
����������
�������

Citation: Wu, J.; Wu, M.; Li, H.; Li, L.;

Li, L. A Serverless-Based, On-the-Fly

Computing Framework for Remote

Sensing Image Collection. Remote

Sens. 2022, 14, 1728. https://

doi.org/10.3390/rs14071728

Academic Editors: Peng Yue,

Ingo Simonis and Maged N. Kamel

Boulos

Received: 20 February 2022

Accepted: 31 March 2022

Published: 3 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

A Serverless-Based, On-the-Fly Computing Framework for
Remote Sensing Image Collection
Jin Wu 1,2,*, Mingbo Wu 1,2, Haiyan Li 2 , Lijuan Li 1,2 and Leilei Li 2,3

1 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences
and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;
wumingbo14@mails.ucas.ac.cn (M.W.); lilj.17b@igsnrr.ac.cn (L.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China; lihaiyan@ucas.ac.cn (H.L.);
lileilei17@mails.ucas.ac.cn (L.L.)

3 State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography,
Chinese Academy of Sciences, Urumqi 830011, China

* Correspondence: wuj.17b@igsnrr.ac.cn

Abstract: The rapid growth of remote sensing data calls for the construction of new computational
models for algorithmic exploration, which requires on-demand execution, instant response, and
multitenancy. We call this model on-the-fly computing, which could reduce the complexity of
cloud programming for remote sensing data analysis and benefit from efficient multiplexing. As an
advancement of cloud computing, serverless computing makes it possible to realize the on-the-fly
computational model. In the study, the concise definition of an on-the-fly computing model for
remote sensing data analysis and the corresponding software architecture based on the serverless
computing commodities are presented. The proof-of-concept experiments have suggested that the
on-the-fly computing model for remote sensing data analysis can be efficiently implemented as
a serverless software. The response time is mainly related to the tile reading operation and data
structure conversion. In the case of high concurrency, the system can scale to hundreds of instances
in seconds.

Keywords: serverless; cloud computing; on-the-fly; remote sensing data; DAG

1. Introduction

With the advance in earth observation and surveying technology, remote sensing
images are increasingly accumulated and piled to be processed, heading the community
of geographical information science into an era of big data. Massive remote sensing im-
ages, multisource archives of petabytes, pose great challenges for the traditional geospatial
information analysis infrastructure. Cloud computing is one of the most promising tech-
nologies to tackle these challenges, and the geographical information science community
has developed various cloud computing platforms for massive remote sensing images
analysis [1,2].

Among the existing massive remote sensing images analysis frameworks, the most
influential one is Google Earth Engine (GEE) [3], which provides two types of computing
services, namely on-the-fly computing and batch computing. Based on the traditional big
data analysis techniques, batch computing processes all the input data as a whole [4]. As
remote sensing data grows larger and larger, the execution time of batch computing is
becoming longer and longer. However, exploratory analysis in scientific research usually
requires an environment enabling instant read–eval–print loop (REPL), where a program
is executed piecewise for a rapid result evaluation. To solve this problem, the on-the-fly
computing technologies, featuring on-demand execution, instant response, and multite-
nancy, are developed to improve the data science productivity. Although GEE provides an
excellent instance of the on-the-fly cloud computing paradigm and has been widely used by

Remote Sens. 2022, 14, 1728. https://doi.org/10.3390/rs14071728 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071728
https://doi.org/10.3390/rs14071728
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6202-1574
https://orcid.org/0000-0002-2059-6070
https://doi.org/10.3390/rs14071728
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071728?type=check_update&version=1

Remote Sens. 2022, 14, 1728 2 of 19

the remote sensing community, its theoretical basis, design principles, and implementation
details are not publicly available.

General big data analysis frameworks, such as Hadoop [5], Spark [4], and Dask [6], are
based on individual servers with tightly integrated resources, which is called server-centric
computing. As advancement in the computer architecture community enables the data-
center disaggregation [7], serverless computing comes to light [8]. Serverless computing
brings about cloud functions with greater elasticity and more lightweight virtualization
while changing the pricing of cloud computing from paying resources allocated to paying
in proportion to resources used. Unfortunately, to the best of our knowledge, none of the
existing on-the-fly remote sensing image analysis frameworks, like Geonotebook [9], have
yet adopted serverless computing technologies and could not switch to batch processing
seamlessly at the same time.

In summary, this paper makes the following contributions:

(1) Proposing a definition for the on-the-fly cloud computing paradigm for remote sensing
image collections, including some empirical or descriptive characteristics and a formal
definition.

(2) Designing an entirely serverless architecture based on the serverless commodities of a
public cloud, which consists of a data model, a programming model, and a series of
key implementing technologies for remote sensing image collection analysis.

(3) Providing some concrete, proof-of-concept experiments suggesting that on-the-fly
cloud computing for remote sensing images can effectively run on the serverless cloud
platform.

The remainder of this paper is organized as follows: Section 2 is an overview of the
definition for the on-the-fly computing paradigm and introduces its serverless software
architecture. More details about the implementation are presented in Sections 3–5, and
Section 6 shows some concrete proof-of-concept experiments of on-the-fly computing for
remote sensing images. Section 7 discusses the results and concludes the paper.

2. On-the-Fly Cloud Computing
2.1. Cloud Computing vs. HPC

Currently, cloud computing has become the main paradigm of server programming,
which can ship code to the big data. The key technologies include virtualization, distributed
storage, and distributed computation. A large number of frameworks have been developed
by the industry and scholars, which can be classified into the server-centric pattern or
serverless pattern. There are some serverless computing commodities in the public cloud,
such as AWS Lambda.

There are four requirements for any computing system, including ease of use, high
performance, portability, and flexibility. The cloud computing system’s first object is the
ease of use while that of high-performance computing (HPC) is performance. Therefore,
HPC provides programming abstractions with low-level details about computer archi-
tecture, such as MPI, and cloud computing systems have more automatic optimization
mechanisms.

From the perspective of workload, the big data processing frameworks can be classified
into batch processing and streaming processing. However, on-the-fly computing has
a significant difference from the other two paradigms. The data source for on-the-fly
computing is the same as batch processing, but it requires a quick response. The streaming
processing can respond instantly, but its data source is real time. Therefore, existing, general
cloud computing frameworks cannot be directly applied to the algorithm exploratory
analysis. A new paradigm of geocomputation is needed.

Remote Sens. 2022, 14, 1728 3 of 19

2.2. Characteristics

The target computing model is called on-the-fly cloud geocomputation, which is imple-
mented based on general purpose cloud computing technologies, oriented to exploratory
analysis, and dedicated to remote sensing processing. We summarize the characteristics of
on-the-fly cloud geocomputation from the perspective of human–computer interaction as
shown in Figure 1.

(1) Shipping code to the remote sensing images persisted in the cloud storage instead of
downloading the data locally for analysis.

(2) Seamlessly switching to batch processing without code modification, which requires
the data abstraction and operators to be the same.

(3) Implicitly triggering the execution implied in specific operators, such as visualization
and data export.

(4) Dynamically determining the spatial scope of remote sensing images to be processed
based on the tiles visualized on the map.

(5) Responding as rapidly as possible when the user needs to evaluate without queueing
of workloads.

(6) Executing user-defined codes based on the overviews of remote sensing images
without explicitly provisioning and managing data allocation.

(7) Paying in proportion to remote sensing data used instead of paying for the computing
resources allocated.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 19

2.2. Characteristics
The target computing model is called on-the-fly cloud geocomputation, which is im-

plemented based on general purpose cloud computing technologies, oriented to explora-
tory analysis, and dedicated to remote sensing processing. We summarize the character-
istics of on-the-fly cloud geocomputation from the perspective of human–computer inter-
action as shown in Figure 1.
(1) Shipping code to the remote sensing images persisted in the cloud storage instead of

downloading the data locally for analysis.
(2) Seamlessly switching to batch processing without code modification, which requires

the data abstraction and operators to be the same.
(3) Implicitly triggering the execution implied in specific operators, such as visualization

and data export.
(4) Dynamically determining the spatial scope of remote sensing images to be processed

based on the tiles visualized on the map.
(5) Responding as rapidly as possible when the user needs to evaluate without queueing

of workloads.
(6) Executing user-defined codes based on the overviews of remote sensing images with-

out explicitly provisioning and managing data allocation.
(7) Paying in proportion to remote sensing data used instead of paying for the compu-

ting resources allocated.

User defined codes

BatchOn-the-fly(5)

(1)

(2)

Remote sensing data

(4)&(6)

Map

(3)

Programming Visualization

Storage

Computing

(7)

Exploratory
analysis

Figure 1. Characteristics of on-the-fly cloud geocomputation.

2.3. Formal Definition
The empirical and descriptive characteristics of on-the-fly cloud geocomputation are

not sufficient to determine the structure of the target model. A directed acyclic graph
(DAG)-based model of on-the-fly cloud geocomputation is presented in Definition 1. A
DAG is a kind of intermediate representation for user-defined codes, and it is common in
relational databases, where it is used to represent the query plans. The nodes of a DAG
are function invocations with some edges for representing the inputs and outputs. Oper-
ators and user-defined codes are equivalent logically and can both be transformed into
DAGs in the target framework.

Definition 1. In order to simplify cloud programming, the target framework of the on-the-fly cloud
computing model for remote sensing images should provide rich datatypes, analysis-ready data,
and dedicated operators for remote sensing image analysis, which would significantly reduce the
amount of user-defined codes. Its programming model could only acquire and generate the
datatypes and operators accessible, according to user authentication in the frontend, and process
data visible to users on maps, usually in the form of tiles, finally achieving instance response, on-
demand execution, and mutitenancy.

Figure 1. Characteristics of on-the-fly cloud geocomputation.

2.3. Formal Definition

The empirical and descriptive characteristics of on-the-fly cloud geocomputation are
not sufficient to determine the structure of the target model. A directed acyclic graph
(DAG)-based model of on-the-fly cloud geocomputation is presented in Definition 1. A
DAG is a kind of intermediate representation for user-defined codes, and it is common in
relational databases, where it is used to represent the query plans. The nodes of a DAG are
function invocations with some edges for representing the inputs and outputs. Operators
and user-defined codes are equivalent logically and can both be transformed into DAGs in
the target framework.

