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Abstract: During the last few decades, worsening air quality has been diagnosed in many cities
around the world. The accurately prediction of air pollutants, particularly, particulate matter
2.5 (PM2.5) is extremely important for environmental management. A Convolutional Neural Net-
work (CNN) P-CNN model is presented in this paper, which uses seven different pollutant satellite
images, such as Aerosol index (AER AI), Methane (CH4), Carbon monoxide (CO), Formaldehyde
(HCHO), Nitrogen dioxide (NO2), Ozone (O3) and Sulfur dioxide (SO2), as auxiliary variables to
estimate daily average PM2.5 concentrations. This study estimates daily average of PM2.5 concen-
trations in various cities of Pakistan (Islamabad, Lahore, Peshawar and Karachi) by using satellite
images. The dataset contains a total of 2562 images from May-2019 to April-2020. We compare and
analyze AlexNet, VGG16, ResNet50 and P-CNN model on every dataset. The accuracy of machine
learning models was checked with Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
Mean Absolute Percentage Error (MAPE). The results show that P-CNN is more accurate than other
approaches in estimating PM2.5 concentrations from satellite images. This study presents robust
model using satellite images, useful for estimating PM2.5 concentrations.

Keywords: deep learning; satellite images; PM2.5; estimation

1. Introduction

Particulate matter of a diameter of 2.5 µm (PM2.5) is hazardous for human health,
leading to further damage and the destruction of lung function [1–6]. These fine parti-
cles are extremely dangerous if they get into the lungs, which might complement the
seriousness of COVID-19 infection, and increases the chances of attacks and damage to
the respiratory system [7]. Overall, these hazardous pollutants impact human health and
produce life-threatening complications in a short period if found in the atmosphere in large
concentrations [8]. The research has proven that these particulate matters can potentially
affect humans at the genetic level [9].

Various methods have been presented to better explain city-wide air quality, for exam-
ple, the recent Neighbor legislation and spatial averaging [10,11], to make the most of the
limited data gathered by monitoring stations using spatial interpolation. The data sparsity
problem is solved by adding monitoring data in most of these systems, which are based
on the assumption that air pollution particles diffuse in a spatially continuous manner.
However, there are two significant drawbacks of these methods. First, different estimation
approaches obtain completely different results. Second, the differences in results are partic-
ularly unsatisfactory for raw data with sparse spatial distribution. The air quality detecting
network has been optimized by various researchers [12]. For instance, Mei et al. [13] sug-
gest a method to monitor air quality utilizing mobile data. Crowdsourcing computing,
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including the use of auxiliary sensors, is rapidly becoming the focus of academic research.
Murty et al. [14] suggest a new air pollution monitoring system called CitySense for moni-
toring air pollutants. In order to obtain data samples using compressed sensing technology,
Yu et al. [15] proposed a monitoring strategy that relies on vehicular sensor networks (VSN),
which represent a paradigm shift in transportation technology. VSN has the potential to
significantly enhance the transportation environment due to the vehicles’ infinite power
source and the resultant low energy constraints. Li et al. [16] used portable sensors and
smartphones to track particulate matter and gas pollutants. However, portable sensors still
have limited capability to accomplish the accuracy of monitoring stations accurately. In
addition, it takes almost 1 h to obtain the data for PM2.5 measuring equipment; as well, it
is also crucial to avoid common issues due to shaking and movement.

Recently, satellite remote sensing has been used in a variety of studies to evaluate air
quality [17–24]. For the more accurate methods, an artificial neural network can be utilized
as a classifier based on data from road networks and weather data [25]. The deep learning
algorithms have achieved significant advancements in image feature learning and have
solved numerous challenges in typical computer vision [26]. Image feature-based learning
is mainly concerned with the relationships between image characteristics and the index
of PM. Liuetal. [27] investigated how air quality relates to image quality. Wang et al. [28]
examined air quality by incorporating the association between observed image degradation
and PM2.5. Other authors used decision tree in estimating air quality [29]. For exam-
ple, Zhang et al. [30] used images to calculate air pollution levels with a CNN algorithm.
A CNN is a multilayer network structure, whose fundamental structure is comprised of
the input layer, convolution layer, pooling layer, fully connected layer and output layer.
A convolutional neural network (CNN) is a type of artificial neural network (ANN) that is
most typically used to evaluate visual images. It is one of the most widely used types of
ANN. This deep learning method can be used to recognize images and videos in a variety
of contexts, including recommendation systems, image classification, segmentation, and
medical image analysis. The designed CNN was employed to identify photos according
to their PM2.5 index via classification. The CNN consists of multiple layers: nine convo-
lutional layers, two pooling layers and two dropout layers, and to overcome the gradient
disappearance problem, an enhanced rectified linear unit activation function can be used.
Furthermore, the VGG-16CNN model was proposed to evaluate PM2.5 levels [31] on the
basis of image-based PM2.5 concentration levels.

