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Abstract: Landslides, a major natural geohazard, obstruct municipal constructions and may destroy
villages and towns, at worst causing significant casualties and economic losses. Interferometric
Synthetic Aperture Radar (InSAR) technique offers distinct advantages on landslide detection and
monitoring. In this paper, a more systematic workflow is designed for InSAR study of landslides,
in terms of three levels: (i) early detection on regional scale, (ii) three-dimensional (3D) surface
displacement rates estimation on detailed scale, and (iii) time series analysis on long-term temporal
scale. The proposed workflow is applied for landslide research on the Xiaojiang River Basin, China,
using ascending and descending Sentinel-1 images acquired from March 2017 to May 2019. First,
the landslide inventory has been mapped and updated using InSAR stacking method, supporting
geohazard prevention on a regional scale. A total of 22 active landslides are identified, ranging from
medium to super large scale. Compared with the existing inventory, three unrecorded landslides
are newly detected by our approach, and five recorded landslides are detected significant expansion
of their boundaries. Then, specific to a detected landslide, Baobao landslide, a Total Least Squares–
Kalman Filter-based approach is presented. Two outcomes are provided for further spatial-temporal
pattern analysis: 3D displacement rates, providing an intuitive insight on the spatial characteristics
and sliding direction of landslide, which are analyzed to deep the understanding of its kinematic
mechanism, and long-term time series, which contribute to deduce the dynamic evolution of landslide,
presenting benefits in landslide forecasting.

Keywords: InSAR; landslides; early detection; 3D displacement rates; long-term time series;
total least squares; Kalman filter; Xiaojiang River Basin

1. Introduction

As a major natural geological hazard, landslides interfere with the transport net-works
and infrastructure development or may hold back the expansion of urbanization [1–3],
and at worst, destroy villages and towns, causing significant casualties and eco-nomic
losses [4–7]. There is a need for increased research on landslides, especially in terms of three
levels, i.e., early detection on a regional scale, estimation of three-dimensional displacement
rates on a detailed scale, and retrieval of displacement time series on a long-term temporal
scale.
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The detection of unstable slopes is an essential prerequisite for early warning and
geohazard prevention [8], because of their extensive distribution and concealment. Inter-
ferometric Synthetic Aperture Radar (InSAR) performs quantitative remote sensing for
small displacements over wide areas, with the advantages of centi- or even millimeter
precision, high spatial-temporal resolutions, and all-day, all-weather working capabili-
ties [9]. Different InSAR techniques [10–12] have demonstrated their distinctive capabilities
in regional landslide detection, achieving valuable examples in Italy nationwide [13,14], the
Alps [15,16], California [17], and the Jinsha River Catchment, China [18,19]. For instance,
Novellino et al. [20] utilized the intermittent Small Baseline Subset (SBAS) to analyze the
slope stability in northwestern Sicily, Italy; Bouali et al. [21] combined the Permanent
Scatterers Interferometry (PSI) results with the landslide inventory to detect extremely
slow (<16 mm/year) landslides across the Palos Verdes Peninsula, California; Liu et al. [19]
employed InSAR stacking on Scan Synthetic Aperture Radar (SAR) images, achieving
large-scale geohazard identification along the Jinsha River Corridor. Furthermore, the
performance of different InSAR techniques for landslide detection has been compared in
detail [22], revealing that the stacking method performs better on poor-coherence areas
with the advantages of technical requirements and low computation labor. However, con-
ventional InSAR techniques measure only one component of the surface displacement,
i.e., in the line-of-sight (LOS) direction of satellite. This poses a challenge to interpreta-
tion and detection of landslides, and more than that, narrows the understanding of their
displacement patterns and kinematic mechanisms.

