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Abstract: The present work is aimed at gaining more knowledge on the nature of the relation between
land surface temperature (LST) as a biophysical parameter, which is related to the coupled effect of
the energy and water cycles, and fire activity over Bulgaria, in the Eastern Mediterranean. In the
ecosystems of this area, prolonged droughts and heat waves create preconditions in the land surface
state that increase the frequency and intensity of landscape fires. The relationships between the
spatial–temporal variability of LST and fire activity modulated by land cover types and Soil Moisture
Availability (SMA) are quantified. Long-term (2007–2018) datasets derived from geostationary MSG
satellite observations are used: LST retrieved by the LSASAF LST product; fire activity assessed by
the LSASAF FRP-Pixel product. All fires in the period of July–September occur in days associated
with positive LST anomalies. Exponential regression models fit the link between LST monthly means,
LST positive anomalies, LST-T2 (as a first proxy of sensible heat exchange with atmosphere), and FRP
fire characteristics (number of detections; released energy FRP, MW) at high correlations. The values
of biophysical drivers, at which the maximum FRP (MW) might be expected at the corresponding
probability level, are identified. Results suggest that the biophysical index LST is sensitive to the
changes in the dynamics of vegetation fire occurrence and severity. Dependences are found for forest,
shrubs, and cultivated LCs, which indicate that satellite IR retrievals of radiative temperature is a
reliable source of information for vegetation dryness and fire activity.

Keywords: geostationary satellite observations; wildfire regime; biophysical drivers; land surface
temperature; land cover type; trends

1. Introduction

Fire is a global phenomenon closely linked to climate variability and human practices
with critical regional implications [1,2]. It is an important process in the modulation of
the Earth system through the links between weather, climate, and vegetation and has the
potential to impact on the global climate system by changing the ability of the surface to
absorb and emit energy [3,4].

Climatic variability is a major driver of fire in many terrestrial ecosystems, as reflected
in Bradstock’s conceptual model of four climatic ”switches” that influence fire regimes by
controlling fuel amount, fuel moisture, and fire weather at contrasting temporal scales [1].
Fire regimes are also affected by other controls such as landscape-scale patterns of vege-
tation, topography, and human activities [5]. Climate is connected to fires at two distinct
temporal scales [6]. Short-term climatic anomalies (from months to years) affect fires by
modifying vegetation growth and fuel moisture before the fire and by influencing weather
during the period of fire spread. In addition, climate has more indirect, long-term (decadal
or longer) effects on the distribution of major vegetation types, which in turn constrain the
landscape-scale mosaics of fuels and vegetation.
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Soil moisture (SM) has been identified as a key variable in understanding and predict-
ing wildfire hazards [7–11]. Soil moisture, defined as the water contained in the unsaturated
soil zone [12], not only influences vegetation growth conditions and consequently the accu-
mulation of wildfire fuel, but also determines the vegetation moisture content and hence
the flammability of the vegetation [7,9,13].

Land surface temperature (LST) is one of the most important parameters controlling
physical processes responsible for the land surface balance of water, energy, and CO2 [14,15].
In the context of wildfire studies, the LST consideration has two main aspects: first, as
a pre-fire indicator of land surface state (SM deficit in root zone and vegetation dryness,
evapotranspiration, leaf temperature), and second, as a post-fire characteristic of fire-
induced environmental changes. The variations in the spatial distribution of LST as a
result of fires are usually the focus of research works that characterize fire intensity and
burn severity. Higher post-fire LST of burned areas has been reported in remotely-sensed
images [3,4,16–18], that is accounted mainly due to a decrease in transpiration and an
increase in the Bowen ratio (β = sensible heating/latent heating) [19].

Although relationships between drought and fire seem quite interrelated, only a few
studies have explored LST as a pre-fire indicator [20,21]. Short-term analyses based on LST
daily anomalies have been performed to predict fire occurrence [20].

The vegetation cover partitions the incoming solar radiation into sensible and latent
heat fluxes depending on its structure as well as affects the surface roughness, which can in
turn alter heat and moisture transport; the type of vegetation and its seasonal dynamics
affect the land’s vulnerability to fire ignition and spread. That is why spatial–temporal
patterns of LST can contribute to the monitoring of processes that structure ecosystem
development and may be associated with fire occurrences to help fire management. Satel-
lite measurements are a source of information for the accurate estimation of LST at the
global and regional level, thus helping to evaluate the land surface–atmosphere exchange
processes and can serve as a valuable metric of surface state [4,14].

In this study, we consider data for skin surface temperature retrieved by satellite mea-
surements to explore the significance of LST as a biophysical driver, which (in combination
with SM, air temperature, and humidity) controlled long-term wildfire activity during
the study period of 2007–2018 over the Eastern Mediterranean region, as seen in coherent
satellite active fire observations.

Studies have used satellite remote sensing for fire monitoring from the early 1990s.
With the rapid development of remote sensing technology, satellites are increasingly used
for fire monitoring [22–26] and applied at large scales. In recent years, many studies have
been committed to identifying the spatial and temporal characteristics of fires from the
global and regional perspectives with the use of satellite data [27–31]. All these studies were
performed by using observations by low earth orbit (LEO) satellite sensors with the Very High
Resolution Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS),
and Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER).

Geostationary (GEO) fire products were first generated over the Americas using the
Geostationary Operational Environmental Satellite Visible Infrared Spin Scan Radiometer
Atmospheric Sounder (GOES-VAS), e.g., in [32], and this led to the development of the
long-standing GOES WildFire Automated Biomass Burning Algorithm (GOES WFABBA)
product [33]. Roberts et al. [34] first demonstrated the retrieval of Fire Radiative Power
(FRP) from GEO data and developed a full “fire thermal anomaly” active fire detection
and FRP retrieval algorithm for GEO systems. This was initially applied to data from
Meteosat Second Generation [35], and an operational version is now used to generate a
series of geostationary active fire detection and FRP retrieval products that span much of
the globe, including Meteosat over Africa and Europe [36,37], GOES-East and West over
the Americas [38], and Himawari over Asia [39]. Wooster et al. [40] summarized the history
of achievements in the field of active fire remote sensing, reviewed the physical basis of
the approaches used, the nature of the active fire detection and characterization techniques
deployed, and highlighted some of the key current capabilities and applications.
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However, since every observation by the satellite sensors lasts only an instant, what
they actually measured was the rate of release of FRE per unit of time or Fire Radiative
Power (FRP) in MW [24,41,42]. It was shown that the FRE released by a fire is directly
proportional to the biomass consumed as well as the smoke emitted [43]. Measurement of
fire radiative energy (FRE) release rates or power (FRP) from space offers opportunities
for the characterization of biomass burning and emissions in a quantitative manner. In
essence, it has enabled the rating of fires as well as an estimation of regional FRP fluxes,
which reflect the relative concentrations of biomass burning activities.