Definition 1. In order to simplify cloud programming, the target framework of the on-the-fly cloud
computing model for remote sensing images should provide rich datatypes, analysis-ready data, and
dedicated operators for remote sensing image analysis, which would significantly reduce the amount
of user-defined codes. Its programming model could only acquire and generate the datatypes and
operators accessible, according to user authentication in the frontend, and process data visible to
users on maps, usually in the form of tiles, finally achieving instance response, on-demand execution,
and mutitenancy.

Remote Sens. 2022, 14, 1728 4 of 19

The on-the-fly computing model for the remote sensing data analysis M can be defined
as a five-tuple:

M :: (E, S, U, V, A)

Here notation :: means “defined as”, and E refers to the main elements to be processed,
including operators, datatypes, and DAGs, which can be defined as a set:

E :: D ∪OP ∪ G

D refers to the set of datatypes, also known as data models, commonly used in remote
sensing image processing, such as Image and ImageCollection. Each datatype Di is a set of
elements di, which means that di is a specific dataset of type Di.

D :: {Di|i ∈ N}

Di ::
{

dk
i

∣∣∣k ∈ N
}

, i ∈ N

There are some specific relations R between datatypes in D, which can be defined
as a three-tuple. A predicate p is virtually a functional mapping from one datatype Di to
another datatype or operator. Superscript ∗means receiving the power set.

r :: (α, p, β)⇔ p(α)→ β; α ∈ D ∪OP, p ∈ P, β ∈ D

Here notation ; means the end of an expression. There are only two predicates.
The predicate cp means that α is a component of β, and more complex datatypes can be
established through it. The predicate ih means that β is more specific and customed on
the basis of α. We can build a classification based on predicate ih. It should be pointed
out that all the datatypes and operators can be organized as a network through these two
predicates.

cp(α)→ β⇒ α ∈ β; β ∈ D, α ∈ D ∪OP

ih(α)→ β⇒ β ∈ α∗; α, β ∈ D

OP refers to a set of operators dedicated to remote sensing image analysis, which
is also known as the programming model. Each operator op is bounded with a specific
datatype Di through the predicate cp. Every operator is actually a function mapping from
certain datatypes with or without a base operator to the output datatypes.

OP :: {opi|i ∈ N}

op :: D∗ ×OP→ D∗

G refers to a DAG, which represents the computational process of remote sensing
images. The DAG is constructed by a series of computational nodes nj, which represent
functional calls with the output results α, operator name, and input arguments. Similar to
an operator, G is virtually a function mapping from the input remote sensing data to the
results. In the implementation of the framework, G can be modeled as a series of nested
objects. Each of them records the input arguments, operator name, and returned datatype.

G ::
{

nj
∣∣j ∈ N

}
n :: (α, op, β), α ∈ D∗, β ∈ G∗|D∗

S refers to a set of states of the main elements, including datatypes, operators, and
the DAG. Any datatype, operator, or DAG can be located only in the client or on the
server, and it can be a static string, a callable proxy, a piece of code, or an executable cloud
function. Notations st, cb, cd, and ex represent that the element is static, callable, code style,

Remote Sens. 2022, 14, 1728 5 of 19

or executable, respectively. Notations ct and sv mean that the element is located in the
client or server, respectively.

S :: {st, cb, cd, ex} × {ct, sv}

The notation U refers to end users. Each user has permitted access to certain operators.
V refers to the viewpoint on a map, which can be defined as a set of tile numbers. The
viewpoint determines the spatial scope of input remote sensing data to be processed.

U :: {ui|i ∈ N}, ui ∈ OP∗

V :: {(x, y, z)|x, y, z ∈ N}

Notation A refers to a set of actions to change the state of target elements to complete
the whole computational process.

A :: {get, init, gnrt, sbmt, schdl}

a :: U × S→ U × S, a ∈ A

The action get can change the location of some elements that can be accessed by a
certain user ui. Notation: means value of the state S.

get :: ui × S : (st, sv)→ ui × S : (st, ct), ui ∈ U

The action init represents an action for the initialization of datatypes and operators,
which translates the state of them from static to callable. A datatype or an operator that is
callable means that it can be programmed but will not be actually executed.

init :: ui × S : (st, ct)→ ui × S : (cb, ct), ui ∈ U

Notation gnrt represents an action for DAG generation, which translates the user-
defined script to a DAG object. The state of the DAG changes from code style to callable.

gnrt :: G× S : (cd, ct)→ G× S : (cb, ct)

In contrast to action get, sbmt represents the action of the DAG submission, which can
be modeled as translating the DAG to a static string and changing the location of the DAG
from client to server.

sbmt :: G× S : (cb, ct)→ G× S : (st, sv)

The action schdl represents the action of DAG scheduling, which changes the state of
the DAG from static to executable and obtains the result tiles determined by viewpoint.
The execution or scheduling of DAG depends on a run-time environment, which can be
modeled by a process calculation [10]. Serverless has no formal foundation yet, and to
simplify the definition, we do not model the execution details of the DAG in the backend.

schdl :: G× S : (st, sv)×V → {tilei|i ∈ V}

It should be noted that the essence of the element state change is a process of translation
rather than a process of encapsulation and invocation.

2.4. Serverless Architecture

In this study, a pure serverless software architecture means that all the components
are built on serverless commodities from the public cloud providers, mainly including the
function computing (FC) [11], serverless workflow [12], Tablestore [13], message service
(MNS) [14], relation database system (RDS) [15], and object storage service (OSS) [16] of

Remote Sens. 2022, 14, 1728 6 of 19

Alibaba Cloud. This architecture is shown in Figure 2, which introduces the high-level
components in the target system and traces the execution flow of the UDF creation and
pipeline execution. Due to the adoption of serverless technologies in software design, the
cost of the system can be paid after the construction is completed. This will enable flexibility
in the pricing of system services.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 19

UDF Client Pipeline Client

Receiver
(FC)

DAGs

Serverless
Workflow

Tiles

Executors
(FC)

Asynchronous I/O
(FC)

Registration
(FC)

Serverless Storage
(OSS)

DAG runtime state
(TableStore)

regiontiles

DAGs

Execution-ready

Symbol
(FC&RDS)

Operators
Data abstractionComputing Engine

① UDF Creation ② Control flow of execution

③ Data flow of execution

Translator
(FC&MNS&RDS)

Task

Tiles

Figure 2. Serverless-based architecture.

① User-defined function (UDF) creation. Some basic operators are defined and sub-
mitted to a cloud function through the UDF client. This cloud function registers the UDF
in the FC engine and a symbol database. As operators are dynamically generated, users
can access the created UDFs through the pipeline client.

② Control flow of execution. User-defined code based on the pipeline client are ex-
pressions that can be translated to DAGs. These DAGs are submitted to the receiver based
on a cloud function and then persisted in the DAG run-time storage. Another cloud func-
tion is triggered by the run-time storage update events to translate the execution-ready
nodes to a parallel workflow.

③ Data flow of execution. Remote sensing images in the serverless storage OSS can
be asynchronously accessed and processed by executors. Tiles of the results are returned
to the receiver and visualized on the map in the frontend.

3. Data Model
3.1. Tiling

Because on-the-fly geocomputation emphasizes analyzing during visualization, the
target system needs to constantly load only part of the target remote sensing images to
memory, which means that it is necessary to divide the images into tiles at different levels
and organize them as pyramids.

For the remote sensing images, Cloud Optimized GeoTIFF (COG) [17] is the most
popular file format to build a pyramid for on-the-fly cloud geocomputation. Because the
I/O time is supposed to be much less than the time of connecting to OSS, all the tiles of
different levels that belong to the same band are organized together in a single GeoTIFF
file. The tiles of the COG are usually organized in a sequence of a row major.

There are two kinds of tiles in the target system: one is for visualization and the other
is introduced by the COG format for cloud storage. Notation 𝑡௩ and 𝑡௦ represent a tile
for visualization or storage, respectively. The tile number (𝑥௩, 𝑦௩, 𝑧௩) is usually deter-
mined according to Web Mercator projection. 𝑡௩ ∷ (𝑥௩, 𝑦௩, 𝑧௩, 𝑣𝑎𝑙𝑢𝑒௩) 𝑡௦ ∷ (𝑥௦, 𝑦௦, 𝑧௦, 𝑣𝑎𝑙𝑢𝑒௦)

In this paper, we highly recommend that these two tiling strategies are consistent
and aligned to some extent. Images from different satellites may have different spatial
projections and need conversions from (𝑥௦, 𝑦௦, 𝑙௦) to (𝑥௩, 𝑦௩, 𝑙௩); (𝑥௦, 𝑦௦, 𝑙௦) is usually til-
ing locally along the rows and the columns of image and not aligned to (𝑥௩, 𝑦௩, 𝑙௩).

3.2. Logical Region
Tile is the basic unit for storage and visualization. The region is a logical strategy of

tiles grouping, which is aimed at the dynamic requirements of data-parallel execution. It
can be modeled as a set of tile numbers, representing a spatially continuous coverage, and
is the minimal unit for the algorithm design, task allocation, and geodata access.

Figure 2. Serverless-based architecture.

1© User-defined function (UDF) creation. Some basic operators are defined and sub-
mitted to a cloud function through the UDF client. This cloud function registers the UDF in
the FC engine and a symbol database. As operators are dynamically generated, users can
access the created UDFs through the pipeline client.

2© Control flow of execution. User-defined code based on the pipeline client are
expressions that can be translated to DAGs. These DAGs are submitted to the receiver
based on a cloud function and then persisted in the DAG run-time storage. Another cloud
function is triggered by the run-time storage update events to translate the execution-ready
nodes to a parallel workflow.