According to atmospheric chemistry and physics, the PM2.5 formations are linked
to pollutants, such as PM10, CO2, NO2 and meteorological variables, also called auxiliary
variables, which can be used as input variables for model prediction [32]. Song et al. [33]
proposed a statistical model for the estimation of PM2.5 concentration. Their model
showed that the concentration of PM2.5 is closely associated with concentrations of NO2,
SO2, CO and O3 gaseous pollutants. Therefore, these contaminants can be used as input
variables for PM2.5 predictions. Image detection-based air quality research is carried out
by combining image processing methods and machine learning approaches, but both have
certain weaknesses. For example, the color characteristics of the sky may alter the features
utilized in PM2.5 and PM10 concentration detection methods based on visual features from
the phone camera image. The sensitivity is excessively high and it is greatly affected by the
weather. The detection of PM2.5 and PM10 concentrations based on physical properties
may produce pretty good results, but it is only suited for dry air images, which are impacted
by meteorological factors. Taking photos from a camera phone have few disadvantages;
such as, we can capture photos with high resolution camera in day time; however, in the
evening and night time, the quality might be compromised, which does not lead to better
results being estimated. Second, it is very inconvenient and difficult to access remotely
areas with camera devices; in contrast, satellite images are better to estimate air quality.

This study uses satellite images and employs a novel deep learning-based method for
PM2.5 predictions. This technique, such as prediction from satellite images, is not limited
by locations and can be suitable to detect air quality at any location. This study uses seven
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satellite images (AER AI, CH4, CO, HCHO, NO2, O3 and SO2) collected by high resolution
sensors (TROPOMI) from the sentinel-5p satellite. The method that we used in this study
differs from existing methods. It estimates the daily average of PM2.5 concentration using
satellite images collected by the TROPOMI sensor of sentinel-5p satellite every day. It can
address the weaknesses of present air quality detection technologies and offer fine-grained,
low-cost air quality monitoring. The proposed technique can estimate the AQI directly,
which is broader and better reflects the air quality. The air quality index (AQI) is a daily
indicator that measures the quality of the air at a certain location. It is a way to measure
how air pollution affects a person’s health during a short period of time (less than 24 h).
In short, this study investigates the relationship between PM2.5 concentrations and the
concentrations of various pollutants based on satellite images. P-CNN recognizes and
extracts patterns and features from input images, and it estimates the daily average of
PM2.5 concentrations from these images. This study used four datasets covering Islamabad,
Karachi, Lahore and Peshawar city, each dataset contains seven pollutants’ images for each
day. This paper proposes a deep convolutional neural network model to estimate PM2.5
concentrations from seven given input images. In addition, we also conducted comparative
analysis of our proposed model with other three deep learning models on four datasets for
more robust results.

This paper is structured in the following way. The second section introduces the study
area, datasets and methodology. The third section presents result and discussion of the
study, followed by the conclusion and implications in the last section.

2. Materials and Methods
2.1. Study Area and Dataset

The study area we have chosen in this paper is Pakistan. We have taken four metropoli-
tan cities for our experiments such as Karachi, Lahore, Islamabad and Peshawar. Figure 1
shows the study areas and monitoring stations for PM2.5 in Pakistan.
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Figure 1. Study area and the distribution of monitoring stations.