Mediterranean regions are some of the most affected by wildfires, and remote-sensed
information about fire activity as provided by the SEVIRI instrument on board Meteosat-8 is
especially valuable for forest and civil protection activities [44]. On the other hand, the
Mediterranean is one of the most responsive regions to climate change, as evidenced by
“pronounced warming” and significant decreases in spring and summer precipitation,
which have led to regime shifts toward more arid climates [45,46]. Triggered by large-scale
atmospheric forcing, Mediterranean regional heat waves are often amplified by surface
preconditioning such as negative soil moisture anomalies and vegetation stress [47].

The research works of Sifakis et al. [48], Amraoui et al. [44], and Di Biase and Lan-
eve [49] were aimed at understanding the spatial and temporal patterns of landscape
fires in the Mediterranean, applying different remote sensing data from GEO sensors.
Compared to LEO systems, GEO products offer higher temporal resolutions but coarser
spatial resolutions, and each sensor only provides data over a specific region of the Earth.
The observations from the geostationary meteorological satellite MSG provide a valuable
source of information about fire occurrences in the Mediterranean region. Sifakis et al. [48]
reported that during the summer period of 2007, MSG-SEVIRI data successfully detected
82% of the fire events in Greek territory, with less than 1% false alarms. Using data from
MSG-1 satellite, Amraoui et al. [44] performed an analysis of the spatial distribution of fire
events in the months of July and August during the period of 2007–2009. Around half of
the fire pixels were detected in croplands, and the remaining half was evenly distributed
between forest and shrub. Based on the analysis of the low, mid, and upper atmospheric
fields of geopotential, temperature, relative humidity, and wind in two extreme events
of fire activity that struck Greece and Italy on 24–25 July and 22–27 August 2007, they
suggested a conceptual model for meteorological conditions that favor the occurrence of
severe wildfire episodes in Italy and the Balkan Peninsula.

The current study is the first one to use the FRP product retrieved by geostation-
ary satellite observations to investigate fire activity in a recent long-term period for the
Eastern Mediterranean.

In Mediterranean ecosystems, prolonged droughts and heat waves have created the
preconditions for the increasing frequency and intensity of forest fires [50], the underlying
mechanism being the reduction of live and dead fuel moisture content as a response of the
soil–plant system to the increased vapor pressure deficit [51]. Vegetation response varies
with species as well as with forest structure and soil/terrain characteristics, and it is deter-
mined by evapotranspiration. The moisture of dead fuels is affected by weather variations
as well, and it is regulated through evaporation [52]. The climate and weather patterns
of the Mediterranean region highlight the value of having an improved understanding of
the relationships between drought and wildfire; more specifically, an understanding of
how drought is related to fire danger outputs. A number of studies have examined the
link between drought indicators and wildfire occurrence [53–55]. Many drought indices
(see [56]) are driven by stand and climate variables of precipitation and/or temperature,
but more recent developments include variables that express conditions at the land surface–
atmosphere interface such as vegetation health [57], soil moisture deficit [58–62], actual
evapotranspiration [63], and evaporative demand [56,64,65]. These last indexes are impor-
tant because they can reflect the outcome of the coupled physical processes of energy–water
cycles on the land surface.
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In our previous work [66], long-term LST anomalies retrieved by MSG SIVIRI were
used to identify drought-prone areas in the Eastern Mediterranean. Song [21] showed
that there is no linear relationship between LST anomaly and fire occurrences, but the
time series of LST anomaly before fire events show a significant trend. Resolving LST–fire
interactions facilitate fire predictions and the issuance of early warnings.

We use long-term spatially and temporally consistent satellite observations from the
SEVIRI sensor of geostationary MSG satellite to assess the biophysical forcing effect of
vegetation fires on a climatic basis at a regional scale. The study is focused on two key
aspects of wild fire problems that are not systematically studied in the literature: (i) an
evaluation of the importance of LST (monthly mean values, anomalies, and difference with
air temperature, T2m) as precursor/s of vegetated land surface dryness and the related
pre-fire signals of vegetation stress and fire occurrence; (ii) an exploration of the variability
of these biophysical drivers of vulnerability in biomass burning across the climatic gradient,
delineated into main land cover types, and the quantification of relations with fire activity
using long-term records of satellite information from Meteosat, ground observations, and
SVAT model data of Soil Moisture Availability (SMA) to the land cover as reference data
over the Eastern Mediterranean region (Bulgaria). The specific objectives to be met are
the following:

• To characterize spatial–temporal patterns of fire activity (July–September) using long-
term satellite data records from SEVIRI observations (2004–2019) in terms of the num-
ber of biomass burning detections and the severity of burning (FRP, MW) according to
the LSASAF FRP-Pixel product;

• To use LSASAF LST product data to statistically investigate and evaluate the relation-
ship of the biophysical parameters of LST, LST anomaly, and the difference between
skin and air temperatures (LST-T2m) to the occurrence and severity of wild fires on a
short-term climatic basis (2007–2018);

• To characterize the wild fire vulnerability of the main vegetation types (forest, shrub-
lands, cultivated) in relation to the LST and SMA warm and dry anomalies.

2. Materials and Methods

This work is based on the methodology developed in our work [66], adapted to assess
environmental control on fire activity and its spatial–temporal variability by using satellite
observations from geostationary Meteosat. As a biophysical index related to the forcing
of fire activity, the satellite-derived IR skin temperature from SEVIRI observations with
the EUMETSAT LSASAF LST product is proposed. Based on long-term data records, LST
mean summer monthly values, and their anomalies and deviation from the air temperature,
T2m were applied as indicators of the coupled energy and water cycles. Fire-promoting
SM anomaly patterns derived by the SVAT modeling approach were used as a reference for
the evaluation of the LST–fire intertwining. The pattern of fire activity over Bulgaria was
characterized by the evaluation of SEVIRI-based satellite detections of biomass burning
according to the LSASAF FRP-Pixel product. Benefiting from the geostationary satellites’
high temporal resolution, the relationship between LST and fire regimes was studied and
the underlying biophysical processes were explored.

