasons, leading to unreliable yield predictions. Therefore, it
is necessary to incorporate optical and radar remote sensing to develop new data fusion
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methods for high tempo-spatial resolution cropland productivity monitoring [51,52]. Syn-
thetic Aperture Radar (SAR) provides all-weather imagery that can potentially overcome
this limitation, but given its high and distinct sensitivity to different surface properties, the
fusion of SAR and optical data still remains an open challenge [53,54].

5. Conclusions

Based on data from MODIS and Landsat, this study constructs evaluation indicators
to characterize improvements in cropland productivity, disaster resistance ability and
homogenous yield degree. Henan Province, a major grain-producing province in China,
is taken as the research area. By combining the general survey and sampling survey in
typical grain planting project regions, the effectiveness of HSF projects is evaluated. The
results show that there are 109 project regions with continuous grain planting within the
630 HSF construction project regions in Henan Province. The cropland productivity in all
109 project regions of the general survey has improved. Among the eight sampling regions,
seven regions show that the level of cropland productivity stability is higher than that of
the non-project region in the case of severe drought. All regions show that the homogenous
yield degree of cropland productivity is also effectively improved.

These results suggest that in order to achieve the goal of the HSF plan in China, in
addition to the effectiveness of improving cropland productivity, it is necessary to pay close
attention to the spatial layout and structural adjustment of agricultural planting in order to
recover cropland, store grain and effectively ensure lasting food security.
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