There is no openly available library to estimate PM2.5 concentrations from satellite
images; therefore, based on sentinel-5p satellite, a multi-input air quality image database
was built for each city (Islamabad, Lahore, Peshawar and Karachi). The library contains
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2562 images with different PM2.5 levels, which are a collection of scene satellite images at
different PM2.5 levels. We used the following steps to create the dataset:

• We collected scene images for each city from the official website [34] from May-2019
to April-2020. Each day contains seven different pollutant images (AER AI, CH4, CO,
HCHO, NO2, O3 and SO2). Table 1 describes the information about the air quality
image collection point. One Image cannot cover the concentration of various gases;
therefore, each sample is described by taking at least seven satellite images in our
research work. The standard single-input CNN architecture is not suitable for our
research. Thus, a novel P-CNN model was built to accept seven images as input.

Table 1. Satellite image collection information.

Numbering Collection Point Photo Pixels (Px) Capturing Time Period Collection Interval

A Islamabad 3310 × 1573 8:00–9:00 UTC One per day
B Peshawar 3310 × 1573 8:00–9:00 UTC One per day
C Karachi 3310 × 1573 8:00–9:00 UTC One per day
D Lahore 3310 × 1573 8:00–9:00 UTC One per day

Figure 2 shows the actual satellite images of seven air pollutants with different PM2.5
air quality levels in the image library. Figure 2, such as from A to D shows different
days, while I, II, III, IV, V, VI, and VII are seven different pollutant images by sentinel-5p
satellite for same day. I represents concentration of AER AI pollutant in single day, while
II illustrates CH4 pollutant concentration for same day. III number image is about CO
concentration. IV image is about HCHO pollutant concentration. V, VI and VII images are
examples of NO, O3, and SO2, respectively.

Remote Sens. 2022, 14, x FOR PEER REVIEW 4 of 18 
 

 

Figure 1. Study area and the distribution of monitoring stations. 

There is no openly available library to estimate PM2.5 concentrations from satellite 

images; therefore, based on sentinel-5p satellite, a multi-input air quality image database 

was built for each city (Islamabad, Lahore, Peshawar and Karachi). The library contains 

2562 images with different PM2.5 levels, which are a collection of scene satellite images at 

different PM2.5 levels. We used the following steps to create the dataset: 

• We collected scene images for each city from the official website [34] from May-2019 

to April-2020. Each day contains seven different pollutant images (AER AI, CH4, CO, 

HCHO, NO2, O3 and SO2). Table 1 describes the information about the air quality 

image collection point. One Image cannot cover the concentration of various gases; 

therefore, each sample is described by taking at least seven satellite images in our 

research work. The standard single-input CNN architecture is not suitable for our 

research. Thus, a novel P-CNN model was built to accept seven images as input. 

Table 1. Satellite image collection information. 

Numbering 
Collection 

Point 
Photo Pixels (Px) 

Capturing Time 

Period 

Collection 

Interval 

A Islamabad 3310 × 1573 8:00–9:00 UTC One per day 

B Peshawar 3310 × 1573 8:00–9:00 UTC One per day 

C Karachi 3310 × 1573 8:00–9:00 UTC One per day 

D Lahore 3310 × 1573 8:00–9:00 UTC One per day 

Figure 2 shows the actual satellite images of seven air pollutants with different PM2.5 

air quality levels in the image library. Figure 2, such as from A to D shows different days, 

while I, II, III, IV, V, VI, and VII are seven different pollutant images by sentinel-5p satellite 

for same day. I represents concentration of AER AI pollutant in single day, while II illus-

trates CH4 pollutant concentration for same day. III number image is about CO concen-

tration. IV image is about HCHO pollutant concentration. V, VI and VII images are exam-

ples of NO, O3, and SO2, respectively. 

 

Figure 2. Example of 4 days of seven different satellite input images in dataset. Figure 2. Example of 4 days of seven different satellite input images in dataset.

Real-time monitoring stations across main cities of Pakistan, such as Islamabad, Lahore,
Karachi and Peshawar, measure air quality levels then upload them on the website for
the open access. Figure 1 shows the location of the monitoring stations. PM2.5 hourly
real-time data were obtained from the official website [35]. Since PM2.5 concentration data
are measured hourly by the monitoring stations for each city, we converted the 24-hour
data into a daily average to train our model. For the model training, 70% of the images
were randomly selected for training and 30% for testing purposes. Furthermore, to prevent
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the model from overfitting and improve model accuracy and robustness, we strengthened
the dataset training process with the minimal number of samples in the training dataset in
the following ways.