Three-dimensional (3D) displacement rates provide intuitive insights on the spatial
characteristics and sliding direction of landslides, which can be contributed to kinematic
mechanism analysis [23]. To date, various strategies have been developed to estimate 3D
displacement rates based on InSAR observations. The most straightforward strategy is to
integrate multi-track InSAR observations acquired with different imaging geometries [24,25].
However, since most SAR satellite orbits are near-polar, this strategy may be applied solely
for some specific cases in high latitude regions with higher azimuth angle diversity. Another
strategy is to combine InSAR measurements with outputs from either offset tracking [26,27],
Multiple Aperture Interferometry (MAI) [28,29], or other ancillary sources, e.g., Global
Navigation Satellite System (GNSS) [30–32]. Moreover, a strategy is to impose a priori
information as constraints on deformation process studied, which is typically applied for
mining subsidence [33–35] and glacier or landslide motions [36–41]. Specific to landslide
studies, a classical constraint is the surface-parallel flow model, i.e., movement along
the steepest downslope, which has been accepted in many representative landslide cases,
e.g., the Slumgullion Landslide, USA [38] and the Jiaju Landslide, China [39]. However,
this constraint seems too strict for most landslides except translational landslides [40],
since it does not allow consideration of the difference between ground surface and slip
surface, forcible ignoring potential errors in model design. Overall, it is worth noting that
the above strategies are typically developed to measure single deformation episodes with
large gradient, e.g., earthquakes, fasting landslides, and volcanic activities. There are few
studies on 3D displacement estimation of slow-moving landslides [40,41], particularly on a
long-term temporal scale.

In contrast, as the entire landslide process can last from months to years, long-term
time series of landslide movement is of great significance to deducing the dynamic evolu-
tion, presenting particular benefits in landslide forecasting and risk management [42–44].
Some efforts have been devoted for extending aforementioned strategies on temporal
scale, e.g., the Pixel-Offset SBAS technique [45], the Multidimensional SBAS (MSBAS)
technique [40,46], the Minimum Acceleration (MinA) approach [47], and the approach
based on the Kalman Filter (KF) [48]. Among them, MSBAS and MinA are developed for
simultaneous post processing of hundreds to thousands of individual interferograms. They
regularize the rank-deficient and ill-posed inversion system by imposing further condition
(e.g., Tikhonov regularization [40] or the assumption that displacement time series have
minimum acceleration [47]), and then solve the 3D displacement time series utilizing the
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Singular Value Decomposition (SVD) method. In contrast, the KF-based approach is a
sequential processing, which combines multi-source InSAR observations at the present
epoch in a Kalman filter model with displacement information determined from previous
interferograms. This approach allows the displacement time series dynamically update
with an improved temporal resolution and limited computational cost. Its performance has
been demonstrated in researches on volcanics and faults motions [48,49], but up to now,
this approach is rarely applied to the retrieval of the time series of landslide displacements.

In this study, a more systematic workflow is designed for InSAR-based landslide study,
including three levels, i.e., (i) early detection on regional scale, (ii) 3D displacement rates
estimation on detailed scale, and (iii) time series analysis on long-term temporal scale.
First, a standard InSAR stacking procedure is employed to investigate the distribution
and activities of landslides over study area. A relatively complete landslide inventory
is mapped and updated for geohazard prevention on regional scale. Then, specific to a
detected landslide, 3D displacement rates and long-term time series are further estimated
for the spatial-temporal pattern analysis in more detail. To this end, a Total Least Squares–
Kalman Filter (TLS–KF)-based approach is presented, combining advantages of Total Least
Squares (TLS) and advantages of the Kalman Filter (KF). The outcomes can provide intuitive
description of sliding direction and displacement characteristics of landslides, deepening
the understanding of its kinematic mechanism and dynamic evolution.

Here, the proposed workflow is applied for landslide research on the Xiaojiang River
Basin, Eastern Yunnan, China, which is the most serious area of soil erosion and geological
disaster in the upper reaches of Yangtze River [50]. This paper is organized as follows.
A brief description of the study area, as well as the datasets, is given in Section 2. The
proposed workflow is presented in Section 3, with its theory and processing elaborated
in detail. In Section 4, a new landslide inventory has been mapped and updated by
our approach, with additional information of LOS displacement rates. Moreover, one of
the detected super large landslides, the Baobao landslide, is further studied in Section 5.
The three-dimensional and long-term displacements are estimated by the TLS–KF-based
approach and its spatial-temporal displacement pattern are discussed.