Statistical comparative analyses of long-term data records of the LSASAF product,
SVAT meteorological model outputs, and ground observations (meteorological parameters
and actual fires) were applied following the methodology in [66], which was further ex-
tended (in Section 2.5). Overlaid graphical analyses of the summer season (June–September
2007–2018) dynamics of biophysical indexes in relation to fire characteristics (number of
detections and severity) were performed to study the sensitivity of the approach. All
datasets taken from information sources with different spatial resolutions were placed
over the grid of the ECMWF global NWP model, IFS version O1280 (about 9 km spatial
resolution). Only values with 1400 points that cover the region of Bulgaria were considered.
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2.1. The LSASAF FRP-PIXEL Product

In order to characterize fire activity in this study, radiative energy released by fire
events, as provided by the LSA SAF Fire Radiative Power-Pixel (FRP) product [36,67], was
used. The LSASAF FRP-PIXEL product provided information on the location, timing, and
fire radiative power (FRP, in MW) output of landscape fires (“wildfires”) detected every
15 min across the full Meteosat disk at the native spatial resolution of the SEVIRI sensor. The
FRP provided information on the measured radiant heat output of detected fires; the heat
output was a direct result of the combustion process whereby carbon-based fuel is oxidized
to CO2 with the release of a certain “heat yield” [24]. FRP calculation relies on the Middle
Infrared (MIR) method and assumes FRP to be proportional to the difference between
the observed fire pixel radiance measured from the MSG SEVIRI radiometer and the
“background” radiance that would have been observed at the same location in the absence
of fire. The LSASAF algorithm for deriving FRP from SEVIRI radiance measurements
is fully described in [37]. The type of fire detection algorithm that is proposed for use
with SEVIRI is based on the principles applied to generate active fire detections within the
MODIS Fire Products [24].

While this FRP methodology offers many advantages, among the uncertainness reported,
two factors are likely to reduce the satellite-measured FRP that is emitted by the fire:

• The first concerns surface fires in forests, where an unknown amount of radiant energy
may be intercepted (scattered and absorbed) by the forest canopy.

• Second, although atmospheric effects perturb MIR wavelength observation far less
than those in shorter wavelengths, allowing FRP retrieval through even dense smoke
and plumes, the radiative impact of the absorptive black carbon released during com-
bustion may result in some underestimation of the FRP by the satellite measurement.

The FRP algorithm is subject to other sources of uncertainties, essentially due to the
characteristics of SEVIRI, as described in [37]. Among these limitations, one can state that
the FRP-derived value is quite sensitive to the fire location within the pixel. A fire located at
the center of the instrument’s instantaneous field-of-view will elevate the pixel temperature
much more than a fire located far away from its center. Additionally, abnormally low
radiances might be observed surrounding a fire pixel due to the negative lobes of the
point spread function. As a result, the background temperature might be colder, thereby
increasing the estimated FRP value. The rather coarse spatial resolution of SEVIRI may
cause the non-detection of smaller/less intense fires that MODIS can detect, for instance,
but SEVIRI misses. The non-linearity of the SEVIRI 3.9 channel above 310 K and the
saturation of that band above 335 K are responsible for the error in the FRP estimation. As
a result, FRP values derived from SEVIRI underestimate those derived from MODIS by
about 40% [34].

A significant remote sensing constraint for fires is the presence of cloudiness in fire
weather situations, as all satellite methods used for monitoring fires have limitations that
tend to cause important biases in the final product. The algorithms cannot detect existing
fires due to the elimination of cloudy pixels or the assumption of some detection in partially
cloudy pixels as “false” fire detections based on “contextual” tests.

2.2. Biophysical Indexes

In our work [66], the spatial–temporal variability of land surface state dry anomalies
was characterized by the land surface temperature with the use of LST retrievals from the
MSG satellite measurements and SMA. Using long-term data records, the same biophysical
drivers of drought occurrence have been further explored here in terms of their forcing
effects on fire activity through the related biophysical processes. In addition to land surface
radiometric temperature characterized by its monthly values and calculated anomalies,
the blended parameter, which is the difference between skin surface temperature and
air temperature at 2 m above the earth’s surface (LST-T2m), is proposed to be used as a
first proxy of sensible heat flux exchange. The patterns of these biophysical indexes were
defined as the mean monthly values for June, July, August, and September. The SMA
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anomalies during the summer months were considered in parallel to explore the fire forcing
effect of soil moisture deficit.

To quantify the relations, statistical analyses and modeling were applied. Since the
considered biophysical parameters and the procedure of their application have been ex-
plained in detail in [66], only the main points are marked here, and the new elements are
further explained in Section 2.5.

2.2.1. The LSASAF LST Product

For the purposes of the current study, the LSASAF LST product (MLST, LSA-001)
has been applied [68]. The LST retrieval was based on clear-sky measurements from the
MSG system in the thermal infrared window (MSG/SEVIRI channels IR10.8 and IR12.0),
every 15 min within the area covered by the MSG disk. Theoretically, LST values could be
determined from MSG 96 times per day, but in practice, fewer observations were available
due to cloud cover.

The 12-year time series for the region of Bulgaria for the period of June–September
(2007–2018), which included only days/locations with satellite fire detections, was con-
structed. Datasets for LSASAF LST at 0900 UTC and at 1200 UTC (averaged over 5 mea-
surements within ±30 min of these two time slots to avoid the limitations of cloudy pixels)
were inferred at MSG pixel bases. For some climatic assessments, the averaged 3 × 3 pixels
LST values around the grid points were also processed. The difference between LST and
the air temperature, T2m (observations at the SYNOP network at 0900 UTC and 1200 UTC)
was also constructed for the same studied period.

2.2.2. SVAT Model and SMAI

For the identification of fire-promoting SM anomaly patterns, the “SVAT_bg” model
developed at the National Institute of Meteorology and Hydrology (NIMH) of Bulgaria
was used [61,69,70]. This is a simple 1D site-scale meteorological model that exploits the
concept of one layer of vegetated land surface and two levels of moisture availability
along the root zone depth. One of the main “SVAT_bg” model output parameters is soil
moisture (SM) for different root zone soil depths (20, 50, 100 cm). For assessing land surface
state, the SMA concept was adopted to serve as an information source for “warnings” of
environmental constraints. Based on the “SVAT_bg” model-derived SM, a quantitative SMA
index, SMAI was developed and operationally calculated at a site scale for the region of
each NIMH synoptic station. At each point of the used grid, the SMAI values at the nearest
synoptic station were considered for the calculation of the anomalous water content in the
unsaturated root zone. SMAI was designed as a 6-level threshold scheme to account for
moistening conditions [66]. The site-scale assessment of mean monthly SMAI anomalies at
synoptic stations was compared with the overlaid FRP Pixel detections from corresponding
MSG pixels covering the region of the station applying the statistical analyses.

2.3. Ground Observations of Forest Fires

Ground observations of the number of actual forest fires were considered according
to the database of the State Forest Agency of Bulgaria (SFA), the responsible national
institution, and were used for comparison with satellite detections.

