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Abstract: The rapid growth of remote sensing data calls for the construction of new computational
models for algorithmic exploration, which requires on-demand execution, instant response, and
multitenancy. We call this model on-the-fly computing, which could reduce the complexity of
cloud programming for remote sensing data analysis and benefit from efficient multiplexing. As an
advancement of cloud computing, serverless computing makes it possible to realize the on-the-fly
computational model. In the study, the concise definition of an on-the-fly computing model for
remote sensing data analysis and the corresponding software architecture based on the serverless
computing commodities are presented. The proof-of-concept experiments have suggested that the
on-the-fly computing model for remote sensing data analysis can be efficiently implemented as
a serverless software. The response time is mainly related to the tile reading operation and data
structure conversion. In the case of high concurrency, the system can scale to hundreds of instances
in seconds.

Keywords: serverless; cloud computing; on-the-fly; remote sensing data; DAG

1. Introduction

With the advance in earth observation and surveying technology, remote sensing
images are increasingly accumulated and piled to be processed, heading the community
of geographical information science into an era of big data. Massive remote sensing im-
ages, multisource archives of petabytes, pose great challenges for the traditional geospatial
information analysis infrastructure. Cloud computing is one of the most promising tech-
nologies to tackle these challenges, and the geographical information science community
has developed various cloud computing platforms for massive remote sensing images
analysis [1,2].

Among the existing massive remote sensing images analysis frameworks, the most
influential one is Google Earth Engine (GEE) [3], which provides two types of computing
services, namely on-the-fly computing and batch computing. Based on the traditional big
data analysis techniques, batch computing processes all the input data as a whole [4]. As
remote sensing data grows larger and larger, the execution time of batch computing is
becoming longer and longer. However, exploratory analysis in scientific research usually
requires an environment enabling instant read–eval–print loop (REPL), where a program
is executed piecewise for a rapid result evaluation. To solve this problem, the on-the-fly
computing technologies, featuring on-demand execution, instant response, and multite-
nancy, are developed to improve the data science productivity. Although GEE provides an
excellent instance of the on-the-fly cloud computing paradigm and has been widely used by
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the remote sensing community, its theoretical basis, design principles, and implementation
details are not publicly available.

General big data analysis frameworks, such as Hadoop [5], Spark [4], and Dask [6], are
based on individual servers with tightly integrated resources, which is called server-centric
computing. As advancement in the computer architecture community enables the data-
center disaggregation [7], serverless computing comes to light [8]. Serverless computing
brings about cloud functions with greater elasticity and more lightweight virtualization
while changing the pricing of cloud computing from paying resources allocated to paying
in proportion to resources used. Unfortunately, to the best of our knowledge, none of the
existing on-the-fly remote sensing image analysis frameworks, like Geonotebook [9], have
yet adopted serverless computing technologies and could not switch to batch processing
seamlessly at the same time.

In summary, this paper makes the following contributions:

(1) Proposing a definition for the on-the-fly cloud computing paradigm for remote sensing
image collections, including some empirical or descriptive characteristics and a formal
definition.

(2) Designing an entirely serverless architecture based on the serverless commodities of a
public cloud, which consists of a data model, a programming model, and a series of
key implementing technologies for remote sensing image collection analysis.

(3) Providing some concrete, proof-of-concept experiments suggesting that on-the-fly
cloud computing for remote sensing images can effectively run on the serverless cloud
platform.

The remainder of this paper is organized as follows: Section 2 is an overview of the
definition for the on-the-fly computing paradigm and introduces its serverless software
architecture. More details about the implementation are presented in Sections 3–5, and
Section 6 shows some concrete proof-of-concept experiments of on-the-fly computing for
remote sensing images. Section 7 discusses the results and concludes the paper.

2. On-the-Fly Cloud Computing
2.1. Cloud Computing vs. HPC

Currently, cloud computing has become the main paradigm of server programming,
which can ship code to the big data. The key technologies include virtualization, distributed
storage, and distributed computation. A large number of frameworks have been developed
by the industry and scholars, which can be classified into the server-centric pattern or
serverless pattern. There are some serverless computing commodities in the public cloud,
such as AWS Lambda.

There are four requirements for any computing system, including ease of use, high
performance, portability, and flexibility. The cloud computing system’s first object is the
ease of use while that of high-performance computing (HPC) is performance. Therefore,
HPC provides programming abstractions with low-level details about computer archi-
tecture, such as MPI, and cloud computing systems have more automatic optimization
mechanisms.