2. Study area and Datasets
2.1. Study Area

The study area is situated in the Xiaojiang River Basin, Eastern Yunnan, China
(Figure 1), north from Menggu and south of and nearby Dongchuan, covering an area
of approximately 2314 km2. It is the most serious area of soil erosion and geological
disaster in the upper reaches of the Yangtze River [50], as well known by the Natural Mu-
seum of Landslides [51], under combined actions of multiple factors, e.g., complex natural
geography, lithology, active tectonic movements, special climate, and human activities.
The elevation in most parts of study area is higher than 2500 ma.s.l., reaching more than
4000 ma.s.l. in some regions. Due to violent river downward eroding, valleys feature strong
V-shaped topography with height differences up to 3000 m, resulting in slope angles of
greater than 25◦ in most slopes, thus providing favorable geological conditions for the oc-
currences of landslides. The tectonic setting is conditioned by a series of nearly north-south
trending faults, including the Xiaojiang Faults, the Pudu River Faults, and the Yuanmou
Faults (marked as F1, F2, F3 in Figure 1), resulting in frequent seismic activities. There
have been approximately 41 earthquakes of Mw ≥ 3.0 in the study area and its surround-
ings in the past ten years (2009–2019), including three stronger earthquakes greater than
Mw = 5.0. Generally, rock masses in active tectonic zones are more prone to develop
joints and fissures and to fracture [52], presenting poor stabilities. Therefore, landslide
susceptibility tightly correlates with the distribution and activities of faults. Specific to the
study area, tectonic movements are mainly affected by the north section of the Xiaojiang
Faults, which is the most active sinistral strike-slip fault zone in southeast margin of the
Qinghai-Tibet Plateau [53].
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Figure 1. Location of the study area and coverage of the SAR images, with SRTM DEM as the
base map. White and black rectangles illustrate the study area and the coverage of SAR images,
respectively. Blue lines represent the Jinsha River and its tributary, Xiaojiang River, and black flag
icons are hydropower stations. Red lines represent the active faults, where F1: Xiaojiang Fault,
F2: Pudu River Fault, F3: Yuanmou Fault. Red dots are the earthquakes that occurred in the study
area and vicinity during the period of 2009 to 2019 (information acquired from Unified earthquake
catalogue of China Seismic Network).

Figure 2a shows the geological setting map of the study area. The outcrops are
composed of almost all strata from Jurassic to Mesoprotero-zoic, in detail, including middle-
lower Jurassic, Permian, Triassic, Carboniferous-Devonian, Silurian, Ordovician, Cambrian,
Paleozoic, Sinian, and Kunyang Group strata. They mainly include basic volcanic rocks,
dolomites, limestones, phyllites, mudstones, and sandstones, and diabase in local regions.
The lithology of strata features as soft and hard rocks alternatively distributed, leading
to poor compactness and low shear strength [54], and it is an inherent factor in the full
development of landslides.

The climate belongs to subtropical plateau monsoon climate [55]. The annual temper-
ature and precipitation are approximately 15 ◦C and 800 mm, respectively. As a typical
hot-dry valley, the climate features relatively high temperature and low humidity and
precipitation concentration (88% of precipitation is concentrated during June to October).
The former leads to strong physical weathering on the slope surfaces; the latter leads to
rain infiltration decreases shear strength of materials, thus driving landslide movements.
For instance, Jiangjia Gully debris flow (in Figure 2a, mapped with white curve) is induced
by strongly weathered limestones under concentrated heavy rainfalls. In addition, the
study area is rich in mineral resources, among which Dongchuan is one of six famous
copper productions [56]. Mining activities lasting more than 2000 years have broken the
balance of groundwater and destroyed the initial stress states of some slopes, promoting
the occurrence of landslides.
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Figure 2. (a) Geological setting of the study area (modified from data sharing by Geographic
Data Sharing Infrastructure, College of Urban and Environmental Science, Peking University. White
curves map the major historical debris flows. Black curves map the recorded landslides (data support
from China Aero Geophysical Survey & Remote Sensing Center for Land and Resources (AGRS)).
(b) and (c) are enlarged views of two local regions, with SRTM DEM as the base map.

As noted, multiple factors work together to result in the extensive distribution and
strong activity of large-scale landslides in the Xiaojiang River Basin. Potential landslides
threaten the safety of cities and towns as well as traffic lines (e.g., Provincial Highway
S23). Moreover, the landslides could dump large amounts of rock/soil mass into the
Xiaojiang River, largely endangering the operation of Baihetan giant hydropower station
on downstream of its mainstream. China Aero Geophysical Survey & Remote Sensing
Center for Land and Resources (AGRS) has mapped the distribution of landslides in this
area through optical remote sensing (see Figure 2) and verified them by field investigation.
However, the detection only based on optical images may omit some active landslides,
especially those without significant morphological features (e.g., scarps, sliding masses,
and bulging toes). More importantly, complete investigations of landslides in terms of 3D
displacements, spatial pattern, and kinematic evolution are absent [41].