3© Data flow of execution. Remote sensing images in the serverless storage OSS can
be asynchronously accessed and processed by executors. Tiles of the results are returned to
the receiver and visualized on the map in the frontend.

3. Data Model
3.1. Tiling

Because on-the-fly geocomputation emphasizes analyzing during visualization, the
target system needs to constantly load only part of the target remote sensing images to
memory, which means that it is necessary to divide the images into tiles at different levels
and organize them as pyramids.

For the remote sensing images, Cloud Optimized GeoTIFF (COG) [17] is the most
popular file format to build a pyramid for on-the-fly cloud geocomputation. Because the
I/O time is supposed to be much less than the time of connecting to OSS, all the tiles of
different levels that belong to the same band are organized together in a single GeoTIFF
file. The tiles of the COG are usually organized in a sequence of a row major.

There are two kinds of tiles in the target system: one is for visualization and the other
is introduced by the COG format for cloud storage. Notation tv and ts represent a tile for
visualization or storage, respectively. The tile number (xv, yv, zv) is usually determined
according to Web Mercator projection.

tv :: (xv, yv, zv, valuev)

ts :: (xs, ys, zs, values)

In this paper, we highly recommend that these two tiling strategies are consistent
and aligned to some extent. Images from different satellites may have different spatial
projections and need conversions from (xs, ys, ls) to (xv, yv, lv); (xs, ys, ls) is usually tiling
locally along the rows and the columns of image and not aligned to (xv, yv, lv).

Remote Sens. 2022, 14, 1728 7 of 19

3.2. Logical Region

Tile is the basic unit for storage and visualization. The region is a logical strategy of
tiles grouping, which is aimed at the dynamic requirements of data-parallel execution. It
can be modeled as a set of tile numbers, representing a spatially continuous coverage, and
is the minimal unit for the algorithm design, task allocation, and geodata access.

The calculation from a region number (xr, yr, zr) to visualization tile numbers
{(xv, yv, zv)} can be modeled as an affine function ft. ax and ay represent the width
and height of the region, respectively. brx is an offset in region r along x while bry is an
offset in region r along y. zv and zr are levels in the pyramid, and they usually have the
same value. Obviously, the conversion f−1

t from (xv, yv, zv) to (xr, yr, zr) is a kind of integer
modular operation. xv

yv
zv

 ft↔

 xr
yr
zr

× (ax, ay, 1
)
∓

 brx
bry
0

, ax, ay, brx, bry ∈ N

The region is composed of two independent types of tiles, which can be transformed to
each other by fc. Due to the transformation of the projection, a tile in the COG may belong
to two different regions. In order to prevent the tiles belonging to different regions from
being processed multiple times, a tile-masking strategy was designed. The mask is a set of
tiles, which can indicate whether the target tiles have been processed. In computation, the
region is reformed as a unified larger tile that can ensure the correctness of focal operators
by the overlapped zones, such as sliding windows. The logical region LR can be defined
formally as follows:

LR :: (Tv, Ts, ft, fc, M)

Tv and Ts are the set of tv and ts, respectively. M is also a cached set of ts to indicate
the tiles that have been processed. The logical region is as shown in Figure 3. In the OSS
storage, the bytes to be read are determined by some information, including bucket, image
collection, image, band, region number, tile order, and overlap. The region and overlap
define the minimal basic unit for distributed geocomputation. The overlap is a dynamic
value determined by the window operators. The spatial order, similar to the Hilbert curve
or Z curve, determines the offset and length of bytes where the system begins to read.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 19

The calculation from a region number (𝑥௥, 𝑦௥, 𝑧௥) to visualization tile numbers {(𝑥௩, 𝑦௩, 𝑧௩)} can be modeled as an affine function 𝑓௧ . 𝑎௫ and 𝑎௬ represent the width
and height of the region, respectively. 𝑏௥௫ is an offset in region 𝑟 along 𝑥 while 𝑏௥௬ is
an offset in region 𝑟 along 𝑦. 𝑧௩ and 𝑧௥ are levels in the pyramid, and they usually
have the same value. Obviously, the conversion 𝑓௧ି ଵ from (𝑥௩, 𝑦௩, 𝑧௩) to (𝑥௥, 𝑦௥, 𝑧௥) is a
kind of integer modular operation.

൭𝑥௩𝑦௩𝑧௩൱ ௙೟↔ ൭𝑥௥𝑦௥𝑧௥ ൱ × ൫𝑎௫, 𝑎௬, 1൯ ∓ ൭𝑏௥௫𝑏௥௬0 ൱ , 𝑎௫, 𝑎௬, 𝑏௥௫, 𝑏௥௬ ∈ 𝑁

The region is composed of two independent types of tiles, which can be transformed
to each other by 𝑓௖. Due to the transformation of the projection, a tile in the COG may
belong to two different regions. In order to prevent the tiles belonging to different regions
from being processed multiple times, a tile-masking strategy was designed. The mask is
a set of tiles, which can indicate whether the target tiles have been processed. In compu-
tation, the region is reformed as a unified larger tile that can ensure the correctness of focal
operators by the overlapped zones, such as sliding windows. The logical region 𝐿𝑅 can
be defined formally as follows: 𝐿𝑅 ∷ (𝑇௩, 𝑇௦, 𝑓௧, 𝑓௖, 𝑀) 𝑇௩ and 𝑇௦ are the set of 𝑡௩ and 𝑡௦, respectively. 𝑀 is also a cached set of 𝑡௦ to indi-
cate the tiles that have been processed. The logical region is as shown in Figure 3. In the
OSS storage, the bytes to be read are determined by some information, including bucket,
image collection, image, band, region number, tile order, and overlap. The 𝑟𝑒𝑔𝑖𝑜𝑛 and 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 define the minimal basic unit for distributed geocomputation. The 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is a
dynamic value determined by the window operators. The spatial 𝑜𝑟𝑑𝑒𝑟, similar to the
Hilbert curve or Z curve, determines the offset and length of bytes where the system be-
gins to read.

Tile(c+1) Tile(2C)

ready ready done

ready ready

done

Tile(c×r)

region

overlap

Tile(1) Tile(2) Tile(c)
Tile Order: row major

ya

Colum: c

Row: r

region

overlap

MBR

MBR

region

vtiles stiles

ready ready done

ready ready done

Cache: mask

reprojection

Tile Order

xa

Tile(1)

Tile(2)

Tile(c×r)

…

Tile(1)

Tile(2)

Tile(c×r/4)

…

…

IFD(1)

IFD(2)

Header

Tile(1)

Bytes
to
read

COG

…
……

…
Figure 3. Logical region.

3.3. Datatypes
As a kind of raster data, the remote sensing image is the main type of geodata and

can be analyzed by a map algebra or an array algebra system. In addition, vector data is
another type of geodata, often used to manage the image processing results. The logical
region is a general purpose geodata abstraction for implicit parallel computing, which is
not suitable for end-user programming and should be invisible to users. We propose a
composite datatype of image collection based on the SpatioTemporal Asset Catalog
(STAC) [18] and GeoJSON. The definition is as follows:

Figure 3. Logical region.

3.3. Datatypes

As a kind of raster data, the remote sensing image is the main type of geodata and can
be analyzed by a map algebra or an array algebra system. In addition, vector data is another

Remote Sens. 2022, 14, 1728 8 of 19

type of geodata, often used to manage the image processing results. The logical region is a
general purpose geodata abstraction for implicit parallel computing, which is not suitable
for end-user programming and should be invisible to users. We propose a composite
datatype of image collection based on the SpatioTemporal Asset Catalog (STAC) [18] and
GeoJSON. The definition is as follows:

Image collection is the top-level data abstraction dedicated to remote sensing image
processing and constructed based on predicates P and some basic datatypes. All datatypes
and their relations are shown in Figure 4.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 19

Image collection is the top-level data abstraction dedicated to remote sensing image
processing and constructed based on predicates 𝑃 and some basic datatypes. All
datatypes and their relations are shown in Figure 4.

D0:List

D2:Collection D3:Element

D11:ImageCollection D6:Feature

D10:Image

P:ih

P:cp

P:ih P:ih

P:ih

D4:Geometry

D1:Dictionary

P:ih

P:cpP:cp

P:cp

D5:Date

P:cp P:cp

D9:Band

D7:Tile

P:ih

P:ih

P:cp
P:cp

P:cp

D8:Region

P:ih

P:cp

P:cp

Figure 4. Definition of image collection.

4. Programming Model
4.1. Workflow

The DAG is virtually a workflow for modeling the computational process, where the
nodes and edges represent operators and image collections. DAG generation, presented
in Section 4.4, is usually separated from the end-user programming interface and invisible
to users, which makes programmers avoid the burden of constructing a global DAG data
structure for workflow. This paper proposes a design or definition for the interface of re-
mote sensing processing workflow. The user programming interface consists of composite
datatypes and workflow skeletons, which can be expressed as a two-tuple, (𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑡𝑦𝑝𝑒𝑠, 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑠).
(1) 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑡𝑦𝑝𝑒. The composite datatypes are the user-visible components of data

abstraction, defined in Section 3.3, except 𝑟𝑒𝑔𝑖𝑜𝑛 and 𝑡𝑖𝑙𝑒. In the construction of
workflow, 𝐼𝑚𝑎𝑔𝑒𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 is the most common datatype.