2.4. Target Region and Land Cover

The study area includes the whole territory of Bulgaria, Southeastern Europe, located
within latitude circles of 40.25 N and 45.0 N and meridians of 20.5 N and 29.5 E. The region
falls under Mediterranean climate influences, characterized by dry summers and mild, wet
winters, both with irregular precipitation distribution. Information about land covers (LC)
provided by the ESA-CCI Land Cover Map product at a spatial resolution of 300 m [71]
was used. Maps were updated on an annual basis. The LC classification system from
ESA-CCI includes 24 vegetation types. For the purposes of this study, we reclassified these
types into the following three main vegetation groups (Figure 1): forests (classes 50, 60,
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61, 62, 71, 72, 80, 81, 82, 90), scrubland (11, 12, 40, 100, 110, 120, 121, 122), and cultivated
areas (10, 20, 30, 130). Other land cover types, including permanent snow and ice (220) and
barren and water bodies (200, 210), where there are limited fires, were not analyzed in our
study. Urban areas (190) were also excluded.

Figure 1. Geographical distribution of the vegetation cover types according to the ESA-CCI Land
Cover database 2018 over (a) Europe; (b) Bulgaria, SE Europe, reclassified for the purposes of the
study into three categories: forest, shrubland, grassland.

2.5. Numerical Analyses

To characterize the fire distribution pattern, a dataset of FRP detections (location,
timing, and energy) for the period of June–September (2004–2019) was constructed [72,73].
All pixels with at least one fire detection were considered. Fire regime was characterized
by the frequency of detections and severity according to the released energy from biomass
burning (FRP fire radiative energy, MW). Each fire pixel was associated with the coordinates
of the nearest point on the grid, where LST, LST anomalies, and (LST-T2m) had been
derived. The procedure was performed for monthly (June, July, August, and September)
accumulated energy released from fires in the corresponding grid point.

In order to validate the adopted methodology, monthly mean anomalies of LST and
SMA that had been inferred in [66] and visualized in color-coded maps were evaluated
for consistency with FRP fire pixel spatial distribution over Bulgaria by using qualitative
comparative analysis. Examples for July 2007 are presented in Figure 2. Figure 2a shows
that the higher positive LST anomalies (in red) correspond to a higher number of FRP-
detected fire pixels. The stronger negative SMA anomalies (indicated by reddish colors) are
related to a higher number of fire detections (Figure 2b). The consistency of the data allows
quantitative studies to be performed further.

Based on long-term records (June–September 2007–2018), stochastic graphical analysis
was performed. The consistency in the behavior of the fire activity and the biophysical
drivers LST, LST anomalies, (LST-T2m), and SMA anomalies was analyzed in terms of
their mean, spatiotemporal variability on a monthly and annual basis, as well as their
anomalous distribution and relations. The summer seasonal dynamics of biophysical
conditions for different LC vegetation types were studied and their relation to vulnerability
of fire ignition/spread was evaluated.

A graphical description of the locality, the spread and skewness groups of numerical
data of FRP detections, released energy from biomass burning, LST, LST anomalies, and
the (LST-T2m) temperature difference was performed through their boxplot quartiles. Two
types of regression analyses were performed; the first one made use of estimates by the
method of least squares of the conditional mean of the response variable across values of
the predictor variables. The second method used Quantile Regression (QR) estimates of
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the conditional median of the response variable, which has received increasing attention in
recent years and is applied in many areas, including data analysis in the natural sciences.

Figure 2. Spatial distribution of LSASAF FRP fire pixel detections superimposed over: (a) LSASAF
LST 0900 UTC anomalies and (b) monthly mean SMA anomalies (50 cm soil depth). Examples for
July 2007, Bulgaria: The LST and SMA anomalies were calculated for the 2007–2018 period [66].

To identify regions most vulnerable to fires in Bulgaria, the spatial pattern of the
accumulated fire numbers detected by the LSASAF FRP-Pixel product for the period of
June–September 2004–2019 was considered. A statistical evaluation of the spatial distribu-
tion of fire pixels was performed by applying the Mann–Kendall statistic test. To perform
all these comparisons, the R language for statistical computing was used [74].

All numerical evaluations were performed for the three main vegetation groups: forest,
shrubland, and cultivated, as well as considered all together in a sample “all land cover”.
Such a reclassification into three LC categories has been used in other studies of fire activity
over the Mediterranean using satellite data, e.g., in [44].

A summary of all data used for comparative analyses in the current study are presented
in Table 1.

Table 1. Summary of data used and their characteristics.

Data Temporal Resolution Spatial Resolution

Fire Radiative Power-Pixel product 15 min SEVIRI, about 5 km over Bulgaria
Land Surface Temperature (LST) 15 min SEVIRI, about 5 km over Bulgaria
Temperature difference between LST and air temperature
at 2 m (LST-T2m) 0900 and 1200 UTC NIMH synoptic station network

Soil Moisture Availability Index (SMAI) Daily, 0600 UTC NIMH synoptic station network

3. Results

Fire regimes were described through statistical distributions of frequency and severity
over the studied area in the summer season during a 16-year time period. Using 12 years
of data for LST and related biophysical parameters, the environmental determinants of fire
regimes were assessed by exploring how environmental drivers operating over a range of
scales affected the spatial and temporal patterns of these fires.

3.1. Active Fire Monitoring from Space

The results from the study of fire activity derived from satellite observations over Bulgaria
are presented in maps of accumulated fire detections for each month of the July–September
period and each year of the whole 2004–2019 period. Examples for selected years are shown in
Figure 3 (see also [72,73]). The fire severity was assessed following the color-indicated released
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energy of burning biomass FRP (MW). The fire activity exhibited various seasonal distributions
from year to year, e.g., maximum activity and severity was observed in July 2007 (also in
2006, 2016, 2017, not presented), in August 2004 (also 2006, 2008), and in September 2019
(2011, 2012). There are repetitions of spots with higher fire activity, suggesting that the spatial
distribution varies depending on the evolution of the horizontal patterns of the biophysical
drivers (to be further considered in Sections 3.2 and 3.3).

Figure 3. Maps of the spatial–temporal (monthly/annual) distribution of fire activity over Bulgaria.
Color-coded severity of biomass burning according LSASAF FRP-Pixel (MW) is indicated. Examples
for July, August, September and annually for 2004, 2007, and 2019 are presented.

Results from the validation of the MSG FRP-Pixel product comparing the number
of detected fire pixels in forested areas with the course of actual forest fires reported by
ground observations of the State Forest Agency (SFA) of Bulgaria are shown in Figure 4.
Comparisons are performed for the period of July–September 2007–2018. A good agreement
between the two independent sources of information for forest fire dynamics during
different months and years is observed: the increase in actual fires corresponds to the
increase in satellite fire pixel detections; the highest forest fire activity is in July 2007; for
July and August, the two lines are very close, indicating an almost similar number of fire
detections; for September, the courses are similar but the number of satellite detections are
lower, probably due to the cloudier conditions in September.