From the perspective of workload, the big data processing frameworks can be classified
into batch processing and streaming processing. However, on-the-fly computing has
a significant difference from the other two paradigms. The data source for on-the-fly
computing is the same as batch processing, but it requires a quick response. The streaming
processing can respond instantly, but its data source is real time. Therefore, existing, general
cloud computing frameworks cannot be directly applied to the algorithm exploratory
analysis. A new paradigm of geocomputation is needed.
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2.2. Characteristics

The target computing model is called on-the-fly cloud geocomputation, which is imple-
mented based on general purpose cloud computing technologies, oriented to exploratory
analysis, and dedicated to remote sensing processing. We summarize the characteristics of
on-the-fly cloud geocomputation from the perspective of human–computer interaction as
shown in Figure 1.

(1) Shipping code to the remote sensing images persisted in the cloud storage instead of
downloading the data locally for analysis.

(2) Seamlessly switching to batch processing without code modification, which requires
the data abstraction and operators to be the same.

(3) Implicitly triggering the execution implied in specific operators, such as visualization
and data export.

(4) Dynamically determining the spatial scope of remote sensing images to be processed
based on the tiles visualized on the map.

(5) Responding as rapidly as possible when the user needs to evaluate without queueing
of workloads.

(6) Executing user-defined codes based on the overviews of remote sensing images
without explicitly provisioning and managing data allocation.

(7) Paying in proportion to remote sensing data used instead of paying for the computing
resources allocated.
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2.3. Formal Definition

The empirical and descriptive characteristics of on-the-fly cloud geocomputation are
not sufficient to determine the structure of the target model. A directed acyclic graph
(DAG)-based model of on-the-fly cloud geocomputation is presented in Definition 1. A
DAG is a kind of intermediate representation for user-defined codes, and it is common in
relational databases, where it is used to represent the query plans. The nodes of a DAG are
function invocations with some edges for representing the inputs and outputs. Operators
and user-defined codes are equivalent logically and can both be transformed into DAGs in
the target framework.

Definition 1. In order to simplify cloud programming, the target framework of the on-the-fly cloud
computing model for remote sensing images should provide rich datatypes, analysis-ready data, and
dedicated operators for remote sensing image analysis, which would significantly reduce the amount
of user-defined codes. Its programming model could only acquire and generate the datatypes and
operators accessible, according to user authentication in the frontend, and process data visible to
users on maps, usually in the form of tiles, finally achieving instance response, on-demand execution,
and mutitenancy.
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The on-the-fly computing model for the remote sensing data analysis M can be defined
as a five-tuple:

M :: (E, S, U, V, A)

Here notation :: means “defined as”, and E refers to the main elements to be processed,
including operators, datatypes, and DAGs, which can be defined as a set:

E :: D ∪OP ∪ G

D refers to the set of datatypes, also known as data models, commonly used in remote
sensing image processing, such as Image and ImageCollection. Each datatype Di is a set of
elements di, which means that di is a specific dataset of type Di.

D :: {Di|i ∈ N}

Di ::
{

dk
i

∣∣∣k ∈ N
}

, i ∈ N

There are some specific relations R between datatypes in D, which can be defined
as a three-tuple. A predicate p is virtually a functional mapping from one datatype Di to
another datatype or operator. Superscript ∗means receiving the power set.

r :: (α, p, β)⇔ p(α)→ β; α ∈ D ∪OP, p ∈ P, β ∈ D

Here notation ; means the end of an expression. There are only two predicates.
The predicate cp means that α is a component of β, and more complex datatypes can be
established through it. The predicate ih means that β is more specific and customed on
the basis of α. We can build a classification based on predicate ih. It should be pointed
out that all the datatypes and operators can be organized as a network through these two
predicates.

cp(α)→ β⇒ α ∈ β; β ∈ D, α ∈ D ∪OP

ih(α)→ β⇒ β ∈ α∗; α, β ∈ D

OP refers to a set of operators dedicated to remote sensing image analysis, which
is also known as the programming model. Each operator op is bounded with a specific
datatype Di through the predicate cp. Every operator is actually a function mapping from
certain datatypes with or without a base operator to the output datatypes.

OP :: {opi|i ∈ N}

op :: D∗ ×OP→ D∗

G refers to a DAG, which represents the computational process of remote sensing
images. The DAG is constructed by a series of computational nodes nj, which represent
functional calls with the output results α, operator name, and input arguments. Similar to
an operator, G is virtually a function mapping from the input remote sensing data to the
results. In the implementation of the framework, G can be modeled as a series of nested
objects. Each of them records the input arguments, operator name, and returned datatype.

G ::
{

nj
∣∣j ∈ N

}
n :: (α, op, β), α ∈ D∗, β ∈ G∗|D∗

S refers to a set of states of the main elements, including datatypes, operators, and
the DAG. Any datatype, operator, or DAG can be located only in the client or on the
server, and it can be a static string, a callable proxy, a piece of code, or an executable cloud
function. Notations st, cb, cd, and ex represent that the element is static, callable, code style,
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or executable, respectively. Notations ct and sv mean that the element is located in the
client or server, respectively.