(2) 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛. Workflow skeletons are high-level operators representing the basic work-
flow semantics. There are six operators related to workflow construction, including 𝑐𝑟𝑒𝑎𝑡𝑒 , 𝑓𝑖𝑙𝑡 , 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 , 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚, 𝑎𝑔𝑔𝑟𝑒𝑔𝑟𝑎𝑡𝑒 , and 𝑠ℎ𝑜𝑤 . These skeletons are
functions mapping from one image collection to another. 𝑆𝑘𝑒𝑙𝑒𝑡𝑜𝑛 ∷ 𝐷ଵଵ × 𝑂𝑃 → 𝐷ଵଵ 𝑀𝑜𝑑𝑒𝑙, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝐵𝑎𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐴𝑔𝑔𝑟𝑒𝑔𝑟𝑎𝑡𝑜𝑟, 𝑅𝑒𝑑𝑢𝑐𝑒𝑟, and 𝑆𝑐ℎ𝑒𝑚𝑒
are kinds of user-defined functions, defined in Section 4.2. The definition is shown in
Figure 5.
Every 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 has two parts, the lefthand expression 〈𝑙ℎ𝑠〉 and the righthand ex-

pression 〈𝑟ℎ𝑠〉. All the input datatypes of 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 are 𝐼𝑚𝑎𝑔𝑒𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛. The 𝑐𝑟𝑒𝑎𝑡𝑒
operator is used to load an image collection with a file path of cloud storage or a data
model 𝑀𝑜𝑑𝑒𝑙 describing the content of the certain image collection. The 𝐹𝑖𝑙𝑡 operator is

Figure 4. Definition of image collection.

4. Programming Model
4.1. Workflow

The DAG is virtually a workflow for modeling the computational process, where the
nodes and edges represent operators and image collections. DAG generation, presented in
Section 4.4, is usually separated from the end-user programming interface and invisible
to users, which makes programmers avoid the burden of constructing a global DAG
data structure for workflow. This paper proposes a design or definition for the interface
of remote sensing processing workflow. The user programming interface consists of
composite datatypes and workflow skeletons, which can be expressed as a two-tuple,
(composite types, skeletons).

(1) composite type. The composite datatypes are the user-visible components of data
abstraction, defined in Section 3.3, except region and tile. In the construction of
workflow, ImageCollection is the most common datatype.

(2) skeleton. Workflow skeletons are high-level operators representing the basic work-
flow semantics. There are six operators related to workflow construction, including
create, f ilt, integrate, trans f orm, aggregrate, and show. These skeletons are functions
mapping from one image collection to another.

Skeleton :: D11 ×OP→ D11

Remote Sens. 2022, 14, 1728 9 of 19

Model, Condition, Relation, Base operator, Aggregrator, Reducer, and Scheme are
kinds of user-defined functions, defined in Section 4.2. The definition is shown
in Figure 5.

Every skeleton has two parts, the lefthand expression 〈lhs〉 and the righthand expres-
sion 〈rhs〉. All the input datatypes of skeleton are ImageCollection. The create operator is
used to load an image collection with a file path of cloud storage or a data model Model
describing the content of the certain image collection. The Filt operator is used to construct
spatiotemporal or regular conditions for filtering the input image collection. Because each
image collection has a corresponding data model Model, the Integrate operator provides a
way to integrate different image collections with a Relation between different data models.
The skeleton Trans f orm maps a base intraimage operator to every item of the input image
collection while the Aggregate operator maps a base interimage operator according to the
Aggregater, which also groups the items of the image collection by the selected dimensions
in Model, such as time or space. The Show operator triggers the execution of the workflow
and obtains the tiles of the input image collection visible to users.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 19

used to construct spatiotemporal or regular conditions for filtering the input image col-
lection. Because each image collection has a corresponding data model 𝑀𝑜𝑑𝑒𝑙 , the 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒 operator provides a way to integrate different image collections with a 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 between different data models. The 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 maps a base in-
traimage operator to every item of the input image collection while the 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 oper-
ator maps a base interimage operator according to the 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑟, which also groups
the items of the image collection by the selected dimensions in 𝑀𝑜𝑑𝑒𝑙, such as time or
space. The 𝑆ℎ𝑜𝑤 operator triggers the execution of the workflow and obtains the tiles of
the input image collection visible to users.

Create Image
Collection

Integrate Image
Collection

Image
Collection

Image
Collection

Relation

Filt Image
Collection

Condition

Image
Collection

Trans-
form

Image
Collection

Base
operators

Image
Collection

Aggreg-
ate

Image
Collection

Aggregater

Image
Collection

Show Tiles

Scheme

Image
Collection

Model

File
Path

<create-op> : := <f-lhs> = <crt-rhs>;<fi lt-op> : := <f-lhs> = <flt-rhs>;<integrate-op> : := <f-lhs> = <itgrt-rhs>;<transform-op> : := <s-lhs> = <tsf-rhs>;<aggregate-op> : := <s-lhs> = <agt-rhs>;<show-op> : := <s-lhs> = <pnt-rhs>;<f-lhs> ::= ImageCollection <id>;<s-lhs> ::= <clct-type> <id>;<clct-type> ::= ImageCollection;<id> : := any object identifier;<crt-rhs> ::= ht.create(<crt-prmtr>);<crt-prmtr> ::= <file-path> | <Model>;<flt-rhs> ::= <id>.filt(<condition>);<itgrt-rhs> ::= <id>.integrate(<id>,<relation>);<tsf-rhs> ::= <id>.transform(<img-op>);<agt-rhs> ::= <id>.aggregate(<aggregater>);<pnt-rhs> ::= <id>.show(<scheme>);<int> ::= any int number;<fi le-path> ::= any data identifier;
…

Figure 5. Workflow skeletons.

4.2. User-Defined Function
The 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛𝑠 are collection-level operators and lack the flexibility of image-level or

pixel-level operations. According to the definition of 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤, there are six operators at
the image level and pixel level, which can be defined and published by the user, including 𝑀𝑜𝑑𝑒𝑙, 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛, 𝐵𝑎𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐴𝑔𝑔𝑟𝑒𝑔𝑟𝑎𝑡𝑒𝑟, and 𝑆𝑐ℎ𝑒𝑚𝑒.

Similar to the constructor of programming language, 𝑀𝑜𝑑𝑒𝑙 is a configuration for
certain satellite images, including band number, coverage, resolution, spatial projection,
and other attributes in a key-value form. The 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is a logical expression, especially
the spatial-temporal topological relationship, for selecting the target images. The 𝑅𝑒𝑎𝑙𝑡𝑖𝑜𝑛 is a rename operator, which specifies a unified model for the input image col-
lections. 𝐵𝑎𝑠𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 refers to the image-level algorithm defined and implemented on the
band-level and pixel-level interface. The band-level operators, band math, or map algebra
can be regarded as some window operators on linear algebra. The 𝑟𝑒𝑑𝑢𝑐𝑒𝑟 defines some
algorithms to integrate all the images in a collection into a single image along a certain
axis, such as 𝑠𝑝𝑎𝑐𝑒, 𝑡𝑖𝑚𝑒, 𝑏𝑎𝑛𝑑𝑠, or other metadata.

Besides all the above operators, there are also some operators related to publishing
UDFs, such as 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟, which provide an interface for registering the basic information
of UDFs, including results datatype, function name, input arguments, and description,
etc. More details about operator publication are shown in Section 4.3.

The syntax description is based on the augmented Backus–Naur form (ABNF),
shown in Figure 6.

Figure 5. Workflow skeletons.

4.2. User-Defined Function

The skeletons are collection-level operators and lack the flexibility of image-level or
pixel-level operations. According to the definition of work f low, there are six operators at
the image level and pixel level, which can be defined and published by the user, including
Model, Condition, Relation, Base operator, Aggregrater, and Scheme.

Similar to the constructor of programming language, Model is a configuration for
certain satellite images, including band number, coverage, resolution, spatial projection,
and other attributes in a key-value form. The Condition is a logical expression, especially
the spatial-temporal topological relationship, for selecting the target images. The Realtion
is a rename operator, which specifies a unified model for the input image collections.

Base operator refers to the image-level algorithm defined and implemented on the
band-level and pixel-level interface. The band-level operators, band math, or map algebra
can be regarded as some window operators on linear algebra. The reducer defines some
algorithms to integrate all the images in a collection into a single image along a certain axis,
such as space, time, bands, or other metadata.

Besides all the above operators, there are also some operators related to publishing
UDFs, such as register, which provide an interface for registering the basic information of
UDFs, including results datatype, function name, input arguments, and description, etc.
More details about operator publication are shown in Section 4.3.

The syntax description is based on the augmented Backus–Naur form (ABNF), shown
in Figure 6.

Remote Sens. 2022, 14, 1728 10 of 19Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 19

<band> ::= {<<band-name>, <band-value>>, <band-meta>};<band-name> ::= an identifier for the index of band;<band-value> ::= a 2 dimensional numeric array [[...]…[...]];<band-meta> ::= {<‘projection’, <projection>>, <meta-data>*};<meta-data> ::= <key, value>;//al l metadata is organized as pairs;<projection> ::= an identifier of projection defined according EPSG;<band-op> : := <band-lhs> = <band-rhs>;<band-lhs> ::= Band <id>;<band-rhs> ::= ht.band() | ht.load(<band-name>)<id>.addMeta(<band-meta> | {<meta-data>*}) | <id>.setValue(<band-name>,<band-value>) | <id>.deleteMetaByName(<key>) |<id>.deleteArray(<band-name>); ::= {<<band-name>, <band>>+; <img-meta>};<img-op> : := <img-lhs> = <img-rhs>;<img-lhs> ::= Image <id>;<img-rhs> ::= ht.image() | ht.load(<img-name>) | <id>.addBands(<band>*) | <id>.deleteBands(<band-name>*) | <id>.updateBands(<band>*) | <id>.selectBand(<band-name>*);<imgclct> ::= { <<img-name>, >+; <metadata>};<imgclct-op> : := <imgclct-lhs> = <imgclct-rhs>;<imgclct-lhs> ::= ImageCollection <id>;<imgclct-rhs> ::= ht.imageCollection() | ht.load(<imgclct-name>) | <id>.imgClctAdd(*) | <id>.imgClctDelByName(<img-name>*) | <id>.imgClctUpdate(*); <id>.selectImg(<img-name>*);<Model-udf> ::= ImageCollection <id>(<img-lhs>*){ <img-op>+ | <band-op>*};//defined according the GeoJSON specification<geometry>::=<Point>|<LineString>|<LinearRing>|<Polygon>| <MultiPoint>|<MultiLineString>|<MultiPolygon>| <GeometryCol lection>|<Feature>|<FeatureCollection>; <spatial-rel> := Adj acent | Connection | Conjunction | Inclusion;//Defined according the time ontology in OWL;<time> ::= <time-point> | <time-interval>;<time-rel> := Before | After | Meets | MetBy | Overlaps | Starts| OverlappedBy | StartedBy | During | Contains | Finishes | FinishedBy | Equals | In | Disjoint;