3.2. Biophysical Drivers and Fire Activity
3.2.1. Annual Trends in Fire Activity along with LST

Figure 5 shows a comparison of LST (at 0900 UTC) with the fire energy released accord-
ing to the FRP-Pixel product (MW). The course of LST over time (red lines) shows behavior
synchronized with fire energy (blue lines) for all vegetation types. The sample size allows a
regression analysis to be applied, and the results show an existing linear relationship between
the parameters: Trend lines of both parameters, LST (red dashed line) and FRP, MW (blue
dashed line), for the considered LC types were obtained (Figure 5a–d). The coefficient of
determination R2, which is the square of the correlation, shows how much of the observed
scatter in the data is due to the hypothetical linear component as opposed to the unexplained



Remote Sens. 2022, 14, 1747 10 of 24

random error. Despite the rather complex nature of the curves, the resulting R2 values
confirm a significant linear component (values bottom right in the panels).

Figure 4. Inter-annual dynamics of forest fires over Bulgaria according the LSASAF FRP-Pixel product
detections (blue line) and ground observations of actual forest fires by the national SFA (green line)
for (a) July, (b) August, (c) September 2007–2018.

Figure 5. Time series of fire activity characterized by the total energy released from biomass burning
per year FRP, MW (blue line) along with LST (red line) (June–September, 2007–2018) for: (a) All LC
samples; (b) Cultivated LC; (c) Shrubs LC; (d) Forest LC. Each time series is fitted with a trend line
using the linear regression technique (least squares method).

Figure 5a shows the trend lines for LST and the energy released from biomass burning
for a sample of all land cover types without classifying them (“all LC”); the linear regression
line fits the relation between the parameters at high R2 values of 0.68. The values of R2

for forest-shrubs-cultivated types vary between 0.61 and 0.68, and the validity of these
conclusions passed the significant test from 0.001 up to 0.003 levels (Figure 5b–d). The
FRP (blue lines) decreases with the decrease in LST (red lines) within individual diapa-
son for biomes (e.g., 32–29 ◦C for forest and 36–34 ◦C for shrubs/cultivated, as seen in
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Figure 5c,d). A high level of fit between the trends in the number of fire pixels and the LST
as a biophysical driver is also experienced (Supplementary Material). In this case R2 varies
within 0.67–0.62 for shrubs and forest vegetation types, at high significant levels, indicating
a descending trend for the fire accuracy along with the LST decrease.

To clarify the nature of this linear structure, it is examined by linear regression on
the individual components in each data pair. Again, the results are similar (values in the
bottom left panel in Figure 5), although at the limit of reliability. For at least one group in
each pair, a linear model with a similar slope of about −0.25 is obtained, and its significance
level is slightly above 0.10. Therefore, for at least one pair, a significant confirmation of the
estimated downward trend line was obtained.

3.3. Statistical Analyses

Monthly wildfire activity (2007–2018) characterized by the number of fire pixel ac-
cording to the LSASAF FRP-Pixel product, and the ratio between the total energy released
(MW) and the total number of fire pixels detected for a specific month and LC type are
shown in Table 2. The number of fire pixels in forest and shrubs in June represents 6.5–7.6%
percent of the fire pixels detected in July. Fires in cultivated LC in June seem lower by
about 5% than their amount in July due to the specific vegetation in the managed LC areas
still being in the growing phase. For September, the wildfires (forest, shrubs) from the
forest fires in August are at 37% and 50% from the shrub fires in the same month. However,
in the cultivated LC, the relatively large number of fire pixels are detected in September
(75% from their number in August), which is likely due to some controlled agriculture
burning activities.

Table 2. Monthly accumulated FRP-Pixel detections for the period of 2007–2018 and the total FRP
energy released per pixel (MW), DFI. Examples for shrubs, forest, and cultivated LCs for June, July,
August, and September are presented.

Monthly Accumulated (2007–2018)
Fire Characteristics June July August September

Shrubs LC, FirePixelDetections 232 3572 2819 1429
DFI (MW/pixel) 72.63 99.78 101.28 85.66
Forest LC, FirePixelDetections 137 1795 1306 486
DFI (MW/pixel) 35.06 72.97 96.05 76.29
Cultivated LC Detections 130 2533 1928 1441
DFI (MW/pixel) 69.82 98.10 107.18 83.42

The ratio between the total FRP energy released and the accumulated number of fire
pixels at a specific LC type was introduced to serve as a measure of mean Detected Fire
Intensity (DFI) observed by the satellite. The DFI from the forest fire pixels is the lowest one,
ranging from 35 MW/pixel in June to 96 MW/pixel in August. For shrubs and cultivated
LC types, the DFI range is 72–101 MW/pixel and 70–107 MW/pixel, respectively.

The satellite-derived FRP are likely to estimate a specific portion of the actual fire-
emitted FRP (see Section 2.1). Data in Table 2 show that shrubs LC is characterized by the
largest amount of total energy released by fires for the summer season. In order to assess
how the portion of satellite-detected fire energy depends on the vegetation type during the
fire season, the DFI values of forest and cultivated LC are divided by the DFI obtained for
shrubs in each month (Table 3). It can be seen that the ratio between the DFI parameters of
forest and shrubs is 0.48 in June, then increases gradually to 0.95 in August and becomes
0.89 in September. At the same time, the ratio between the DFI values for cultivated–shrubs
LC is close to 1.0, ranging from 0.96 in June to 1.06 in August–September. This result comes
from the different ability of satellite observations (FRP product) to estimate actual emitted
energy from wildfires at different LC types, and this also depends on the biophysical status
of the vegetation along the fire season.
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Table 3. Ratios of the monthly accumulated DFI of forest and cultivated LC fires to the DFI of shrubs
fires for the period of 2007–2018.

Ratio between DFI for
Different LC Types June July August September

DFI Forest/DFI Shrubs 0.48 0.73 0.95 0.89
DFI Cultivated/DFI Shrubs 0.96 0.98 1.06 1.06

3.3.1. Box Plots Analyses

Boxplots of the distribution of fire radiative energy (MW) according to the FRP-Pixel
product and biophysical indexes for forest and shrubs LCs are shown in Figures 6 and 7.