S :: {st, cb, cd, ex} × {ct, sv}

The notation U refers to end users. Each user has permitted access to certain operators.
V refers to the viewpoint on a map, which can be defined as a set of tile numbers. The
viewpoint determines the spatial scope of input remote sensing data to be processed.

U :: {ui|i ∈ N}, ui ∈ OP∗

V :: {(x, y, z)|x, y, z ∈ N}

Notation A refers to a set of actions to change the state of target elements to complete
the whole computational process.

A :: {get, init, gnrt, sbmt, schdl}

a :: U × S→ U × S, a ∈ A

The action get can change the location of some elements that can be accessed by a
certain user ui. Notation: means value of the state S.

get :: ui × S : (st, sv)→ ui × S : (st, ct), ui ∈ U

The action init represents an action for the initialization of datatypes and operators,
which translates the state of them from static to callable. A datatype or an operator that is
callable means that it can be programmed but will not be actually executed.

init :: ui × S : (st, ct)→ ui × S : (cb, ct), ui ∈ U

Notation gnrt represents an action for DAG generation, which translates the user-
defined script to a DAG object. The state of the DAG changes from code style to callable.

gnrt :: G× S : (cd, ct)→ G× S : (cb, ct)

In contrast to action get, sbmt represents the action of the DAG submission, which can
be modeled as translating the DAG to a static string and changing the location of the DAG
from client to server.

sbmt :: G× S : (cb, ct)→ G× S : (st, sv)

The action schdl represents the action of DAG scheduling, which changes the state of
the DAG from static to executable and obtains the result tiles determined by viewpoint.
The execution or scheduling of DAG depends on a run-time environment, which can be
modeled by a process calculation [10]. Serverless has no formal foundation yet, and to
simplify the definition, we do not model the execution details of the DAG in the backend.

schdl :: G× S : (st, sv)×V → {tilei|i ∈ V}

It should be noted that the essence of the element state change is a process of translation
rather than a process of encapsulation and invocation.

2.4. Serverless Architecture

In this study, a pure serverless software architecture means that all the components
are built on serverless commodities from the public cloud providers, mainly including the
function computing (FC) [11], serverless workflow [12], Tablestore [13], message service
(MNS) [14], relation database system (RDS) [15], and object storage service (OSS) [16] of
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Alibaba Cloud. This architecture is shown in Figure 2, which introduces the high-level
components in the target system and traces the execution flow of the UDF creation and
pipeline execution. Due to the adoption of serverless technologies in software design, the
cost of the system can be paid after the construction is completed. This will enable flexibility
in the pricing of system services.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 19 
 

 

UDF Client Pipeline Client

Receiver
(FC)

DAGs

Serverless 
Workflow

Tiles

Executors
(FC)

Asynchronous I/O
(FC)

Registration
(FC)

Serverless Storage
(OSS)

DAG runtime state
(TableStore)

regiontiles

DAGs

Execution-ready

Symbol
(FC&RDS)

Operators
Data abstractionComputing Engine

① UDF Creation ② Control flow of execution

③ Data flow of execution

Translator
(FC&MNS&RDS)

Task

Tiles

 
Figure 2. Serverless-based architecture. 

① User-defined function (UDF) creation. Some basic operators are defined and sub-
mitted to a cloud function through the UDF client. This cloud function registers the UDF 
in the FC engine and a symbol database. As operators are dynamically generated, users 
can access the created UDFs through the pipeline client. 

② Control flow of execution. User-defined code based on the pipeline client are ex-
pressions that can be translated to DAGs. These DAGs are submitted to the receiver based 
on a cloud function and then persisted in the DAG run-time storage. Another cloud func-
tion is triggered by the run-time storage update events to translate the execution-ready 
nodes to a parallel workflow. 

③ Data flow of execution. Remote sensing images in the serverless storage OSS can 
be asynchronously accessed and processed by executors. Tiles of the results are returned 
to the receiver and visualized on the map in the frontend. 

3. Data Model 
3.1. Tiling 

Because on-the-fly geocomputation emphasizes analyzing during visualization, the 
target system needs to constantly load only part of the target remote sensing images to 
memory, which means that it is necessary to divide the images into tiles at different levels 
and organize them as pyramids. 

For the remote sensing images, Cloud Optimized GeoTIFF (COG) [17] is the most 
popular file format to build a pyramid for on-the-fly cloud geocomputation. Because the 
I/O time is supposed to be much less than the time of connecting to OSS, all the tiles of 
different levels that belong to the same band are organized together in a single GeoTIFF 
file. The tiles of the COG are usually organized in a sequence of a row major. 