<str-format> is an regular expression;<c-op> : = EQ | NE | LT | GT | LE | GE; //=, ്,<, >, ൑, ൒ <l-op> := and | or;<condition-op> := <cond-lhs> = <cond-rhs>;<cond-lhs> := Condition <id>;<cond-rhs> := ht.condition() | <id>.addCond(<id>,<l-op>) | <id>.addGeometry(<gemetry>,<spatial-rel>,<l-op>) | <id>.addDatetime(<time>,<time-rel>,<l-op>) | <id>.addMetaStr(<key >,<str-format>,<l-op>) | <id>.addMetaNum(<key>,<c-op>,<value>,<l-op>);<condition-udf> ::= Condition <id>(<cond-lhs>*){ <condition-op>+};//add a common scheme to the candidate image collections<relation-udf> ::= ImageCollection <id>(<destination>, <source>+){ <Model-op>+}<destination>, <source> ::=<imgclct-lhs>;//both are image collections<scheme-op> : := <imgclct-lhs> = <schm-rhs>;<schm-rhs> ::= <source>.<metadata>.as(<destination>.<metadata>);<img-op-udf>::=Image <id>(<img-lhs>,<win-lhs>){ <img-op>+};<window-op> : := <win-lhs> = <win-rhs>;<win-lhs> ::= Window <id>;<win-rhs> ::= <id>.create(<<left>, <right>>+|<geometry>+|<time-interval>+);<left>, <right> ::= an positive integer indicating relative coordinate;<pixel-op> : := <u-op> | <b-op> | <c-op>;<u-op> : := Neg | Not | Log | Ceil ling | Floor | Log2;<b-op> : := Add | Sub | Mul | Div | <l-op>;<win-op-udf> ::= Window <id>(<win-lhs>){ <pixel-op>+};//for single band or multi-bands<img-op> : := <img-lhs> = <id>.focal(<win-op-udf>, <win-lhs>); <id>.apply(<img-lhs>, <b-op>);<aggregater-udf> ::= ImageCollection <id>(<imgclct-lhs>, <win-lhs>){<imgclct-op>+ | <img-op>+ | <pixel-op>+};
Figure 6. Syntax description.

For the reason of embedding into other programming languages as an internal do-
main-specific language (DSL) [19], the production rules adopt some symbols different
from the regular ABNF [20]. All the symbols of the production rules in Figures 4 and 5 are
defined in Table 1.

Table 1. Description of the symbols.

Symbols Description Example
<> Denotes an operator or variable in programming; <img-clct>
[] Indicates creating a data structure of numeric array; [[…]…[…]]
{} Body of the UDF or a data structure of dictionary; {<metadata>*}
() Indicates the inputs of the UDF; (<img-lhs>)
| Choice operator for two candidate expressions; EQ | NE
* Zero or more occurrences of the preceding element; <img-op>*
+ One or more occurrences of the preceding element; <img-op>+
. Denotes the attribute or method of an object; <id>.apply(…)
; Indicates end of a BNF statement; Image <id>;
// Annotation of the production rules; //annotation
::= Means being defined as the right-hand expressions; <l-op> ::= or;

4.3. Operator Publication
Similar to the symbol table of programming language, operators can be regarded as

a kind of computational symbol with input and output information in the remote sensing
processing workflows. An operator brings two kinds of information, one for user

Figure 6. Syntax description.

For the reason of embedding into other programming languages as an internal domain-
specific language (DSL) [19], the production rules adopt some symbols different from the
regular ABNF [20]. All the symbols of the production rules in Figures 4 and 5 are defined
in Table 1.

Table 1. Description of the symbols.

Symbols Description Example

<> Denotes an operator or variable in programming; <img-clct>
[] Indicates creating a data structure of numeric array; [[. . .] . . . [. . .]]
{} Body of the UDF or a data structure of dictionary; {<metadata>*}
() Indicates the inputs of the UDF; (<img-lhs>)
| Choice operator for two candidate expressions; EQ | NE
* Zero or more occurrences of the preceding element; <img-op>*
+ One or more occurrences of the preceding element; <img-op>+
. Denotes the attribute or method of an object; <id>.apply(. . .)
; Indicates end of a BNF statement; Image <id>;

// Annotation of the production rules; //annotation
::= Means being defined as the right-hand expressions; <l-op> ::= or;

4.3. Operator Publication

Similar to the symbol table of programming language, operators can be regarded
as a kind of computational symbol with input and output information in the remote
sensing processing workflows. An operator brings two kinds of information, one for user
programming and the other for explicitly cloud functions calling, which can be called
high-level attribute and low-level attribute of operators.

The high-level attribute is some information exposed to users, which would be sent
to the pipeline client through a dynamic operator generation. It contains four kinds of

Remote Sens. 2022, 14, 1728 11 of 19

information expressed as datatype, operator name, input arguments, return types, and
description. The low-level attribute is a pointer to a certain cloud function, which contains
two kinds of information, including operator name and function call location.

When users create operators, they need to publish in the backend before these oper-
ators can be used to create workflows. The process of operator publication is shown in
Figure 7, presented in Python style. When UDFs have been published by users, they can
access the published UDFs through agent datatypes through the pipeline client, and they
can be used in the construction of workflows.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 19

programming and the other for explicitly cloud functions calling, which can be called
high-level attribute and low-level attribute of operators.

The high-level attribute is some information exposed to users, which would be sent
to the pipeline client through a dynamic operator generation. It contains four kinds of
information expressed as datatype, operator name, input arguments, return types, and
description. The low-level attribute is a pointer to a certain cloud function, which contains
two kinds of information, including operator name and function call location.

When users create operators, they need to publish in the backend before these oper-
ators can be used to create workflows. The process of operator publication is shown in
Figure 7, presented in Python style. When UDFs have been published by users, they can
access the published UDFs through agent datatypes through the pipeline client, and they
can be used in the construction of workflows.

(a) UDF
construction

def NDVI(img): band4 = img.slct(BAND5)//select band band5 = img.slct(BAND4)//select band NDVI = band5.sub(band4).div(...band5.add(band4)) ht.rtrn(NDVI)//return the NDVI result}
(b) UDF

registration

def register(udf): rgst = ht.register(udf.name, ... udf.annotation, udf.input, udf.output) udfDagJson = rgst.serilizer(udf)//DAG JSON flag = rgst.registerFunction(udfDagJson) return flag
(c) DAG

generation

Code of UDF

Register UDF name

(f) Agent objects
generation

JSON of operators

UDF Publication UDF Generation

M
et

ad
at

a
of

 U
D

F
D

A
G

 J
SO

N
 o

f U
D

F

slct add
sub divslct rtrn

O
pe

ra
to

rs

as
 c

al
la

bl
e

(e) Operator DB
(RDS)

(d) Function DB
(Table Store)

(a)

(b)

(c)

def InitializeProxyObjects(OperatorDic): for obj in OperatorDic://create dynamic class (klass, operators) = Proxy(obj.split()) globals()[name] = type(klass, proxyBase, {}) for op in operators://add fun to bound class fun = lambda *a, **b: op.invoke(*a, **b) setattr(globals()[name], op.name(), fun){<fname>: { ‘description’: <udfDs>, //resourceArn is not user-visible ‘resourceArn’: <cloud-function> ‘returns’: <type>, ‘args’: [{‘name’: <arg-name>, ‘type’: <type>, ‘description’: <argDs>},]}}{<type-name>: {//return type ‘invocation’:{ ‘fname’: <fname>, ‘args’:{<type-name>:{...},//nested <type-name>:{...},}}}}
(d)

(e)

(f)

Figure 7. Operator publication and generation.

4.4. DAG Generation
The pipeline and UDF clients have the ability of dynamically generating operators in

the frontend based on the metaprogramming technology and the high-level attributes of
cloud functions. All the operators in the frontend belong to specific proxy objects, and
they actually refer to one same function just recording the invocation between cloud func-
tions, which make up a sense of code execution. This relation can be modeled as a DAG,
which is a kind of intermediate representation between the remote sensing image pro-
cessing pipeline and the underlying cloud functions, and generated through a series of
callable proxy objects in the frontend, similar to the way of the GEE API Client.

4.5. Trigger of Execution
Although the DAGs represent the pipeline execution, they are generated in the

frontend. When users invoke specific functions, the framework is triggered to submit
DAGs from client to cloud. In order to receive results as soon as possible, the DAGs should
have an initial viewpoint or would receive a default one if not. The framework can com-
pute results on the tiles around the viewpoint. The trigger of execution can be defined as
a tuple of (𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑣𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡). The 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 can submit the DAGs through a request
and obtain a map identifier to fetch tiles. The 𝑣𝑖𝑒𝑤𝑝𝑜𝑖𝑛𝑡 defines the initial scope of input
tiles. Therefore, the users can receive the result very quickly, complying with the design
principle of on-the-fly geocomputation.

The most important aspect of DAG execution is to guarantee the correctness of trans-
lating the focal operators from band level to region level. For the reason that logical region
is invisible to end users, the translator of the run-time environment should be able to de-
termine the shape of logical region automatically, i.e., automatic data partition.

Figure 7. Operator publication and generation.

4.4. DAG Generation

The pipeline and UDF clients have the ability of dynamically generating operators in
the frontend based on the metaprogramming technology and the high-level attributes of
cloud functions. All the operators in the frontend belong to specific proxy objects, and they
actually refer to one same function just recording the invocation between cloud functions,
which make up a sense of code execution. This relation can be modeled as a DAG, which
is a kind of intermediate representation between the remote sensing image processing
pipeline and the underlying cloud functions, and generated through a series of callable
proxy objects in the frontend, similar to the way of the GEE API Client.