Figure 6. Boxplots of monthly mean values (2007–2018) for the region of Bulgaria during the summer
season (June–September): from the LSASAF FRP-Pixel (MW) for (a) forest and (b) shrubs; from the
LSASAF LST 0900 UTC ◦C for (c) forest and (d) shrubs. The boxes represent the interquartile range
(from the 25th to 75th percentile, first and third red line), whiskers cover 99.3% of the data, and the
middle (red) lines represent the mean values.
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Figure 7. Boxplots of monthly mean values (2007–2018) for the region of Bulgaria during the summer
season (June–September) from the LSASAF LST anomaly for (a) forest and (b) shrubs, and the
(LST-T2m) difference for (c) forest and (d) shrubs. The boxes represent the interquartile range (from
25th to 75th percentile, first and third red line), whiskers cover 99.3% of the data, and the middle (red)
lines represent the mean values.

The plots in Figure 6 show different aggregation of data by months. Through a visual
comparison of the corresponding notches, it can be seen that there is sufficient reason
to accept the statistical hypothesis that the medians are significantly different. The red
lines show the median and first and fourth quartile averages of the same statistics for
all individual boxplots presented and are used to visually assess the degree of difference
depending on the month.

The boxplots in Figure 6a,b demonstrate the variability of the monthly mean values of
FRP (MW) for forest and shrubs LC during the summer. The statistical analyses confirm
that for July, the ratio between the median of total FRP box plots for shrubs and forest fires
is higher than the corresponding ratio for the DFI parameter in Table 3: shrub fires were
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detected with about 50% higher released FRP (MW), while the DFI parameter was only
35% larger than this for forest fires. This effect seems to be due to higher energy emitted by
some forest fires in July.

On the contrary, for June, the medians of total FRP are not much different for these
two LC types (Figure 6a,b), but the DFI parameter is twice higher for shrubs than the
corresponding DFI value obtained for forest fires (Table 3). This suggests the occurrence of
more forest fires under the canopy of dry dead forest fuel with much less energy measured
by the satellite and that a certain amount of radiant energy may have been intercepted
(scattered and absorbed) by the forest canopy.

The summer course of the FRP median corresponds well to the LST statistical behavior
for the forest LC (Figure 6a,c). In June, optimal SMA is present in the deep forest root zone
that leads to fully open stomata conductance and unlimited evapotranspiration, leading
to decreasing canopy temperature and minimum LST. For shrubs (Figure 6b,d), there is a
disagreement: the LST median maximum appears in August, but the maximum of the total
FRP median is in July. The reason could be that in shrub lands, the SMA easily reaches
the wilting point, in which the stomata conductance strongly decreases in reaction to the
increasing water stress conditions through the transpiration regulation mechanism. These
lead to an increasing shrub canopy LST in August.

All fires in the period of July–September occur in days associated with positive val-
ues of LST anomalies (averaged in the area of 3 × 3 pixels) around the same location
(Figure 7a,b). All 25% of the fire detections in the days associated with negative anomalies
of LST occur in June in forest and shrubs LCs. This result suggests that in June, some
fires may mostly occur in dead fuel where the canopy temperature is below the historical
average for today’s day-of-year.

The trend of increasing (LST-T2m) from June to September (Figure 7c,d) corresponds
to the gradual decrease of SMA to vegetation cover on the one hand, and to the increasing
LST on the other. This is consistent with the result on the disagreement in the behavior of
LST versus FRP in August for shrubs LC (Figure 6b,d).

3.3.2. Quantile Regression

Results from the quantile regression analysis of the relationship between log FRP
(MW) and biophysical parameters (LST, LST anomalies, (LST-T2m), and SMA anomalies)
are presented on Figure 8a–d.

These graphs can quite comprehensively characterize the dependences between each
pair of quantities. QR examples of the “all LC” type are here presented. Figure 8a shows
at which LST values the maximum FRP (MW) might be expected and the corresponding
probability level the FRP might reach the maximum. Accordingly, the QR in Figure 8a
shows how the log(FRP, MW) maximum depends on the predictor LST, with a confidence
of 5%, 25%, and other levels of significance. The QR lines indicate that the high values of
the log(FRP, MW) > 5 can be expected to occur at LST = 35 ◦C with a 25% probability level;
extreme values of log(FRP, MW) > 7 are possible with 5% reliability at LST above 40 ◦C,
and with 10% reliability above 45 ◦C.

On the plot of Figure 8b, the probability level of FRP maxima at a specific temperature
difference (LST-T2m) is illustrated. Very high values of log(FRP, MW) > 6 can be expected
to occur at (LST-T2m) = 5 ◦C with 10% reliability; extreme values of log(FRP, MW) > 7 are
possible at a 5% significance level for (LST-T2m) above 12 ◦C. This illustrates how the
log(FRP, MW) maximum depends on the predictor (LST-T2m), with confidence levels of
5%, 10%, and other levels of significance.

The QR between FRP and LST anomalies (Figure 8c) shows that very high values of
log(FRP, MW) > 6 can be expected to occur at negative LST anomalies, with a probabil-
ity of less than 10%. Extreme values of log(FRP, MW) > 7 are not possible even at a 5%
significance level, with negative LST anomalies. In parallel, higher FRP energy occurs at
negative SMAI anomalies (Figure 8d). The decreasing trend of energy released, along with
the decreasing values of negative or low positive anomalies, i.e., decreasing drought (agri-
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cultural and ecological), at corresponding probability levels are shown. Extreme values of
log(FRP, MW) > 7 are possible at 10% significance with negative SMAI anomalies.

Figure 8. Quantile regression of the total energy released by biomass burning (all land cover types)
in Bulgaria (June–September 2007–2018): log (Total FRP-Pixel, MW) vs. (a) LSASAF LST 0900 UTC;
(b) (LSASAF LST-T2m) temperature difference; (c) LSASAF LST anomaly (2007–2018); (d) SMAI
anomaly at 20 cm soil depth. Regression lines for 50%, 75%, 90%, and 95% quantile are shown.

Such QR graphs have been developed for forest, shrubs, and cultivated vegetation
types and confirm similar relations for the fire activity over the whole country. The results
obtained for some smaller samples over specific regions of Bulgaria show an intersection of
the probability lines that is an indication of insufficient data.

3.3.3. Correlation Analyses

The results of the least-squares method applied for the quantitative evaluation of
the relation between biogeophysical indexes (LST, LST anomaly, (LST−T2m) temperature
difference, including the SMAI anomaly at 20, 50, 100 cm depth) and the severity of wildfire
events are presented in Table 4. Monthly means LST at around 0900 UTC, which is 1200 local
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time (selected as a less cloudy period), are considered. For all land cover types (all biomes
included in a sample), exponential regression lines fit the relations at high R2 values and
high significance levels (Figure 9).

Table 4. Coefficients of determination R2 of the regression between the energy of biomass burning,
FRP (MW), and the monthly mean values of biophysical indexes (July–August, 2007–2018). Only
days with fire detections are considered.