There are two kinds of tiles in the target system: one is for visualization and the other 
is introduced by the COG format for cloud storage. Notation 𝑡௩ and 𝑡௦ represent a tile 
for visualization or storage, respectively. The tile number (𝑥௩, 𝑦௩, 𝑧௩) is usually deter-
mined according to Web Mercator projection. 𝑡௩ ∷ (𝑥௩, 𝑦௩, 𝑧௩, 𝑣𝑎𝑙𝑢𝑒௩) 𝑡௦ ∷ (𝑥௦, 𝑦௦, 𝑧௦, 𝑣𝑎𝑙𝑢𝑒௦) 

In this paper, we highly recommend that these two tiling strategies are consistent 
and aligned to some extent. Images from different satellites may have different spatial 
projections and need conversions from (𝑥௦, 𝑦௦, 𝑙௦) to (𝑥௩, 𝑦௩, 𝑙௩); (𝑥௦, 𝑦௦, 𝑙௦) is usually til-
ing locally along the rows and the columns of image and not aligned to (𝑥௩, 𝑦௩, 𝑙௩). 

3.2. Logical Region 
Tile is the basic unit for storage and visualization. The region is a logical strategy of 

tiles grouping, which is aimed at the dynamic requirements of data-parallel execution. It 
can be modeled as a set of tile numbers, representing a spatially continuous coverage, and 
is the minimal unit for the algorithm design, task allocation, and geodata access. 

Figure 2. Serverless-based architecture.

1© User-defined function (UDF) creation. Some basic operators are defined and sub-
mitted to a cloud function through the UDF client. This cloud function registers the UDF in
the FC engine and a symbol database. As operators are dynamically generated, users can
access the created UDFs through the pipeline client.

2© Control flow of execution. User-defined code based on the pipeline client are
expressions that can be translated to DAGs. These DAGs are submitted to the receiver
based on a cloud function and then persisted in the DAG run-time storage. Another cloud
function is triggered by the run-time storage update events to translate the execution-ready
nodes to a parallel workflow.

3© Data flow of execution. Remote sensing images in the serverless storage OSS can
be asynchronously accessed and processed by executors. Tiles of the results are returned to
the receiver and visualized on the map in the frontend.

3. Data Model
3.1. Tiling

Because on-the-fly geocomputation emphasizes analyzing during visualization, the
target system needs to constantly load only part of the target remote sensing images to
memory, which means that it is necessary to divide the images into tiles at different levels
and organize them as pyramids.

For the remote sensing images, Cloud Optimized GeoTIFF (COG) [17] is the most
popular file format to build a pyramid for on-the-fly cloud geocomputation. Because the
I/O time is supposed to be much less than the time of connecting to OSS, all the tiles of
different levels that belong to the same band are organized together in a single GeoTIFF
file. The tiles of the COG are usually organized in a sequence of a row major.

There are two kinds of tiles in the target system: one is for visualization and the other
is introduced by the COG format for cloud storage. Notation tv and ts represent a tile for
visualization or storage, respectively. The tile number (xv, yv, zv) is usually determined
according to Web Mercator projection.

tv :: (xv, yv, zv, valuev)

ts :: (xs, ys, zs, values)

In this paper, we highly recommend that these two tiling strategies are consistent
and aligned to some extent. Images from different satellites may have different spatial
projections and need conversions from (xs, ys, ls) to (xv, yv, lv); (xs, ys, ls) is usually tiling
locally along the rows and the columns of image and not aligned to (xv, yv, lv).
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3.2. Logical Region

Tile is the basic unit for storage and visualization. The region is a logical strategy of
tiles grouping, which is aimed at the dynamic requirements of data-parallel execution. It
can be modeled as a set of tile numbers, representing a spatially continuous coverage, and
is the minimal unit for the algorithm design, task allocation, and geodata access.

The calculation from a region number (xr, yr, zr) to visualization tile numbers
{(xv, yv, zv)} can be modeled as an affine function ft. ax and ay represent the width
and height of the region, respectively. brx is an offset in region r along x while bry is an
offset in region r along y. zv and zr are levels in the pyramid, and they usually have the
same value. Obviously, the conversion f−1

t from (xv, yv, zv) to (xr, yr, zr) is a kind of integer
modular operation. xv

yv
zv

 ft↔

 xr
yr
zr

× (ax, ay, 1
)
∓

 brx
bry
0

, ax, ay, brx, bry ∈ N

The region is composed of two independent types of tiles, which can be transformed to
each other by fc. Due to the transformation of the projection, a tile in the COG may belong
to two different regions. In order to prevent the tiles belonging to different regions from
being processed multiple times, a tile-masking strategy was designed. The mask is a set of
tiles, which can indicate whether the target tiles have been processed. In computation, the
region is reformed as a unified larger tile that can ensure the correctness of focal operators
by the overlapped zones, such as sliding windows. The logical region LR can be defined
formally as follows:

LR :: (Tv, Ts, ft, fc, M)

Tv and Ts are the set of tv and ts, respectively. M is also a cached set of ts to indicate
the tiles that have been processed. The logical region is as shown in Figure 3. In the OSS
storage, the bytes to be read are determined by some information, including bucket, image
collection, image, band, region number, tile order, and overlap. The region and overlap
define the minimal basic unit for distributed geocomputation. The overlap is a dynamic
value determined by the window operators. The spatial order, similar to the Hilbert curve
or Z curve, determines the offset and length of bytes where the system begins to read.
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3.3. Datatypes

As a kind of raster data, the remote sensing image is the main type of geodata and can
be analyzed by a map algebra or an array algebra system. In addition, vector data is another
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type of geodata, often used to manage the image processing results. The logical region is a
general purpose geodata abstraction for implicit parallel computing, which is not suitable
for end-user programming and should be invisible to users. We propose a composite
datatype of image collection based on the SpatioTemporal Asset Catalog (STAC) [18] and
GeoJSON. The definition is as follows:

Image collection is the top-level data abstraction dedicated to remote sensing image
processing and constructed based on predicates P and some basic datatypes. All datatypes
and their relations are shown in Figure 4.
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4. Programming Model
4.1. Workflow

The DAG is virtually a workflow for modeling the computational process, where the
nodes and edges represent operators and image collections. DAG generation, presented in
Section 4.4, is usually separated from the end-user programming interface and invisible
to users, which makes programmers avoid the burden of constructing a global DAG
data structure for workflow. This paper proposes a design or definition for the interface
of remote sensing processing workflow. The user programming interface consists of
composite datatypes and workflow skeletons, which can be expressed as a two-tuple,
(composite types, skeletons).

(1) composite type. The composite datatypes are the user-visible components of data
abstraction, defined in Section 3.3, except region and tile. In the construction of
workflow, ImageCollection is the most common datatype.

(2) skeleton. Workflow skeletons are high-level operators representing the basic work-
flow semantics. There are six operators related to workflow construction, including
create, f ilt, integrate, trans f orm, aggregrate, and show. These skeletons are functions
mapping from one image collection to another.

Skeleton :: D11 ×OP→ D11
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Model, Condition, Relation, Base operator, Aggregrator, Reducer, and Scheme are
kinds of user-defined functions, defined in Section 4.2. The definition is shown
in Figure 5.

Every skeleton has two parts, the lefthand expression 〈lhs〉 and the righthand expres-
sion 〈rhs〉. All the input datatypes of skeleton are ImageCollection. The create operator is
used to load an image collection with a file path of cloud storage or a data model Model
describing the content of the certain image collection. The Filt operator is used to construct
spatiotemporal or regular conditions for filtering the input image collection. Because each
image collection has a corresponding data model Model, the Integrate operator provides a
way to integrate different image collections with a Relation between different data models.
The skeleton Trans f orm maps a base intraimage operator to every item of the input image
collection while the Aggregate operator maps a base interimage operator according to the
Aggregater, which also groups the items of the image collection by the selected dimensions
in Model, such as time or space. The Show operator triggers the execution of the workflow
and obtains the tiles of the input image collection visible to users.
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4.2. User-Defined Function

The skeletons are collection-level operators and lack the flexibility of image-level or
pixel-level operations. According to the definition of work f low, there are six operators at
the image level and pixel level, which can be defined and published by the user, including
Model, Condition, Relation, Base operator, Aggregrater, and Scheme.

Similar to the constructor of programming language, Model is a configuration for
certain satellite images, including band number, coverage, resolution, spatial projection,
and other attributes in a key-value form. The Condition is a logical expression, especially
the spatial-temporal topological relationship, for selecting the target images. The Realtion
is a rename operator, which specifies a unified model for the input image collections.

Base operator refers to the image-level algorithm defined and implemented on the
band-level and pixel-level interface. The band-level operators, band math, or map algebra
can be regarded as some window operators on linear algebra. The reducer defines some
algorithms to integrate all the images in a collection into a single image along a certain axis,
such as space, time, bands, or other metadata.

Besides all the above operators, there are also some operators related to publishing
UDFs, such as register, which provide an interface for registering the basic information of
UDFs, including results datatype, function name, input arguments, and description, etc.
More details about operator publication are shown in Section 4.3.

The syntax description is based on the augmented Backus–Naur form (ABNF), shown
in Figure 6.
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For the reason of embedding into other programming languages as an internal domain-
specific language (DSL) [19], the production rules adopt some symbols different from the
regular ABNF [20]. All the symbols of the production rules in Figures 4 and 5 are defined
in Table 1.

Table 1. Description of the symbols.