2.2. Datasets

The detection of active landslides is an essential task for disaster prevention. More
than that, the estimation of 3D landslide displacement rates and long-term time series is of
great significant to deepen the understanding of its kinematic mechanism and dynamic
evolution. To these ends, a total of 117 SAR images are collected from Sentinel-1 ascending
Track 26 and descending Track 62, covering the period from March 2017 to May 2019. The
spatial coverage of the SAR images provided by each track is illustrated in Figure 1. Other
basic parameters of the SAR images are summarized in Table 1, in detail. Moreover, a
1-arc-second SRTM digital elevation model (DEM) is employed in the standard differential
InSAR processing, and in the calculation of the LOS visibility maps of ascending and
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descending tracks [57]. The holes (non-value pixels) in the DEM are filled by bicubic spline
interpolation.

Table 1. Basic parameters of SAR images acquired for the study.

Sensors Track Orbit Heading (◦) Incidence
Angle (◦) Start Date End Date No. of Images

Sentinel-1 26 Ascending −12.5209 39.6503 13 March 2017 7 May 2019 65

Sentinel-1 62 Descending 192.5259 39.6933 15 March 2017 10 April 2019 52

3. Methodology

The InSAR stacking method is employed to detect active landslides in the study area.
A new approach combining Total Least Squares (TLS) and Kalman Filter (KF) is presented
to estimate 3D displacement rates and long-term time series of detected landslides. The
workflow is shown in Figure 3, which consists of three steps, as follows.

Figure 3. Workflow of InSAR-driven landslide detection and Total Least Squares–Kalman Filter-based
approach for three-dimensional displacement rates and long-term time series estimation of landslides.
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Step 1. Generation of LOS displacement rate maps and detection of active landslides.
First, each SAR dataset is handled with a standard differential InSAR procedure, mainly
including co-registration, interferograms generation, phase unwrapping, errors correction,
and quality screening. Then, high-quality unwrapped interferograms are outputted for the
following processing, stacking interferograms [12]. Relative InSAR processing is elaborated
in Section 3.1. As outputs, the LOS displacement rate maps are derived from ascending
and descending datasets, with a spatial resolution of 15 m and in a Universal Transverse
Mercator (UTM) geodetic system. These rate maps are superimposed onto optical images,
combined with morphological features (e.g., scarps, sliding masses, and bulging toes), to
interpret and identify active landslides. Finally, suspected landslides detected from each
dataset are mosaiced [21] to map a relatively complete landslide inventory.

Step 2. Estimation of 2D/3D displacement rates and analysis of spatial pattern. Specific
to a detected landslide, if the north-south displacement component can be neglected, the
2D displacement rates are derived by fusing ascending and descending unwrapping
interferograms [40]. Otherwise, the 3D displacement rates are estimated in total least
squares sense by imposing a relaxed constraint, i.e., movement along slip surface, which is
more general than the ground-surface parallel flow constraint [40,58]. The methodology is
presented in Section 3.2. Based on the outputs, the optimal sliding direction of landslide is
determined for the analysis of the spatial displacement pattern.

Step 3. Retrieval of long-term displacement times series and temporal evolution.
Ascending and descending unwrapped interferograms are fused to retrieve the long-term
displacement time series in the optimal sliding direction based on the Kalman Filter [48].
The methodology is described in Section 3.3. Then, the temporal evolution of landslide is
investigated based on the OSD displacement times series and the possible driving factor,
precipitation.