(1) Randomly Image Rotation between [0, 360] degrees.
(2) Scale the image at random between [0.8, 1] coefficients.
(3) Size of each auxiliary input pollutant image is adjusted to 300 × 300, and then

normalized to [0, 1].

2.2. Convolutional Neural Network (CNN)

CNN, firstly proposed by LeCun et al. [36] for recognition of handwritten digits, has
been widely successful in the areas of image detection, segmentation, and identification
tasks [37–42]. CNN has shown its remarkable capacity to classify large-scale images. It
consists of three-layers: convolutional layers, pooling layers and fully connected layers.
The essential layers in CNN are the convolutional and pooling layers. The convolution
layers are used to extract features with numerous filters by convolving image regions. As
the layers expand, the CNN gradually understands the image. The pooling layers lower
the dimensions of output maps from the convolutional layers and avoid overfitting. The
number of neurons, parameters and connections in the CNN model is substantially less
through these two levels. Thus, CNNs are much more effective than Backpropagation (BP)
neural networks with correspondingly sized layers.

2.3. Architecture of P-CNN

Based on the standard CNN architecture, we have proposed a model named P-CNN.
The model is employed to estimate PM2.5 concentrations and acquire a preferable result on
the dataset. Figure 3 shows the entire model of CNN architecture.
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The convolutional layers C1–C7 filter seven 300× 300× 3 input images with 32 kernels
of size 4 × 4 × 3 with the stride of 1 pixel. The stride of pooling layers S1–S7 is 2 pixels.
C8–C14 filter with 16 kernels of size 4 × 4 × 3 with the stride of 1 pixel. The stride of
pooling layers S8–S14 is 2 pixels, and the dropout is applied to the output of S8–S14, which
has been flattened (E1–E4). D1 is the concatenation of the previous flattened E1–E4. The
fully connected layer FC1 has ten neurons, FC2 has ten neurons, and FC3 has one. The
activation of the output layer is a linear function.

A high-level neural networks API called “Keras” is used to implement the model [16].
All of the experiments were carried out on an Ubuntu Kylin 14.04 server equipped with a
3.40 GHz i7-3770 CPU (16 GB RAM) and a GTX 1070 graphics card (8 GB memory). The
original image has a resolution of 3310 × 1575 pixels, which needs be lowered in order to
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fit into the GPU memory. All of the original images are scaled to 300 × 300 pixels, and
then the value of per-pixel is divided by 255. In addition, images should be normalized
and standardized before being fed into model in order to achieve rapid convergence. A
randomization process is used to ensure that the model is not influenced by the sequence
in which photographs are input. Both the sequence of samples and the seven images
corresponding to each sample should be randomized. The convolutional neural network
training procedure is divided into two steps. The first is called forward propagation, and
the second is called backward propagation.

2.4. Forward Propagation

Data are transmitted from the input layer to the output layer by a sequence of oper-
ations that include convolution, pooling and fully connected. Each convolutional layer
employs trainable kernels in order to filter the results of the preceding layer followed by
activation function to build the output feature map.

In a general way, the procedure is as follows:

xe
j = f

 ∑
i∈Mj

xe−1
i ∗ ke

ij + be
j

 (1)

where Mj denotes the collection of input maps we choose. b is the bias that is applied to
all output map. k indicates the kernels, the weight of the row “i” and column “j” in each
kernel is represented by the ke

ij. Using a kernel map, the outputs of surrounding neurons
are summarized by the pooling layer, which is the operation of the pooling layer.

xe
j = f

(
βe

j down
(

xe−1
i

)
+ be

j

)
(2)

where β denotes multiplicative bias and b indicates additive bias, “down” is a subsampling
function that uses the max-pooling algorithm [43]. The reason why we chose max-pooling
over mean pooling is that the latter makes it impossible to identify critical information
such as the edges of objects, whereas the former selects the most active neuron of each
region in feature maps, which is more efficient [44]. As a result, it is easier to extract useful
features when using max-pooling. In a multilayer perceptron, the fully connected layer
is equivalent to the hidden layer. The activation function “linear” for output layer was
employed for regression [45], which is given below by

f (x) = ax (3)

Any constant value can be for variable “a”. A derivative of f(x) in this case is not
zero, but is equal to the constant employed. Notably, the gradient does not equal zero, but
rather a constant number that is independent of the input value x, which indicates that the
weights and biases will be updated throughout the backpropagation phase, despite the fact
that the updating factor will remain the same.