4.5. Trigger of Execution

Although the DAGs represent the pipeline execution, they are generated in the fron-
tend. When users invoke specific functions, the framework is triggered to submit DAGs
from client to cloud. In order to receive results as soon as possible, the DAGs should have
an initial viewpoint or would receive a default one if not. The framework can compute
results on the tiles around the viewpoint. The trigger of execution can be defined as a
tuple of (f unction, viewpoint). The f unction can submit the DAGs through a request and
obtain a map identifier to fetch tiles. The viewpoint defines the initial scope of input tiles.
Therefore, the users can receive the result very quickly, complying with the design principle
of on-the-fly geocomputation.

The most important aspect of DAG execution is to guarantee the correctness of trans-
lating the focal operators from band level to region level. For the reason that logical region
is invisible to end users, the translator of the run-time environment should be able to
determine the shape of logical region automatically, i.e., automatic data partition.

5. DAG Execution
5.1. Data Partition

Different from the DAGs generated automatically by the machine learning engine,
the DAGs manually constructed by users are usually not too big to be partitioned for task-
parallel execution. This paper only focuses on the algorithms of data-parallel execution.
We need an algorithm for automatic data partition.

Remote Sens. 2022, 14, 1728 12 of 19

The focal operator has a characteristic of a structural locality, which means that the
result at the location of (i, j) is not only determined by the value of (i, j) but also its
neighbors. The structural locality of the remote sensing processing can be defined as a
window so that the computational model of the data partition for a remote sensing image
can be expressed as a function with a window as the input and a kind of logical region as
the output.

region← fimage(window)

Since all the remote sensing images are organized as a COG and persisted in the OSS,
the data partition algorithm is ideally determined by the characteristics of OSS, the shape
of the window, and the physical layout of the COG. As the COG is a highly customized
format in the OSS for streaming, progressive rendering, and supporting on-the-fly random
reading, the impacts of the OSS and the physical layout of the COG can be neglected in this
paper.

A single remote sensing image can be regarded as a three-dimensional array, so the
window defines the scope and neighboring pixels at a specified location of (i, j, k). Different
from the common window definition, such as 7 × 7 × 3, this paper adopts a more flexible
window form, i.e., a set of neighboring pixels similar to ArrayUDF [21]. Expression {r, c, b}
represents the three dimensions of an image. The shape of the overlapping zone {Ok}
guarantees the correctness of operators across logic regions and can be derived from the
window parameters, [Li, Ri].

W([Li, Ri])← f
({

Pδr ,δc ,δb

∣∣δi ∈ [Li, Ri]
})

, ∀i ∈ {r, c, b}

{Ok} ← Sum(Lk, Rk), ∀k ∈ {r, c, b}

5.2. Execution

To implement computing while visualizing, we propose an architecture based on the
producer–consumer pattern. The producer receives tile numbers indicating data to be
processed, applies the DAG to be executed on tiles determined by regions, and puts the
results in a workspace to be consumed. The data-parallel DAG execution algorithm is
shown in Algorithm 1.

Algorithm 1 Data-Parallel DAG Execution

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 19

5.3. Cache
Considering that some tiles may be requested for more than one time in the DAG

execution, the framework must maintain the execution states, including DAGs and tiles,
in caches. The consumer firstly obtains tiles in the target region from the cache in the
frontend and generates tiles dynamically from the upper or lower tiles maintained in the
cache if they have been requested and then sends a request to the backend to receive the
target tiles generated by the producers from the workspace.

Except for the cache in the frontend, there is also a cache in the backend, which plays
an import role in the DAG execution. If the whole region requested by the consumers has
been processed, the cache will put the tiles directly in the workspace. As some tiles are
shared by different regions and the target region is partially processed, the cache will gen-
erate a mask to declare which tiles have been processed to reduce the computational cost.

6. Case Study
6.1. Data and Result

This study conceptually validates the feasibility of serverless-based, on-the-fly com-
putation framework with a simple NDVI use case on a remote sensing image. The NDVI
code is shown in Figure 8. All the remote sensing images are from Landsat8 and organized
in the COG file format. Every overview of different levels in the image pyramid is tiled
into tiles of 256 × 256 pixels and encoded into an individual TIFF file. This study provides
a Python client integrated as an algorithm library in Jupyter. The NDVI code, the input
image, and the result tiles are shown in Figure 8. The NDVI function is performed on four
tiles, numbered as (0,7), (0,8), (1,7), and (1,8).

Remote Sens. 2022, 14, 1728 13 of 19

5.3. Cache

Considering that some tiles may be requested for more than one time in the DAG
execution, the framework must maintain the execution states, including DAGs and tiles, in
caches. The consumer firstly obtains tiles in the target region from the cache in the frontend
and generates tiles dynamically from the upper or lower tiles maintained in the cache if
they have been requested and then sends a request to the backend to receive the target tiles
generated by the producers from the workspace.

Except for the cache in the frontend, there is also a cache in the backend, which plays
an import role in the DAG execution. If the whole region requested by the consumers
has been processed, the cache will put the tiles directly in the workspace. As some tiles
are shared by different regions and the target region is partially processed, the cache will
generate a mask to declare which tiles have been processed to reduce the computational
cost.

6. Case Study
6.1. Data and Result

This study conceptually validates the feasibility of serverless-based, on-the-fly com-
putation framework with a simple NDVI use case on a remote sensing image. The NDVI
code is shown in Figure 8. All the remote sensing images are from Landsat8 and organized
in the COG file format. Every overview of different levels in the image pyramid is tiled
into tiles of 256 × 256 pixels and encoded into an individual TIFF file. This study provides
a Python client integrated as an algorithm library in Jupyter. The NDVI code, the input
image, and the result tiles are shown in Figure 8. The NDVI function is performed on four
tiles, numbered as (0, 7), (0, 8), (1, 7), and (1, 8).

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19

1 l8_col = ImageCollection('LANDSAT/LC08') #select a default data model according the input string.
2 roi = Geometry.MBR([3391,1640,12]) #Get the MBR, and a viewpoint will generated automatically.
3 img = l8_col.filtTile(roi).filterDate('202004-01','2020-08-31').first() #filte the collection and get the first image.
4 ndvi = NDVI(img) #computing NDVI of the input image.
5 ndvi.Show() #generate the DAG and submit it, then request to execute it on the scope of viewpoint.
6 def NDVI(img): #define a function named NDVI, and it will generate a subgraph integrated into the final DAG
7 nir, red = img.select(['B5','B4']) #select a band from the image through band name.
8 return ndvi = nir.subtract(red).divide(nir.add(red)) #compute NDVI through simple operators.

(0, 7) (0, 8)

(1, 7) (1, 8)

Figure 8. The Landsat8 data and the result tiles.

Before the system begins to process the target tiles, a DAG will be generated and
submitted to the data center. Part of the DAG in Figure 9 is corresponding to the NDVI
code from line 1 to line 3. It should be pointed out that the time point is modeled as a
range from a start time to the end time. A DAG is actually a nested object returned by the
final operator. The DAG generation is a process of creating this nested object.

ImageCollection.loadfname

'LANDSAT/LC08'id
imageCollection

fname ImageCollection.filt

imageCollection

filter

fname Filt.interset

field ‘imagecollection’

value fname

tile [3391,1640,12]

Geometry.MBR

filter

fname Filt.contains

field ‘imagetime’

value

fname

start '2020-04-01'

Date

end '2020-08-31'

imageCollection

fname ImageCollection.first

image

fname ImageCollection.filt

Figure 9. Part of the DAG.

6.2. Response Time
Once the algorithm is determined, it will be applied to the whole remote sensing col-

lection. The response time is a critical characteristic of on-the-fly cloud computing for re-
mote sensing data analysis during the phase of DAG construction or algorithm explora-
tion. When users request to run the user-defined code, the frontend firstly submits a DAG

Figure 8. The Landsat8 data and the result tiles.

Remote Sens. 2022, 14, 1728 14 of 19

Before the system begins to process the target tiles, a DAG will be generated and
submitted to the data center. Part of the DAG in Figure 9 is corresponding to the NDVI
code from line 1 to line 3. It should be pointed out that the time point is modeled as a range
from a start time to the end time. A DAG is actually a nested object returned by the final
operator. The DAG generation is a process of creating this nested object.

Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 19

1 l8_col = ImageCollection('LANDSAT/LC08') #select a default data model according the input string.
2 roi = Geometry.MBR([3391,1640,12]) #Get the MBR, and a viewpoint will generated automatically.
3 img = l8_col.filtTile(roi).filterDate('202004-01','2020-08-31').first() #filte the collection and get the first image.
4 ndvi = NDVI(img) #computing NDVI of the input image.
5 ndvi.Show() #generate the DAG and submit it, then request to execute it on the scope of viewpoint.
6 def NDVI(img): #define a function named NDVI, and it will generate a subgraph integrated into the final DAG
7 nir, red = img.select(['B5','B4']) #select a band from the image through band name.
8 return ndvi = nir.subtract(red).divide(nir.add(red)) #compute NDVI through simple operators.

(0, 7) (0, 8)

(1, 7) (1, 8)

Figure 8. The Landsat8 data and the result tiles.

Before the system begins to process the target tiles, a DAG will be generated and
submitted to the data center. Part of the DAG in Figure 9 is corresponding to the NDVI
code from line 1 to line 3. It should be pointed out that the time point is modeled as a
range from a start time to the end time. A DAG is actually a nested object returned by the
final operator. The DAG generation is a process of creating this nested object.

ImageCollection.loadfname

'LANDSAT/LC08'id
imageCollection

fname ImageCollection.filt

imageCollection

filter

fname Filt.interset

field ‘imagecollection’

value fname

tile [3391,1640,12]

Geometry.MBR

filter

fname Filt.contains

field ‘imagetime’

value

fname

start '2020-04-01'

Date

end '2020-08-31'

imageCollection

fname ImageCollection.first

image

fname ImageCollection.filt

Figure 9. Part of the DAG.