Fire Characteristics vs. Biophysical Indexes Month Forest Shrubs Cultivated All LC Types

Total FRP (MW) vs. LST 0900 UTC
July 0.772 0.593 0.683 0.773

August 0.407 0.481 0.564 0.540
September 0.436 0.432 0.609 0.671

Total FRP (MW) vs. LST anomaly 0900 UTC
July 0.779 0.554 0.660 0.668

August 0.739 0.501 0.598 0.627
September 0.611 0.584 0.678 0.682

Total FRP(MW) vs. SMA 100 soil depth July 0.874 0.569 0.669 0.695
August 0.457 0.494 0.599 0.569

Total FRP (MW) vs. SMA 50 soil depth July 0.884 0.523 0.713 0.690
August 0.512 0.444 0.524 0.546

Total FRP (MW) vs. SMA 20 soil depth July 0.715 0.423 0.665 0.607

Figure 9. Regression models of the total energy released by biomass burning in Bulgaria according
to the FRP-Pixel product, MW vs. LSASAF LST 0900 UTC for: (a) July; (b) August; (c) September,
and vs. LSASAF LST anomaly (2007–2018) for: (d) July; (e) August; (f) September. Examples for
cultivated land cover are presented.

The SMA index is especially efficient as a measure of fuel dryness, taken at 50 cm or
100 cm soil depth, for all cover types in the period of July–August. With the progressive
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establishment of dry conditions during August and September, the correlation decreases
when the SMA at 20 cm and 50 cm becomes fully exhausted, and the SMAI is equivalent to
a constant value of zero.

Exponential regression models better fit the FRP (MW)–LST relations from Table 4.
Examples for cultivated LC are shown in Figure 9a–c, indicating high significance levels
(p < 0.007) of the dependences for July, August, and September. Similar exponential models
for the regression of FRP (MW) versus the LST anomalies, R2 at about 0.6 (p < 0.003),
are presented in (Figure 9d–f). Results confirm a statistically significant high correlation
between biophysical drivers (LST, LST anomalies) and the wildfire severity.

All these results suggest that the biophysical index LST and the related parameters
LST anomalies and (LST-T2m) are sensitive to the dynamics of the occurrence and severity
of vegetation fires in all studied LC types.

3.3.4. Spatial Pattern and Trends

To characterize fire activity, plots of monthly sums of FRP detections are consid-
ered. Figure 10 shows a color-coded map of accumulated fire pixels in the period of
June–September 2004–2019. The fire numbers are categorized into the following classes:
1–30 (low, yellow color), 30–90 (moderate, orange color), 90–150 (high, red color), and
>150 (extreme, dark red). Thus, the spatial distribution of the spots with higher fire activity
is revealed. The “+” sign on the map indicates that the trend passed the Mann–Kendall
significance test at the 5% level; thus, regions with a statistically significant positive trend
in fire activity over the studied period are localized.

Figure 10. Map of “hot spots” of fire activity over Bulgaria, SE Europe based on long-term satellite
observations (June–September, 2004–2019) using the LSASAF FRP-Pixel product. The fire numbers
are the sum of the fire pixels (4 × 5 km MSG resolution over Bulgaria) detected and resampled
in a 10 × 10 km plot. The “+” sign indicates locations where the trend passed the Mann–Kendall
significance test at the 5% level.

The long-term trends of fire activity (number of detections) are different when it is
delineated into different land cover types (superposition of Figures 1b and 10). These
considerations show that there is no positive trend of fire activity in regions with forest land
cover types. There are limited hot spots for fires, located in the northern and southeastern
parts of Bulgaria, indicating an increasing trend in fire activity that is mostly scattered in
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the shrublands. Positive trends are also seen in limited areas of cultivated land cover types,
but in this case, it is rather a result of human activities than a climate trend.

4. Discussion

The results of our study confirm the driving role of land surface temperature and the
related biophysical parameters in the spatial–temporal evolution of fire activity in Eastern
Mediterranean as well as in forcing the vulnerability of forest, shrubs, and cultivated land
cover types to wildfire. Based on the 2007–2018 summer time series, the trend analyses
(Section 3.2.1) show the synchronized behavior of annual LST values with the released
FRP energy (MW) from biomass burning (respectively to the number of fire pixels). The
analysis of satellite retrievals from geostationary satellite data show a statistically significant
declining trend for the wildfire characteristics, consistent with the course of LST for all
considered vegetation types (Figure 3).

The box-plot statistics (Figure 6a,c) show that the median of the FRP (MW) energy
released from forest fires in the summer course corresponds well to the behavior of the
LST median, which confirms the relationship between the biophysical index LST and fire
activity. All fires in the period of July–September occurred in days associated with positive
values of LST anomalies, while the other 25% of the fire detections in days associated with
negative anomalies of LST occurred in June at forest and shrubs LCs (Figure 7a,b).

A high correlation between the monthly mean values of the biophysical indexes
(LST, LST anomalies, LST-T2m, and SMA) and FRP-detected fire pixels was obtained.
Exponential regression models fit the relations for all LC types at high significance levels
(Section 3.3.3). This result is a step forward from the findings of Song [21], who stressed
on the spatial–temporal information provided by LST anomalies (2001–2019 time series
over Australia) on fire activity, confirming a significant trend before the fire events but not
establishing a linear relationship with fires.

The values of LST, LST anomalies, and LST-T2m, for which the maximum FRP (MW)
values might be expected at the corresponding probability level, were statistically estimated
(Section 3.3.2) as being able to contribute to fire preparedness activities. For example,
extreme values of log(FRP, MW) > 7 were possible at a 5% significance level for (LST-T2m)
above 12 ◦C. A previous study reported that forest fires in August over Bulgaria might
occur under land surface drought conditions defined by middy (MSG LST-T2m difference)
>12 ◦C prior to the fire [62].

These dependences obtained for the Eastern Mediterranean confirm and extend the
reported results in the literature that land surface state can significantly contribute to the
enhancement of weather impacting on the fire environment such as drought (long-term
and/or short-term), terrain, and fuel conditions [62,75,76]. Plants constitute the main
ignition material in the landscape, and their moisture content plays an important role
because it may serve to retard ignition or mitigate the propagation of a fire [77–80]. For this
reason, the fuel moisture content is a common component of fire danger and related fire
regime assessments; e.g., in [81,82]. Skin temperature is an important disclosure of fuel
moisture content, and the results reported confirm the role of LST as a biophysical index
of fire activity. The physical mechanism of LST–SMA relations and related fire occurrence
covers a range of coupled biophysical processes: as a moist soil surface dries out, more of
the incoming solar energy is reflected, and a larger fraction of the absorbed energy is used
to heat the air and soil [83]. The heat flow into the soil increases at first, then decreases
as the soil becomes very dry [84]. This results in increasing land surface temperatures,
which also influences the rate of drying and evapotranspiration. As a result, high LST is a
cause and product of dry periods; in other words, drought begets drought and extreme
fire activity.