2.5. Backward Propagation

Backward propagation adjusts parameters by using stochastic gradient descent (SGD)
in order to reduce the disparity between the anticipated outcome and the actual outcome.
For the purpose of avoiding overfitting, L1 and L2 regularization is used.

C = C0 +
λ

n ∑
w
|w| (4)

where C0 represents loss in the formula (4). The formula for L2 is given by below

C = C0 +
λ

2n ∑
w

w2 (5)
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This paper uses a weight of 0.0001 for L1 and L2 regularization. Dropout is also used
to prevent overfitting [46], and its value is set to 0.1. The SGD algorithm calculates the
gradients and modifies the coefficients or weights. It can be stated in the following way:

δx = wx+1 +
(
σ′ (wx+1 · cx + bx+1) ◦ up (δx + 1)

)
(6)

∆wx = −n ·∑
ij
(δx ◦ down(Sx−1)) (7)

where δx denotes the sensitivities of each unit to fluctuations of the bias b, and ◦ represents
the element-wise multiplication. An upsampling procedure is represented by the up(), and
subsampling operation is represented by the down(). The updated weight is denoted by w,
and n represents the learning rate.

2.6. Evaluation Metrics

The following evaluation measures, Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE), were employed in this work
to complete the quantitative assessment of the constructed P-CNN model’s capabilities.

MAE is a model assessment statistic that is commonly employed in regression models.
It is a metric for estimating the average discrepancy between estimates and actual results.
It is used to estimate the machine learning model’s accuracy.

MAE =
1
N

N

∑
n−0
| on − pn | (8)

The Root Mean Square Error (RMSE) is a commonly used metric for determining how
well a model predicts quantitative data. Here, RMSE calculates the error between actual
(station value) and predicted value (model’s predicted value).

RMSE =

√
∑n−1

i=0 (yi − fi)
2

n
(9)

MAPE means absolute percentage error and is a statistical indicator used for prediction.
The “accuracy” of this measurement is expressed as a percentage. It is possible to determine
for each period the average absolute percent error, which is deducted from the actual
numbers, and then the outcome is divided by actual values. However, the larger the
concentration, the bigger the absolute inaccuracy in the forecast. As a result, we anticipate
that the MAPE will be able to offer the most accurate forecasts among models.

MAPE =
1
n

n−1

∑
i=0

∣∣∣∣ yi − fi

yi

∣∣∣∣× 100 (10)

3. Results

AlexNet, VGG16, ResNet50 and P-CNN were all evaluated for their prediction abilities
using three different indicators. They are Mean Absolute Error (MAE), Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE). Table 2 displays MAE results
for Lahore, Karachi, Peshawar and Islamabad after applying different machine learning
models. When we applied AlexNet on the datasets, a 34.464 average value was achieved,
which was reduced 5.113 using ResNet50. VGG16 also decreased the 7.723 MAE value
after ResNet50. After applying the P-CNN model on the datasets, 6.475 MAE reduced,
and its average value for each city was calculated as 15.152, which is a really good result.
Table 3 shows the RMSE values for different cities with different models. AlexNet achieved
a 49.445 RMSE average value for all cities, and 12.082 was reduced after applying ResNet50.
VGG16 also helped to reduce the 9.079 RMSE value, and 8.726 RMSE decreased after ap-
plying P-CNN, and its average value was 19.557. Table 4 reveals results for MAPE. For the
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average value for all cities after using the AlexNet model, we achieved 43.932. After employ-
ing ResNet50, the 7.373 MAPE value decreased. VGG16 also decreased the 11.990 MAPE
value. Lastly, P-CNN reduced 9.403 MAPE after VGG16, and its average value for all cities
was 15.167. All of these metrics show that P-CNN is superior to other models.

Table 2. MAE results for all cities using AlexNet, VGG16, ResNet50 and P-CNN.