6.2. Response Time
Once the algorithm is determined, it will be applied to the whole remote sensing col-

lection. The response time is a critical characteristic of on-the-fly cloud computing for re-
mote sensing data analysis during the phase of DAG construction or algorithm explora-
tion. When users request to run the user-defined code, the frontend firstly submits a DAG

Figure 9. Part of the DAG.

6.2. Response Time

Once the algorithm is determined, it will be applied to the whole remote sensing
collection. The response time is a critical characteristic of on-the-fly cloud computing
for remote sensing data analysis during the phase of DAG construction or algorithm
exploration. When users request to run the user-defined code, the frontend firstly submits
a DAG and receives a task identifier, and then the backend executes it on the specified tiles
determined by VP.

The response time is related to the efficiency of the scheduler, the complexity of the
related algorithms, the latency of the communication, the characteristics of the serverless
platform, and the concurrency. In the study, the response time is tested through a series of
continuous requests shown in Figure 10.

The initialization phase of a serverless platform is called a cold start. The cold start of
the NDVI case is around 1200 ms, which is about three times longer than that consumed by
a base cloud function, which only responds to the request without doing anything. Once
the serverless platform has been started, the response time will reduce to around 700 ms in
the elastic mode whereas in the performance mode, the computation time will reduce to
less than 400 ms. It is shown that the NDVI case benefits a lot from better hardware, but
anything larger than a 4 GB memory could not further reduce the response time.

The response time of the NDVI case is mainly determined by reading tiles from the
OSS, putting them together, and transforming them into an image. The time of reading
a COG header and four tiles from the OSS is about 200 ms, and the NDVI case needs to
repeat this process. Then, the system will put four tiles together and transform them into
an image, and it will take about another 200 ms. The scheduler only takes less than 100 ms,
for the total response time is less than 700 ms. To reduce the response time, the system
adopts a strategy similar to lazy evaluation, in which the operation of reading data from
the OSS is only triggered by some specific operators that must manipulate the data. In the

Remote Sens. 2022, 14, 1728 15 of 19

NDVI case, the operation of reading tiles from the OSS is deferred to the eleventh round of
task scheduling.

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 19

and receives a task identifier, and then the backend executes it on the specified tiles deter-
mined by 𝑉𝑃.

The response time is related to the efficiency of the scheduler, the complexity of the
related algorithms, the latency of the communication, the characteristics of the serverless
platform, and the concurrency. In the study, the response time is tested through a series
of continuous requests shown in Figure 10.

Figure 10. Response time of a series of the continuous request.

The initialization phase of a serverless platform is called a cold start. The cold start
of the NDVI case is around 1200ms, which is about three times longer than that consumed
by a base cloud function, which only responds to the request without doing anything.
Once the serverless platform has been started, the response time will reduce to around
700ms in the elastic mode whereas in the performance mode, the computation time will
reduce to less than 400ms. It is shown that the NDVI case benefits a lot from better hard-
ware, but anything larger than a 4GB memory could not further reduce the response time.

The response time of the NDVI case is mainly determined by reading tiles from the
OSS, putting them together, and transforming them into an image. The time of reading a
COG header and four tiles from the OSS is about 200ms, and the NDVI case needs to
repeat this process. Then, the system will put four tiles together and transform them into
an image, and it will take about another 200ms. The scheduler only takes less than 100ms,
for the total response time is less than 700ms. To reduce the response time, the system
adopts a strategy similar to lazy evaluation, in which the operation of reading data from
the OSS is only triggered by some specific operators that must manipulate the data. In the
NDVI case, the operation of reading tiles from the OSS is deferred to the eleventh round
of task scheduling.

Figure 10. Response time of a series of the continuous request.

6.3. Concurrency

An important characteristic of serverless computing and the requirement for on-the-fly
cloud geocomputation is concurrency. Once the computation request is sent by a map client
automatically, the serverless framework needs to respond to a large number of computation
requests in a short period. The tested concurrency performance of the serverless-based
remote sensing image analysis framework is shown in Figure 11.

The framework in the elasticity mode is tested through a series of asynchronous
requests at the scale of tens and hundreds. It is shown that the response time stays below
1.5 s until the concurrency approaches about 700, and then the response time starts to
increase linearly. When the asynchronous request is under 200, the maximum execution
time of the DAG is less than about 1.5 s. The average response time is still under about 1.5 s
though the scale of asynchronous requests reaches 1000 and the maximum execution time
is close to 3.5 s. In contrast with the traditional technologies of cloud computing, which
may scale in minutes or hours, the serverless-based framework can increase the number of
functions and instances in seconds to handle new requests.

Remote Sens. 2022, 14, 1728 16 of 19

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 19

6.3. Concurrency
An important characteristic of serverless computing and the requirement for on-the-

fly cloud geocomputation is concurrency. Once the computation request is sent by a map
client automatically, the serverless framework needs to respond to a large number of com-
putation requests in a short period. The tested concurrency performance of the serverless-
based remote sensing image analysis framework is shown in Figure 11.

Figure 11. Elasticity and concurrency.

The framework in the elasticity mode is tested through a series of asynchronous re-
quests at the scale of tens and hundreds. It is shown that the response time stays below
1.5 s until the concurrency approaches about 700, and then the response time starts to
increase linearly. When the asynchronous request is under 200, the maximum execution
time of the DAG is less than about 1.5 s. The average response time is still under about 1.5
s though the scale of asynchronous requests reaches 1000 and the maximum execution
time is close to 3.5 s. In contrast with the traditional technologies of cloud computing,
which may scale in minutes or hours, the serverless-based framework can increase the
number of functions and instances in seconds to handle new requests.

7. Discussion and Conclusions
There are some remote sensing frameworks developed from traditional parallel da-

tabases and cloud computing technologies. The paper [1] analyzed the related works of
three types, including spatial databases, programming and software tools, and big spatial
data infrastructures, and categorized them further into ten types from underlying general
technologies. Though extensive in the scope of investigation, it only focuses on the under-
lying technologies without evaluating them in terms of computing service. Different from

Figure 11. Elasticity and concurrency.

7. Discussion and Conclusions

There are some remote sensing frameworks developed from traditional parallel
databases and cloud computing technologies. The paper [1] analyzed the related works of
three types, including spatial databases, programming and software tools, and big spatial
data infrastructures, and categorized them further into ten types from underlying general
technologies. Though extensive in the scope of investigation, it only focuses on the under-
lying technologies without evaluating them in terms of computing service. Different from
this review, here, we analyze the representative remote sensing image analysis frameworks
from both computing service types and underlying cloud computing technologies.

As one of the most popular remote sensing analysis cloud platforms, GEE provides
two types of computing services, namely on-the-fly computing and batch computing. On-
the-fly computing is used for rapid prototyping for tiled remote sensing images while batch
computing provides the capability of planetary-scale processing. Despite their different
focuses, they both have the same programming interface and can switch to each other
seamlessly based on GEE’s ability to translate the user-defined codes or functions to DAGs.
However, GEE cannot express focal operation with structure locality at a pixel-level. In the
study, the ability of the focal operation is implemented through window operators based
on relative coordinates and overlapped logical regions.

Different from GEE’s local tiling strategy, the Open Data Cube (ODC) [22] reformats
the raw, remote sensing images into analysis-ready data with a global tiling strategy. ODC’s
rapid prototyping and parallel computing capabilities are provided by the xarray [23]
and Celery framework, respectively. Although Celery has high performance, from the
perspective of ease of use, ODC only has a low-level programming model compared
with highly customed remote sensing processing APIs or operators and lacks control over

Remote Sens. 2022, 14, 1728 17 of 19

operator access. As cloud computing systems are considered to prioritize the ease of use
over high performance, we provide end users with a customed DAG-centric programming
model that includes various datatypes and operators dedicated to remote sensing data
analysis and operator-level access control capabilities.

GeoTrellis [24,25] and GeoSpark [26], built on the top of Spark, are generally used
for batch processing of raster data and similar to the batch computing component of
GEE, which is based on FlumeJava [27]. These frameworks usually have a distributed
data abstraction customed to raster data based on the RDD data structure [28]. However,
at the phase of algorithm exploratory, they cannot be used as REPL tools to provide a
public computing service and rapid prototyping. Besides, these frameworks require the
computation to be built on the distributed datatypes, which limits the expressiveness and
flexibility of end-user programming for remote sensing collection processing. Although
Spark can be refactored on serverless technologies, GeoTrellis and GeoSpark cannot be
directly used as public cloud commodities to provide end-user programming services.

Iris [29] is a python library used for the analysis and visualization of meteorological
data, which provides the ability of batch geocomputation based on the distributed nu-
merical computing framework Dask. Contrary to the Spark-based frameworks, Iris has a
higher communication efficiency and is capable of performing certain high-performance
computing tasks, such as a dense linear algebra calculation. Nevertheless, Iris is highly
customed to the analysis of meteorological data, which is usually organized as a NetCDF
file or its variants, and, therefore, could not be applied directly to remote sensing images
analysis. Besides, as Iris is deeply bound to Dask, it cannot control operator access and
provide the service of paying in proportion to resources used, similar to a serverless public
commodity.

With the rise of the disaggregation datacenter, serverless computing is believed to
become the default computing paradigm of cloud computing and bring closure to the
client–server era [8]. Although GEE has the feature of scaling automatically and billing on
usage, it does not claim to be built on serverless technologies. All other remote sensing
image processing frameworks need explicit resource provisioning, which can be regarded
as based on a server-centric computing paradigm. Despite that serverless cloud functions
are becoming more and more lightweight and have been successfully employed for several
types of general workloads [30,31], there are still many limitations. The cloud functions
are stateless without fine-grained coordination and do not provide high-level parallel
operators, posing difficulty for remote sensing data processing workloads.