Land surface temperature explains 80% of the variance in air temperature, and vegetation
density also plays an important role in explaining the air temperature variance [85]. Since only
data from days with detected fires in the summer months were considered, most of the results
of the statistical analyses are related to conditions of limited SMA for the vegetation cover.
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In such conditions, the (LST-T2m) parameter is a measure of the evapotranspiration rate,
and relations are specified by atmosphere/land weather and climate conditions as well as by
physiological and structural features of the LC [86,87] Hence, the trend of increasing (LST-T2m)
from June to September (see Figure 7c,d) is related to gradually decreasing evapotranspiration
during the summer months due to the gradual decrease of SMA to vegetation cover on the
one hand, and/or the increasing LST on the other.

All these results suggest that the biophysical index LST and the related parameters of
LST anomalies and (LST-T2m) are sensitive to the dynamics of vegetation fire occurrence
and severity. The dependences are valid for forest, shrubs, and cultivated LCs at high
significant levels and indicate that satellite IR retrievals of radiative temperature is a reliable
source of information for vegetation dryness and fire occurrence. Some existing mismatches
are due to highly inhomogeneous land cover from one side and the complicated nature
of their biogeophysical relations. LST is directly linked to precipitation, cloudiness, and
solar irradiance, while SMAI is influenced by the cumulative effect of these meteorological
parameters and with functional links to vegetation. In the case of when the period of
moisture depletion is long, the LST-SMA relation is weak because the LST continues to
increase; on the other hand, after full SM depletion, the “SVAT_bg” model does not assess
any further SM changes. In terms of the model simulations, full SM depletion denotes an
interruption of liquid and water vapor flow because SM has reached its constant minimum
value (at specific soil/climate), which is set to be the maximum hygroscopic value [69].

In addition, there are some limitations in the remote sensing approach for assessing
the relation of fire activity to the distribution of its biophysical drivers. Such cases may
be due to different abilities of the satellite observations and the derived FRP product to
estimate actual emitted energy from wildfire in different LC types, and this also depends
on the biophysical status of the vegetation during the fire season. This ability of FRP
is significantly different as compared to wildfires in the forest and shrubs LCs in June
(reported here, Table 2 and Figure 6a,b) due to the specific physical properties of the forest
canopy, which leads to larger amounts of radiant energy to be intercepted. This in turn
makes some of the low-energy forest fires impossible to be detected by the satellite. In
August and September, with the decrease in SMA and the fraction of vegetation cover, the
canopy biophysical properties changed so that a larger amount of energy released by forest
fires could be evaluated by satellite measurements, and most of the forest fires could be
detected as well.

Although landscape fires in Mediterranean countries are mainly caused by human
activities related to agricultural practices, this study confirms that fire regime components
(occurrence and severity) exhibit characteristic spatial and temporal patterns that reflect
differences in the relative importance of various environmental drivers. In this regard,
an identification of the regions most vulnerable to biomass burning is of importance
for some prevention activities. Different land covers have widely differing flammability,
which depends on species composition, stand age and density, microclimate, and soil
conditions [31,88]. For this reason, a detailed discrimination of the land cover types is
needed in studying short-term weather and land surface state influences on the fire ignition
and spread. In our study, the LC typology is simplified to consider three types: forests,
scrubland, and cultivated; this is because relationships between monthly mean values of the
physical indexes and fire activity are explored over long-term 12-year periods. Moreover,
the forest LC is considered to be spatially stable throughout all 12 years while more land
cover changes may occur in the category scrubland during the observation period, and more
detailed classification would be difficult to apply. Our qualitative comparative analysis of
the ESA CCI LC maps for 2006–2015 does not show any significant changes in the land
cover over Bulgaria for the test period.

Recent concerns about the potential increases of forest fires under climate change
underline the importance of fire–climate feedbacks [89–91]. In this context, an important
result of our study based on a dataset of satellite FRP detections from the last 16 years is that
no positive trend in fire activity for forest land cover type has been observed over Bulgaria.
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There are significant increasing trends in fire activity for single spots in the low land
areas of shrubs LC types in the northern and southeastern part of Bulgaria. A reasonable
explanation for these results is that the forests are a more stable environment over a long-
term period, which also confirms the validity of our approach for the simplification of the
LC variety into three main types for the purposes of the current climate study.

5. Conclusions

This study quantified the relationship between the spatial–temporal variability of land
surface temperature (LST) and fire activity on a short-term climatic scale over the Eastern
Mediterranean (Bulgaria), accounting for physical properties such as land cover and soil
moisture that, combined with LST, provide a valuable metric for surface state. Based on
satellite observations from the geostationary Meteosat LSASAF-FRP-Pixel product (summer
season 2007–2018), the distribution of fire activity on a monthly/annual basis in relation
to the biophysical forcing effect of LST (assessed by IR MSG satellite measurements) was
observed in land cover types of different fire vulnerability (forest, shrubland, cultivated).

A synchronized annual behavior between LST and FRP with a declining trend (2007–2018)
in wildfire characteristics was seen. Exponential models fit the relationships of LST monthly
means, LST anomalies, and LST-T2, as a first proxy of sensible heat exchange with atmo-
sphere, as well as SMA with FRP fire characteristics (MW). All fires in the period of
July–September occurred in days associated with positive LST anomalies.

The values of LST, LST anomalies, and LST-T2m, for which the maximum FRP energy
(MW) might be expected at corresponding probability levels, were estimated as being
capable of contributing to fire preparedness activities. For example, monthly mean extremes
of log(FRP, MW) > 7 could be observed with a 5% reliability at an LST monthly mean above
40 ◦C and (LST-T2m) above 12 ◦C, and with a 10% reliability above 45 ◦C. The reported
biophysical forcing effects of LST on vegetation fires provided more understanding of the
relationships between drought and wildfire; more specifically, of how drought is related to
fire danger outputs. Since forest fires have the potential to affect regional climate through
changes in the energy budget [91–93], this knowledge is especially important for the
Mediterranean region, where land–atmosphere coupling has become one of the important
aspects of global environmental change.

To advance the added value of this study by using LST as a biophysical index of
drought for fire management, further evidence in support of this approach is observed:
First, the use of related FRP products from the MODIS sensor to validate the usefulness
of this approach for short-term applications; Second, the evaluation and adaptation of
the LST applications in the operational mode for the analyses of real fire situations in the
scope of early warnings of fire risk assessment, thus contributing as the final step in the fire
management practice.
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