City AlexNet ResNet50 VGG16 P-CNN

Karachi 32.343 28.187 19.554 17.123
Lahore 29.843 30.214 21.240 14.205

Peshawar 37.449 27.345 22.145 18.280
Islamabad 38.221 31.657 23.572 11.003
Average 34.464 29.350 21.627 15.152

Table 3. RMSE results for all cities using AlexNet, VGG16, ResNet50 and P-CNN.

City AlexNet ResNet50 VGG16 P-CNN

Karachi 56.322 37.299 29.368 22.084
Lahore 47.917 39.239 24.431 20.835

Peshawar 50.329 32.302 31.502 18.743
Islamabad 43.215 40.611 27.834 16.566
Average 49.445 37.362 28.283 19.557

Table 4. MAPE results for all cities using AlexNet, VGG16, ResNet50 and P-CNN.

City AlexNet ResNet50 VGG16 P-CNN

Karachi 45.954 40.223 22.838 14.419
Lahore 42.390 37.901 25.949 12.394

Peshawar 47.987 35.025 21.494 17.200
Islamabad 39.399 33.092 28.001 16.657
Average 43.932 36.560 24.570 15.167

Figure 4 depicts a comparison of the actual values and projected values in a time
series graph obtained by applying AlexNet (a), VGG16 (b), ResNet50 (c) and our proposed
model P-CNN (d) to a testing dataset for Karachi city. In this figure, the P-CNN obtained
values that were more closely aligned with the observed values than AlexNet, VGG16 and
ResNet50. According to performance indicators, our P-CNN performs much better than
other models in terms of predicting of PM2.5 concentrations. When AlexNet was used to
the Karachi testing dataset, it produced the following results: MAE (32.343), RMSE (56.322)
and MAPE (45.954). The ResNet50 model obtained the following metrics: MAE (28.187),
RMSE (37.299) and MAPE (40.223). VGG16 achieved MAE (19.554), RMSE (29.368) and
MAPE (22.838). In the same testing dataset for Karachi, we implemented our proposed
model P-CNN and obtained the best results, such as MAE (17.123), RMSE (22.084) and
MAPE (14.149). Figure 5 shows the difference between the actual and predicted values
after applying the same models to Lahore city. The graphs clearly demonstrate that P-
CNN (d) outperformed the other models. AlexNet (a) determined the MAE, RMSE and
MAPE for Lahore city (29.843, 47.917 and 42.390). ResNet50 (c) achieved (30.214, 39.239
and 37.901). VGG16 attained (b) (21.240, 24.431 and 24.431). However, while assessing
the performance of models for predicting PM2.5 concentration, P-CNN (d) achieved the
lowest MAE, RMSE and MAPE (14.205, 20.835 and 12.394). The actual and estimated
outcomes for Peshawar city are depicted in Figure 6. The graph clearly demonstrates that
the P-CNN (d) estimated values more accurate than AlexNet (a), ResNet50 (c) and VGG16
(b). In addition, performance metrics revealed too that P-CNN (d) outperformed all other
models. AlexNet computed MAE, RMSE and MAPE (37.449, 50.329 and 47.987), ResNet50
(27.345, 32.302 and 35.025), VGG16 (22.145, 31.502 and 21.494) and P-CNN (18.280, 18.743
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and 17.200). Figure 7 provides a time series graph of the observed and predicted values for
Islamabad city. It shows that P-CNN (d) is more accurate in predicting PM2.5 concentrations
when compared with the other deep learning models (a), (b) and (c). Testing dataset for
Islamabad contains three months of daily average of PM2.5 concentration. After applying
performance indicators on Islamabad city, MAE, RMSE and MAPE achieved 38.221, 43.215
and 39.399 by AlexNet; 31.657, 40.611 and 33.092 by ResNet50; 23.572, 27.834 and 28.001
by VGG16; and 11.003, 16.566 and 16.657 by P-CNN. All of these figures and performance
metrics clearly demonstrate that P-CNN outperforms other deep learning models, such as
AlexNet, ResNet50 and VGG16, in terms of predicting PM2.5 concentrations accurately in
Karachi, Lahore, Peshawar and Islamabad.
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Consequently, to conduct further testing efficiency of our developed model, P-CNN,
we trained a model on one city dataset, and tested on all remaining cities. After training
the model on Islamabad, as seen in Figure 8, it can be used to predict PM2.5 concentrations
in a number of different cities, such as Karachi, Lahore and Peshawar. Figure 8 clearly
demonstrates that the P-CNN predicted values for Karachi, Lahore and Peshawar are
extremely close to the real values. The proposed model for predicting PM2.5 concentrations
was also trained on a dataset from Karachi and evaluated on datasets from other cities
such as Lahore, Peshawar and Islamabad (as shown in Figure 9). The results indicated that
the model, which was trained on the Karachi dataset, can be applied to Lahore, Peshawar
and Islamabad. It was also found that training a model with Lahore data, can accurately
predict PM2.5 concentrations for other cities such as Islamabad, Karachi and Peshawar
(see Figure 10). According to Figure 11, using Peshawar as a training dataset, our model is
able to predict the concentrations of PM2.5 in other cities such as Islamabad, Lahore and
Karachi. These results proved that our proposed P-CNN model also can be applied to other
cities after being trained on a single city. Overall, these results demonstrate that P-CNN
model is useful in predicting PM2.5 concentrations with satellite images.
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4. Discussion