3.1. InSAR Processing

A standard differential InSAR procedure is employed to process all SAR images, as
follows. First, single look complex (SLC) images from ascending and descending Sentinel-1
are co-registered, separately, with the aid of auxiliary data (e.g., precise orbit files and SRTM
DEM). Second, the small baseline subset (SBAS) combination strategy [10] is adopted to
generate high-quality interferograms with less temporal and spatial decoherence. Specific
to our datasets, the temporal baseline and spatial baseline are restricted to 40 days and
200 m, respectively. In processing, the multi-look factor is set to 4 (4 pixels in range and
1 pixel in azimuth), resulting in interferograms characterized by a ground resolution of
approximately 15 m × 15 m. Similar resolution data have proven their performance in
regional landslide mapping in many previous works [59,60]. For a given interferogram,
the minimum cost flow algorithm [61] is applied to unwrap phases. A semi-adaptive
procedure is performed to correct various items of phase errors. The unwrapping error is
corrected by either a phase compensation algorithm or re-unwrapping at a high coherence
point [19]. The error related to residual baseline is estimated and reduced based on a
quadratic polynomial model [62]. The error caused by DEM is corrected using the method
presented in [63]. The atmospheric phase is corrected by the spatially variable power law
tropospheric correction technique [64], preliminarily. It is worth noting that the climate in
the study area features complex and ever-changing local micro-climate, so the atmospheric
phase needs further correction in the follow-up. Finally, a total number of 186 and 131 high-
quality unwrapped interferograms are screened from ascending and descending Sentinel-1
datasets, respectively. Their spatiotemporal distributions are illustrated in Figure 4.
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Figure 4. Spatiotemporal distributions of accepted unwrapped interferograms. (a) Ascending
Sentinel-1 dataset for Track 26 and (b) descending Sentinel-1 dataset for Track 62.

Then, the stacking interferograms method [12] is employed to retrieve the displace-
ment rate of each dataset in LOS direction. Equation (1) shows its kernel, a linear combina-
tion of interferograms (ϕi) with the temporal baseline (∆Ti) as weights:

VLOS =
λ

4π

∑N
i=1 ∆Ti ϕi

∑N
i=1 ∆Ti

2
(1)

While the atmospheric phase is random for independent interferograms, the related
error was effectively corrected by stacking, and the signal-to-noise ratio was improved by
a factor of

√
N [65]. Specific to our datasets, compared with the descending dataset, the

ascending dataset generates a larger number of interferograms (approximately 1.5 times)
for stacking, thus inferring that atmospheric errors will be corrected more effectively and
a higher accuracy will be achieved. In addition, the LOS displacement rate maps are
geocoded into UTM grid system (e.g., World Geodetic System 1984), preparing for the
integration of multi-source InSAR results to detect active landslides. Moreover, invalid
measurement scatterers in flat areas and in areas presenting low degree of LOS visibility
(e.g., layover and shadow) are masked to avoid possible misjudgments.

3.2. Total Least Squares Estimation of Three-Dimensional Landslide Displacement Rates

If only two independent SAR datasets are available and the north-south displace-
ment component is non-negligible, a prior model should be imposed as the constraint
on landslide movement to reduce the freedom degree for inversion of 3D displacement
rates. A classical constraint is the surface-parallel flow model [58], which has proved its
applicability on translational landslides. However, this constraint is too restrictive for most
landslides, as their mechanisms and types are more complex in reality, and their buried
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slip surfaces are usually undeterminable to be parallel to topography. To generalize further,
the constraint is relaxed for non-translational landslides, as follows:

VU =
∂(H + ∆h)

∂x
VE +

∂(H + ∆h)
∂y

VN (2)

where VU , VE, and VN are the displacement rate parameters in vertical, east-west, and
north-south direction, respectively, ∂(H+∆h)

∂x and ∂(H+∆h)
∂y represent the first derivatives of

slip surface in the east and north directions, respectively, H is the elevation of the ground
surface, which was derived from a smoothed external DEM [66], and ∆h is the elevation
difference between the ground surface and slip surface.

Under the relaxed constraint, i.e., movement along slip surface, the observation model
is constructed as follows:(

SEG SNG SUG
∂(H+∆h)

∂x
∂(H+∆h)

∂y −1

) VE
VN
VU

 =

(
L
0

)
(3)

where L is the observation vector in LOS direction derived from ascending and descending
tracks, SE, SN , and SU are the east-west, north-south, and vertical components of the
LOS unit vector S [40], and G represents the time intervals between consecutive SAR
acquisitions. It is worth noting that the slip surface is roughly deduced using the strain
model [67] and/or field exploration [68], and is sometimes even inaccessible; thus, ∆h is
unknown with considerable error. Furthermore, whereas ∆h is generally small enough
relative to H, the terms composed of ∆h are regarded as Errors-In-Variables (EIV) and the
observation model is converted into the EIV frame, as follows:

L =
(
Ĝ + EG

)
X + V (4)

where X = [VE, VN ]
T is the unknown parameter vector, Ĝ = G

[
SE + ∂H

∂x SU , SN + ∂H
∂y SU

]
is the updated design matrix, and EG = SUG

[
∂∆h
∂x , ∂∆h

∂y

]
and V represent errors of model

design and observation vector, respectively, with stochastic properties characterized by:(
V

vec(EG)

)
∼
([

0
0

]
,
[

ΣV 0
0 ΣG

])
(5)

where vec indicates the operator that stacks one column of a matrix under the previous
column and ΣV and ΣG are the variance-covariance matrixes of observation error and
design error, respectively.

It is well known that errors of model design are ignored in the classical Least Squares
(LS) estimation; thus, the solutions in LS sense are no longer optimal. To adjust to the
EIV observation model, the Total Least Squares (TLS) estimation takes into account both
errors in observations and model design, resolving based on the criterion of minimizing
the objective function with Equation (6). Their performances have been proved in some
similar problems, e.g., 3D coordinated transformation [69], in GNSS:

min
(

VTΣ−1
V V + vec(EG)

TΣ−1
G vec(EG)

)
(6)

Furthermore, ΣG can be approximately expressed in form of the Kronecker-Zehfuss
product (⊗), as ΣG := I2 ⊗ Σ0, where I2 is the identity matrix and Σ0 is the variance
matrix of each column of EG, composed of variance of elevation difference (σ2

∆h), as Σ0 :=

σ2
∆h ∗ S2

U ∗ diag
(

G(1, 1)2 . . . G(N, 1)2
)

. Thus, a fast convergent iterative algorithm
presented in [70] is adopted to obtain the optimal solution in the TLS sense (see Table 2).
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Table 2. Equations of iterative total least squares estimation presented in [70].

Step 1 : ξ(0) = 0; X(0) =
(

ĜTΣ−1
V Ĝ

)−1
ĜTΣ−1

V L;
Step 2:

λ(i) = (ΣV + (
(

X(i)
)T

I2X(i))Σ0)
−1
·
(

L− ĜX(i)
)

ξ(i) =
(

λ(i)
)T

Σ0λ(i)

X(i+1) =

(
ĜT(ΣV + (

(
X(i)

)T
I2X(i))Σ0)

−1
Ĝ− ξ(i) I2

)−1

·ĜT(ΣV + (
(

X(i)
)T

I2X(i))Σ0)
−1

L

Step 3: Repeat Step 2 until
‖X(i+1) − X(i)‖2 < thres 1

1 thres is a set according to the required accuracy of 3D displacement rates.

3.3. Kalman Filter for Long-Term Landslide Displacement Time Series

The retrieval of long-term time series of landslide displacement is particularly mean-
ingful to the deduction of landslide dynamic evolution. Toward this end, the Kalman
filter, an effective approach to fuse multi-source SAR observations obtained at different
times [48], is employed to estimate the landslide displacement time series for each pixel
in the optimal sliding direction (OSD). The OSD is determined in Step 2 using the TLS
estimations of 3D displacement rates, VTLS,U :VTLS,E:VTLS,N = a:b:c. The observation model
and the state model of the Kalman filter are constructed for a sliding pixel at acquisition
date tk, as follows:

Lk = HXk + Vk (7)

Xk = AXk−1 + Wk−1 (8)

where Lk is the LOS observation, Xk =
[

dk vk
]T is the unknown state vector, dk and

vk are the OSD displacement and velocity, respectively, H =
[

aSU+bSE+cSN√
a2+b2+C2 0

]
is the

projection matrix, A =

[
1 ∆T
0 1

]
is the state transition matrix, ∆T is the time interval

between tk−1 and tk, and Vk and Wk−1 are the vectors of measurement noise and process
noise, respectively, with stochastic properties characterized by:

Vk ∼ N(0, Rk) Wk ∼ N(0, Qk) (9)

where Rk is the observation variance of the kth interferogram and Qk is the variance-
covariance matrix of process noise, which can be recursed using Sage-Husa adaptive
filter [71], as Equation (10). The OSD displacement time series can be dynamically estimated
by the Kalman filter in near-real time. All relevant equations are listed in Table 3.