Symbols Description Example

<> Denotes an operator or variable in programming; <img-clct>
[] Indicates creating a data structure of numeric array; [[ . . . ] . . . [ . . . ]]
{} Body of the UDF or a data structure of dictionary; {<metadata>*}
() Indicates the inputs of the UDF; (<img-lhs>)
| Choice operator for two candidate expressions; EQ | NE
* Zero or more occurrences of the preceding element; <img-op>*
+ One or more occurrences of the preceding element; <img-op>+
. Denotes the attribute or method of an object; <id>.apply( . . . )
; Indicates end of a BNF statement; Image <id>;

// Annotation of the production rules; //annotation
::= Means being defined as the right-hand expressions; <l-op> ::= or;

4.3. Operator Publication

Similar to the symbol table of programming language, operators can be regarded
as a kind of computational symbol with input and output information in the remote
sensing processing workflows. An operator brings two kinds of information, one for user
programming and the other for explicitly cloud functions calling, which can be called
high-level attribute and low-level attribute of operators.

The high-level attribute is some information exposed to users, which would be sent
to the pipeline client through a dynamic operator generation. It contains four kinds of
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information expressed as datatype, operator name, input arguments, return types, and
description. The low-level attribute is a pointer to a certain cloud function, which contains
two kinds of information, including operator name and function call location.

When users create operators, they need to publish in the backend before these oper-
ators can be used to create workflows. The process of operator publication is shown in
Figure 7, presented in Python style. When UDFs have been published by users, they can
access the published UDFs through agent datatypes through the pipeline client, and they
can be used in the construction of workflows.
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4.4. DAG Generation

The pipeline and UDF clients have the ability of dynamically generating operators in
the frontend based on the metaprogramming technology and the high-level attributes of
cloud functions. All the operators in the frontend belong to specific proxy objects, and they
actually refer to one same function just recording the invocation between cloud functions,
which make up a sense of code execution. This relation can be modeled as a DAG, which
is a kind of intermediate representation between the remote sensing image processing
pipeline and the underlying cloud functions, and generated through a series of callable
proxy objects in the frontend, similar to the way of the GEE API Client.

4.5. Trigger of Execution

Although the DAGs represent the pipeline execution, they are generated in the fron-
tend. When users invoke specific functions, the framework is triggered to submit DAGs
from client to cloud. In order to receive results as soon as possible, the DAGs should have
an initial viewpoint or would receive a default one if not. The framework can compute
results on the tiles around the viewpoint. The trigger of execution can be defined as a
tuple of ( f unction, viewpoint). The f unction can submit the DAGs through a request and
obtain a map identifier to fetch tiles. The viewpoint defines the initial scope of input tiles.
Therefore, the users can receive the result very quickly, complying with the design principle
of on-the-fly geocomputation.

The most important aspect of DAG execution is to guarantee the correctness of trans-
lating the focal operators from band level to region level. For the reason that logical region
is invisible to end users, the translator of the run-time environment should be able to
determine the shape of logical region automatically, i.e., automatic data partition.

5. DAG Execution
5.1. Data Partition

Different from the DAGs generated automatically by the machine learning engine,
the DAGs manually constructed by users are usually not too big to be partitioned for task-
parallel execution. This paper only focuses on the algorithms of data-parallel execution.
We need an algorithm for automatic data partition.
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The focal operator has a characteristic of a structural locality, which means that the
result at the location of (i, j) is not only determined by the value of (i, j) but also its
neighbors. The structural locality of the remote sensing processing can be defined as a
window so that the computational model of the data partition for a remote sensing image
can be expressed as a function with a window as the input and a kind of logical region as
the output.

region← fimage(window)

Since all the remote sensing images are organized as a COG and persisted in the OSS,
the data partition algorithm is ideally determined by the characteristics of OSS, the shape
of the window, and the physical layout of the COG. As the COG is a highly customized
format in the OSS for streaming, progressive rendering, and supporting on-the-fly random
reading, the impacts of the OSS and the physical layout of the COG can be neglected in this
paper.

A single remote sensing image can be regarded as a three-dimensional array, so the
window defines the scope and neighboring pixels at a specified location of (i, j, k). Different
from the common window definition, such as 7 × 7 × 3, this paper adopts a more flexible
window form, i.e., a set of neighboring pixels similar to ArrayUDF [21]. Expression {r, c, b}
represents the three dimensions of an image. The shape of the overlapping zone {Ok}
guarantees the correctness of operators across logic regions and can be derived from the
window parameters, [Li, Ri].

W([Li, Ri])← f
({

Pδr ,δc ,δb

∣∣δi ∈ [Li, Ri]
})

, ∀i ∈ {r, c, b}

{Ok} ← Sum(Lk, Rk), ∀k ∈ {r, c, b}

5.2. Execution

To implement computing while visualizing, we propose an architecture based on the
producer–consumer pattern. The producer receives tile numbers indicating data to be
processed, applies the DAG to be executed on tiles determined by regions, and puts the
results in a workspace to be consumed. The data-parallel DAG execution algorithm is
shown in Algorithm 1.