This study adopts seven inputs to estimate PM2.5 concentrations in four cities, namely,
Pakistan, Islamabad, Lahore, Karachi and Peshawar. The findings revealed that seven input
pollutants (AER AI, CH4, CO, HCHO, NO2, O3 and SO2) are closely linked with PM2.5.
The existing studies have used different approaches for PM2.5 estimation. Li et al. [47]
uses transmission and depth matrices to estimate haze levels. As a proxy for PM2.5,
two datasets were utilized for the evaluation. The authors used 8761 photographs in the
PM2.5 datasets, and the stated Absolute Spearman correlation is 40.83%. PM2.5’s dataset
contains three classes: HeavyHaze, LightHaze and NonHaze and the stated correlation
is 89.05%. Zhang et al. [48] proposed deep learning method to classify the camera images
according to AQI-levels; there were six classes: good, moderate, Unhealthy for Sensitive
Groups, Unhealthy, Very Unhealthy and Hazardous. The applied method was tested
on the dataset and achieved 74.0% accuracy. Both these studies have developed deep
learning models for classification purpose; however, we proposed a novel P-CNN approach,
which uses seven auxiliary input satellite images and estimates actual real number, PM2.5
concentrations. Estimating PM2.5 concentrations differs from classifying, segmenting
or recognizing objects based on attributes such as color or texture. We tested P-CNN
model on four different datasets using statistics metrics. We achieved satisfactory values
of MAE (15.152), RMSE (19.557) and MAPE (15.167) using P-CNN model. Furthermore,
in estimating PM2.5 concentrations, the results showed that the P-CNN method provides
better results. For instance, the advantage of using this model helps to cover remote areas
for estimating air quality.

There are various reasons that compared to Islamabad and Peshawar, the air quality in
Lahore and Karachi is far worse. Peshawar and Islamabad are smaller and less populated
than Lahore and Karachi city. Islamabad and Peshawar city have less public transit than
Lahore and Karachi. The number of industries and construction sites are also less in Islam-
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abad and Peshawar. Lahore and Karachi have a greater ratio of growing urbanization than
Peshawar and Islamabad. On the other hand, Lahore is one of second-largest metropolitan
city of Pakistan, with a population of 11 million residents, and has topped the daily rankings
of the world’s most polluted cities for the second time this year. Tree cover in Lahore has
declined significantly over the previous 15 years as a result of an ambitious effort to develop
highways, bridges and tunnels. Increasing population, industry, deplorable conditions of
municipal utilities, and traffic congestion are the primary sources of air pollution in Karachi
city. Furthermore, environmental issues have increased as a result of rapid urbanization
such as sewage system inadequacies, overcrowding, inadequate transportation and un-
controlled growth, particularly in Karachi. Air pollution is also exacerbated by industrial
pollutants, waste burning, house fires, and other particulates. However, it appears that
neither the government nor environmental organizations are taking this matter seriously or
responding quickly enough. Similarly, an increase in population accelerates agriculture and
industrial production, resulting an increase in waste [49]. Government can help relevant
industries by providing green credit funds for the eco-friendly environment, which helps
the business community to accelerate green technology and research and development.
Pakistan, being a developing economy, suffers huge losses due to environmental prob-
lems. During the period between 1999 and 2018, the country spent around USD 3.8 billion
to fight against environmental issues in Karachi, Lahore and Peshawar [50]. The water-
and land-based ecosystems are being demolished, and unplanned urban structure have
damages environment badly. This implies that poor socioeconomic systems cause envi-
ronmental degradation. Lahore city is the second metropolitan city in Pakistan, covering
2233 manufacturing firms [51]. Lahore is regarded as one of the most developed cities in
socioeconomic perspectives. However, some factors, such as industrial waste, poor sanita-
tion systems and lack of urban planning, are barriers to environmental quality. Compared
to Karachi and Lahore city, Islamabad is a well-planned city, with the transportation and
construction sectors having been developed. On the other hand, Peshawar city is also
one of the important hubs in Pakistan. Urban sprawl, deforestation and the burning of
contaminated fuel have proved to be the drivers of greenhouse gas emissions [52,53].