This paper presents the empirical characteristics and a formal definition of on-the-
fly cloud geocomputation for the first time. Then, we give a serverless-based software
architecture and some proof-of-concept experiments, which suggest that on-the-fly cloud
geocomputation can be efficiently implemented with serverless technologies, such as the
object storage system and function computing engine. At the frontend, we provide a
DAG-based, end-user programming environment for remote sensing data analysis, which
contains a series of customed datatypes and operators. The DAG is one of the core designs,
which bridges the user-defined code and the cloud functions at the backend. The logical
region is another core design, which guarantees the correctness of focal operators through
overlapped zones and controls the amount of input image tiles to achieve a rapid response.

Nevertheless, several aspects of the proposed serverless-based system could be further
improved. First, the technology stack of current serverless commodities lacks in-memory
storage, similar to Redis, which limits further performance improvements. Future work
could refer to Anna [32], which can provide high-performance memory storage services
to improve the efficiency of COG reading and cache. In addition, the scheduler in the
current system adopts a staged scheduling method, which does not pay attention to the
difference in execution time between different nodes. Therefore, it is necessary to develop a
scheduling algorithm specially oriented to serverless computing to achieve the optimization
of both job completion time and cost of execution [33].

Remote Sens. 2022, 14, 1728 18 of 19

Author Contributions: Conceptualization, J.W. and M.W.; methodology, J.W.; software, J.W.; valida-
tion, H.L., L.L. (Lijuan Li), and L.L. (Leilei Li); investigation, J.W.; resources, J.W.; data curation, J.W.;
writing—original draft preparation, J.W.; writing—review and editing, L.L. (Lijuan Li); visualization,
J.W.; project administration, J.W.; funding acquisition, J.W. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the National Key Technology Research and Development
Program of the Ministry of Science and Technology of China under grant number 2021YFB3900900.
This work was jointly supported by the Fundamental Research Funds for the Central Universities,
National Natural Science Foundation of China under grant number 41776197, the Strategic Priority
Research Program of Chinese Academy of Sciences under grant number XDB42010403, and the Na-
tional Key Technology Research and Development Program of the Ministry of Science and Technology
of China under grant number 2018YFE0204203.

Data Availability Statement: All satellite data used in the study are available for free download
from their respective data portals (https://earthexplorer.usgs.gov/ accessed on 1 January 2022).

Acknowledgments: The authors would like to thank the editors and the anonymous reviewers for
their crucial comments, which improved the quality of this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alam, M.M.; Torgo, L.; Bifet, A. A Survey on Spatio-temporal Data Analytics Systems. arXiv 2021, arXiv:2103.09883. [CrossRef]
2. Gomes, V.; Queiroz, G.; Ferreira, K. An Overview of Platforms for Big Earth Observation Data Management and Analysis. Remote

Sens. 2020, 12, 1253. [CrossRef]
3. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
4. Zaharia, M.; Xin, R.S.; Wendell, P.; Das, T.; Armbrust, M.; Dave, A.; Meng, X.; Rosen, J.; Venkataraman, S.; Franklin, M.J. Apache

spark: A unified engine for big data processing. Commun. ACM 2016, 59, 56–65. [CrossRef]
5. White, T. Hadoop: The Definitive Guide; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2012.
6. Rocklin, M. Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of the 14th Python in

Science Conference, Austin, TX, USA, 6–12 July 2015.
7. Han, S.; Egi, N.; Panda, A.; Ratnasamy, S.; Shi, G.; Shenker, S. Network support for resource disaggregation in next-generation

datacenters. In Proceedings of the Twelfth ACM Workshop on Hot Topics in Networks, College Park, MD, USA, 21–22 November
2013; pp. 1–7.

8. Jonas, E.; Schleier-Smith, J.; Sreekanti, V.; Tsai, C.-C.; Khandelwal, A.; Pu, Q.; Shankar, V.; Carreira, J.; Krauth, K.; Yadwadkar, N.
Cloud programming simplified: A berkeley view on serverless computing. arXiv 2019, arXiv:1902.03383.

9. Ozturk, D.; Chaudhary, A.; Votava, P.; Kotfila, C. GeoNotebook: Browser based Interactive analysis and visualization workflow
for very large climate and geospatial datasets. AGU Fall Meet. Abstr. 2016, 2016, IN53A-1876.

10. Jangda, A.; Pinckney, D.; Brun, Y.; Guha, A. Formal foundations of serverless computing. Proc. ACM Program. Lang. 2019, 3, 1–26.
[CrossRef]

11. AlibabaCloud. Function Computing. Available online: https://help.aliyun.com/product/50980.html (accessed on 3 April 2022).
12. AlibabaCloud. Serverless Workflow. Available online: https://help.aliyun.com/product/113549.html (accessed on 3 April 2022).
13. AlibabaCloud. TableStore. Available online: https://help.aliyun.com/product/27278.html (accessed on 3 April 2022).
14. AlibabaCloud. Message Service. Available online: https://help.aliyun.com/product/27412.html (accessed on 3 April 2022).
15. AlibabaCloud. Relation Database System. Available online: https://help.aliyun.com/product/26090.html (accessed on 3 April

2022).
16. AlibabaCloud. Object Storage Service. Available online: https://help.aliyun.com/product/31815.html (accessed on 3 April

2022).
17. COG. Cloud Optimized GeoTIFF. Available online: https://www.cogeo.org/ (accessed on 3 April 2022).
18. STAC. SpatioTemporal Asset Catalogs. Available online: http://stacspec.org/ (accessed on 3 April 2022).
19. Hennessy, J.; Patterson, D. A New Golden Age for Computer Architecture: Domain-Specific Hardware/Software Co-Design,

Enhanced Security, Open Instruction Sets, and Agile Chip Development. In Proceedings of the Turing Lecture Given at ISCA’18,
Los Angeles, CA, USA, 2–6 June 2018; Volume 10.

20. Crocker, D.; Overell, P. Augmented BNF for Syntax Specifications: ABNF; RFC 2234; HKU Sandy Bay RFC Ltd.: Pok Fu Lam, China,
1997.

21. Dong, B.; Wu, K.; Byna, S.; Liu, J.; Zhao, W.; Rusu, F. ArrayUDF: User-defined scientific data analysis on arrays. In Proceedings of
the 26th International Symposium on High-Performance Parallel and Distributed Computing, Washington, DC, USA, 26–30 June
2017; pp. 53–64.

https://earthexplorer.usgs.gov/
http://doi.org/10.1145/3507904
http://doi.org/10.3390/rs12081253
http://doi.org/10.1016/j.rse.2017.06.031
http://doi.org/10.1145/2934664
http://doi.org/10.1145/3360575
https://help.aliyun.com/product/50980.html
https://help.aliyun.com/product/113549.html
https://help.aliyun.com/product/27278.html
https://help.aliyun.com/product/27412.html
https://help.aliyun.com/product/26090.html
https://help.aliyun.com/product/31815.html
https://www.cogeo.org/
http://stacspec.org/

Remote Sens. 2022, 14, 1728 19 of 19

22. Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al.
The Australian Geoscience Data Cube—Foundations and lessons learned. Remote Sens. Environ. 2017, 202, 276–292. [CrossRef]

23. Hoyer, S.; Hamman, J. xarray: ND labeled arrays and datasets in Python. J. Open Res. Softw. 2017, 5, 10. [CrossRef]
24. Eldawy, A.; Mokbel, M.F. The era of big spatial data: A survey. Foundations and Trends in Databases 2016, 6, 163–273. [CrossRef]
25. Geotrellis. GeoTrellis is a Geographic Data Processing Engine for High Performance Applications. Available online: https:

//geotrellis.io/ (accessed on 3 April 2022).
26. Yu, J.; Wu, J.; Sarwat, M. Geospark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the

23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 3–6 November
2015; pp. 1–4.

27. Chambers, C.; Raniwala, A.; Perry, F.; Adams, S.; Henry, R.R.; Bradshaw, R.; Weizenbaum, N. FlumeJava: Easy, efficient
data-parallel pipelines. ACM Sigplan Not. 2010, 45, 363–375. [CrossRef]

28. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 12), San Jose, CA, USA, 25–27 April 2012; pp. 15–28.

29. Hamman, J.; Rocklin, M.; Abernathy, R. Pangeo: A big-data ecosystem for scalable earth system science. In Proceedings of the
EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 12146.

30. Taibi, D.; El Ioini, N.; Pahl, C.; Niederkofler, J.R.S. Serverless cloud computing (function-as-a-service) patterns: A multivocal
literature review. In Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020),
Prague, Czech Republic, 7–9 May 2020.

31. Shankar, V.; Krauth, K.; Vodrahalli, K.; Pu, Q.; Recht, B.; Stoica, I.; Ragan-Kelley, J.; Jonas, E.; Venkataraman, S. Serverless linear
algebra. In Proceedings of the 11th ACM Symposium on Cloud Computing, Seattle, WA, USA, 19–21 October 2020; pp. 281–295.

32. Wu, C.; Faleiro, J.; Lin, Y.; Hellerstein, J. Anna: A kvs for any scale. IEEE Trans. Knowl. Data Eng. 2019, 33, 344–358. [CrossRef]
33. Zhang, H.; Tang, Y.; Khandelwal, A.; Chen, J.; Stoica, I. Caerus:{NIMBLE} Task Scheduling for Serverless Analytics. In Proceedings

of the 18th USENIX Symposium on Networked Systems Design and Implementation (NSDI 21), Boston, MA, USA, 12–14 April
2021; pp. 653–669.

http://doi.org/10.1016/j.rse.2017.03.015
http://doi.org/10.5334/jors.148
http://doi.org/10.1561/1900000054
https://geotrellis.io/
https://geotrellis.io/
http://doi.org/10.1145/1809028.1806638
http://doi.org/10.1109/TKDE.2019.2898401

	Introduction
	On-the-Fly Cloud Computing
	Cloud Computing vs. HPC
	Characteristics
	Formal Definition
	Serverless Architecture

	Data Model
	Tiling
	Logical Region
	Datatypes

	Programming Model
	Workflow
	User-Defined Function
	Operator Publication
	DAG Generation
	Trigger of Execution

	DAG Execution
	Data Partition
	Execution
	Cache

	Case Study
	Data and Result
	Response Time
	Concurrency

	Discussion and Conclusions
	References