Algorithm 1 Data-Parallel DAG Execution
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5.3. Cache

Considering that some tiles may be requested for more than one time in the DAG
execution, the framework must maintain the execution states, including DAGs and tiles, in
caches. The consumer firstly obtains tiles in the target region from the cache in the frontend
and generates tiles dynamically from the upper or lower tiles maintained in the cache if
they have been requested and then sends a request to the backend to receive the target tiles
generated by the producers from the workspace.

Except for the cache in the frontend, there is also a cache in the backend, which plays
an import role in the DAG execution. If the whole region requested by the consumers
has been processed, the cache will put the tiles directly in the workspace. As some tiles
are shared by different regions and the target region is partially processed, the cache will
generate a mask to declare which tiles have been processed to reduce the computational
cost.

6. Case Study
6.1. Data and Result

This study conceptually validates the feasibility of serverless-based, on-the-fly com-
putation framework with a simple NDVI use case on a remote sensing image. The NDVI
code is shown in Figure 8. All the remote sensing images are from Landsat8 and organized
in the COG file format. Every overview of different levels in the image pyramid is tiled
into tiles of 256 × 256 pixels and encoded into an individual TIFF file. This study provides
a Python client integrated as an algorithm library in Jupyter. The NDVI code, the input
image, and the result tiles are shown in Figure 8. The NDVI function is performed on four
tiles, numbered as (0, 7), (0, 8), (1, 7), and (1, 8).
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Before the system begins to process the target tiles, a DAG will be generated and
submitted to the data center. Part of the DAG in Figure 9 is corresponding to the NDVI
code from line 1 to line 3. It should be pointed out that the time point is modeled as a range
from a start time to the end time. A DAG is actually a nested object returned by the final
operator. The DAG generation is a process of creating this nested object.
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6.2. Response Time

Once the algorithm is determined, it will be applied to the whole remote sensing
collection. The response time is a critical characteristic of on-the-fly cloud computing
for remote sensing data analysis during the phase of DAG construction or algorithm
exploration. When users request to run the user-defined code, the frontend firstly submits
a DAG and receives a task identifier, and then the backend executes it on the specified tiles
determined by VP.

The response time is related to the efficiency of the scheduler, the complexity of the
related algorithms, the latency of the communication, the characteristics of the serverless
platform, and the concurrency. In the study, the response time is tested through a series of
continuous requests shown in Figure 10.

The initialization phase of a serverless platform is called a cold start. The cold start of
the NDVI case is around 1200 ms, which is about three times longer than that consumed by
a base cloud function, which only responds to the request without doing anything. Once
the serverless platform has been started, the response time will reduce to around 700 ms in
the elastic mode whereas in the performance mode, the computation time will reduce to
less than 400 ms. It is shown that the NDVI case benefits a lot from better hardware, but
anything larger than a 4 GB memory could not further reduce the response time.

The response time of the NDVI case is mainly determined by reading tiles from the
OSS, putting them together, and transforming them into an image. The time of reading
a COG header and four tiles from the OSS is about 200 ms, and the NDVI case needs to
repeat this process. Then, the system will put four tiles together and transform them into
an image, and it will take about another 200 ms. The scheduler only takes less than 100 ms,
for the total response time is less than 700 ms. To reduce the response time, the system
adopts a strategy similar to lazy evaluation, in which the operation of reading data from
the OSS is only triggered by some specific operators that must manipulate the data. In the
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NDVI case, the operation of reading tiles from the OSS is deferred to the eleventh round of
task scheduling.
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6.3. Concurrency

An important characteristic of serverless computing and the requirement for on-the-fly
cloud geocomputation is concurrency. Once the computation request is sent by a map client
automatically, the serverless framework needs to respond to a large number of computation
requests in a short period. The tested concurrency performance of the serverless-based
remote sensing image analysis framework is shown in Figure 11.

The framework in the elasticity mode is tested through a series of asynchronous
requests at the scale of tens and hundreds. It is shown that the response time stays below
1.5 s until the concurrency approaches about 700, and then the response time starts to
increase linearly. When the asynchronous request is under 200, the maximum execution
time of the DAG is less than about 1.5 s. The average response time is still under about 1.5 s
though the scale of asynchronous requests reaches 1000 and the maximum execution time
is close to 3.5 s. In contrast with the traditional technologies of cloud computing, which
may scale in minutes or hours, the serverless-based framework can increase the number of
functions and instances in seconds to handle new requests.
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7. Discussion and Conclusions

There are some remote sensing frameworks developed from traditional parallel
databases and cloud computing technologies. The paper [1] analyzed the related works of
three types, including spatial databases, programming and software tools, and big spatial
data infrastructures, and categorized them further into ten types from underlying general
technologies. Though extensive in the scope of investigation, it only focuses on the under-
lying technologies without evaluating them in terms of computing service. Different from
this review, here, we analyze the representative remote sensing image analysis frameworks
from both computing service types and underlying cloud computing technologies.