Overall, the poor socioeconomic status of these cities has prevented efforts to maintain
the ecosystem. Poor infrastructure, dense population and dependency on traditional cook
stoves can increase the CO2, PM2.5 and other greenhouse gas emissions. The findings
of Mehmood et al. [53] revealed that most of the households in rural areas of Pakistan
burn wood, straw, animal dung and crops for cooking purpose, indicating that the most of
the households are dependent on contaminated fuels. Moreover, cooking practices with
contaminated fuel have the direct association with PM2.5 concentrations [54]; thus, the
government should promote clean energy, provide modern cook stoves and reduce fossil
fuel consumption to mitigate PM2.5 and other greenhouse gas emissions in Pakistan.

All four cities (Lahore, Peshawar, Islamabad and Karachi) from 1 January to
31 December 2017, had PM2.5 concentrations above than the standard recommendation
(10 mg/m3). According to AQI rankings of the world’s most polluted cities, Lahore was
ranked at number six, while Karachi was ranked at number sixteen, with AQI levels of
170 and 155, respectively [55]. Most recently, Lahore ranked as world’s most polluted
city [56]. Hence, we need immediately the finest and most effective tools and methods
to analyze, understand and estimate air quality properly. Our proposed deep learning
model for estimating PM2.5 concentrations is efficient and cost saving. We do not need
to deploy physical measurement tools in each city to calculate air quality. Using portable
devices (laptops, mobiles, etc.), PM2.5 concentrations for any city can be estimated using
our deep learning model. Pudasaini et al. [57] had proposed a model to estimate PM2.5
concentration from photographs. However, in order to estimate PM2.5 concentrations, we
would need to travel to the site area and snap a picture of it using a mobile phone. However,
in our method, we need only chose a city to predict PM2.5 concentrations on portable
device anywhere. Thus, this study suggests a reliable and effective way of estimating
PM2.5 concentrations.
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5. Conclusions

This paper proposes a deep learning P-CNN model for PM2.5 concentrations. This
model mainly uses deep convolutional neural networks to extract feature representation
information related to PM2.5 in satellite images to estimate PM2.5 concentration levels. We
also performed comparative analysis of our constructed model with other deep learning
models such as AlexNet, VGG16 and ResNet50 on four different datasets (Karachi, Lahore,
Peshawar and Islamabad). The study performed different measures to analyze the model’s
accuracy. In this regard, MAE, RMSE and MAPE were used as accuracy metrics. The exper-
imental results demonstrated that the P-CNN model is more suitable for predicting PM2.5
concentrations than other models. The results confirmed that the PM2.5 concentrations
our model predicts from satellite images are closely related with actual results. Any future
research should focus on finding ways to make the model more accurate, as well as to focus
on seasonal-wise PM2.5 estimations. Although, the model provides better results, some
limitations cannot be avoided. Based on available datasets, we used the samples between
May-2019 to April-2020. This study focuses on four cities of Pakistan; future study should
find large datasets and use more cities, which will give better results.
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