As one of the most popular remote sensing analysis cloud platforms, GEE provides
two types of computing services, namely on-the-fly computing and batch computing. On-
the-fly computing is used for rapid prototyping for tiled remote sensing images while batch
computing provides the capability of planetary-scale processing. Despite their different
focuses, they both have the same programming interface and can switch to each other
seamlessly based on GEE’s ability to translate the user-defined codes or functions to DAGs.
However, GEE cannot express focal operation with structure locality at a pixel-level. In the
study, the ability of the focal operation is implemented through window operators based
on relative coordinates and overlapped logical regions.

Different from GEE’s local tiling strategy, the Open Data Cube (ODC) [22] reformats
the raw, remote sensing images into analysis-ready data with a global tiling strategy. ODC’s
rapid prototyping and parallel computing capabilities are provided by the xarray [23]
and Celery framework, respectively. Although Celery has high performance, from the
perspective of ease of use, ODC only has a low-level programming model compared
with highly customed remote sensing processing APIs or operators and lacks control over
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operator access. As cloud computing systems are considered to prioritize the ease of use
over high performance, we provide end users with a customed DAG-centric programming
model that includes various datatypes and operators dedicated to remote sensing data
analysis and operator-level access control capabilities.

GeoTrellis [24,25] and GeoSpark [26], built on the top of Spark, are generally used
for batch processing of raster data and similar to the batch computing component of
GEE, which is based on FlumeJava [27]. These frameworks usually have a distributed
data abstraction customed to raster data based on the RDD data structure [28]. However,
at the phase of algorithm exploratory, they cannot be used as REPL tools to provide a
public computing service and rapid prototyping. Besides, these frameworks require the
computation to be built on the distributed datatypes, which limits the expressiveness and
flexibility of end-user programming for remote sensing collection processing. Although
Spark can be refactored on serverless technologies, GeoTrellis and GeoSpark cannot be
directly used as public cloud commodities to provide end-user programming services.

Iris [29] is a python library used for the analysis and visualization of meteorological
data, which provides the ability of batch geocomputation based on the distributed nu-
merical computing framework Dask. Contrary to the Spark-based frameworks, Iris has a
higher communication efficiency and is capable of performing certain high-performance
computing tasks, such as a dense linear algebra calculation. Nevertheless, Iris is highly
customed to the analysis of meteorological data, which is usually organized as a NetCDF
file or its variants, and, therefore, could not be applied directly to remote sensing images
analysis. Besides, as Iris is deeply bound to Dask, it cannot control operator access and
provide the service of paying in proportion to resources used, similar to a serverless public
commodity.

With the rise of the disaggregation datacenter, serverless computing is believed to
become the default computing paradigm of cloud computing and bring closure to the
client–server era [8]. Although GEE has the feature of scaling automatically and billing on
usage, it does not claim to be built on serverless technologies. All other remote sensing
image processing frameworks need explicit resource provisioning, which can be regarded
as based on a server-centric computing paradigm. Despite that serverless cloud functions
are becoming more and more lightweight and have been successfully employed for several
types of general workloads [30,31], there are still many limitations. The cloud functions
are stateless without fine-grained coordination and do not provide high-level parallel
operators, posing difficulty for remote sensing data processing workloads.

This paper presents the empirical characteristics and a formal definition of on-the-
fly cloud geocomputation for the first time. Then, we give a serverless-based software
architecture and some proof-of-concept experiments, which suggest that on-the-fly cloud
geocomputation can be efficiently implemented with serverless technologies, such as the
object storage system and function computing engine. At the frontend, we provide a
DAG-based, end-user programming environment for remote sensing data analysis, which
contains a series of customed datatypes and operators. The DAG is one of the core designs,
which bridges the user-defined code and the cloud functions at the backend. The logical
region is another core design, which guarantees the correctness of focal operators through
overlapped zones and controls the amount of input image tiles to achieve a rapid response.

Nevertheless, several aspects of the proposed serverless-based system could be further
improved. First, the technology stack of current serverless commodities lacks in-memory
storage, similar to Redis, which limits further performance improvements. Future work
could refer to Anna [32], which can provide high-performance memory storage services
to improve the efficiency of COG reading and cache. In addition, the scheduler in the
current system adopts a staged scheduling method, which does not pay attention to the
difference in execution time between different nodes. Therefore, it is necessary to develop a
scheduling algorithm specially oriented to serverless computing to achieve the optimization
of both job completion time and cost of execution [33].
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