Table 3. Equations of the Kalman filter presented in [72].

Time update (“predict”):
x̃−k = Ax̃k−1

P−k = APk−1 AT + Qk−1
Measurement update (“correct”):

Kk = P−k HT(HP−k HT + Rk
)−1

x̃k = x̃−k + Kk
(

Lk − Hx̃−k
)

Pk = (I − Kk H)P−k

Sage-Husa adaptive filter of Qk:

Qk = (1− fk)Qk−1 + fk

{
Kk(Lk − HXk)(Lk − HXk)

TKk
T + Pk − APk−1 AT

}
(10)
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where x̃−k and x̃k are the prior and posteriori state estimations, with P−k and Pk being
the corresponding variance-covariance matrixes, Kk is the Kalman gain, fk = 1−b

1−bk is the
forgetting factor, and b is a preset parameter, recommended to be set at 0.95–0.99.

4. Results: Line-of-Sight Displacement Rates between March 2007 to May 2019

Following Step 1, the LOS displacement rate maps are derived from ascending and
descending Sentinel-1 SAR datasets, respectively, as shown in Figure 5. It is worth noting
that the negative values (red color) indicate the movements away from the satellite, and
the positive values (blue color) indicate the movements toward the satellite.

Figure 5. Cont.
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Figure 5. Line-of-sight (LOS) displacement rate maps for the study area derived from (a) ascending
Sentinel-1 images during March 2017 to May 2019; (b) descending Sentinel-1 images during March
2017 to April 2019. White curves map the major historical debris flows, and black curves map
the recorded landslides from AGRS. By our approach, five recorded landslides (No. 14, 16–19)
have been detected significant expansion of their boundaries, redrawn within red dotted curves;
three unrecorded landslides (No. 20–22) have been newly detected and mapped within red curves.
(c–g) show enlarged views of these landslides, within their ascending observations, descending
observations, and optical images for interpretation.

Measurement scatterers (MSs) with a total number of 9,584,080 and 9,179,644 are identi-
fied from the ascending dataset (Figure 5a) and descending dataset (Figure 5b), respectively,
thus producing an overall spatial density of approximately 4000 MSs/km2. These scatterers
are selected by a fixed standard (a coherence threshold of 0.2 and an intensity threshold of
−1 dB) and generally distributed on the roads, bridges, artificialities, and rocks/soils with
sparse vegetations. Compared with the ascending track, the heading angle of descending
track is more likely to cause severe geometric distortions on eastward slopes, resulting in a
relatively sparse MSs for landslide detection in the study area. Moreover, the distribution
histograms of MSs in stable regions are calculated for accuracy assessment, as shown
in Figure 6. The mean values (red line) are lower than 0.1 cm/year, and the standard
deviations (blue line) are approximately 1 cm/year.

Refocusing on Figure 5a,b, the locations of active displacement regions are roughly
consistent between ascending and descending results, while the displacement magnitude
and their detailed extents are locally different. This is mainly attributed to their different
LOS sensitivities to mass movements in each slope orientation. To complement each
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other, the ascending and descending LOS displacement rate maps are combined to map a
relatively complete landslide inventory. Finally, a total of 22 active landslides, ranging from
medium scale to super large scale, are identified, mapped, and labeled in Figure 5, and
their detailed information are summarized in Table 4. These landslides are concentrated
near the Xiaojiang River and some of them are re-active parts of historical debris flows.
Compared with the recorded landslides (black curves) in AGRS inventory, three unrecorded
landslides have been newly detected by our approach (No. 20–22, mapped within red
curves): enlarged views of them are shown in Figure 5e–g. Furthermore, five recorded
landslides have been detected with a significant expansion of their boundaries (No. 14,
16–19, updated within red dotted curves): enlarged views of them are shown in Figure 5c,d.

Figure 6. Accuracy assessment of LOS displacement maps. Distribution histograms of measurement
scatterers in stable area are calculated based on (a) ascending Sentinel-1 results and (b) descending
Sentinel-1 results.

Table 4. Information of the detected active landslides 1.

No. Location Name Aspect Slope
(◦)

Area
(ha) Scale Detected from

SAR Images Risk Level Threat Object

1 West of
Xiaoyanjiao N, NE 14–49 70 Super large S1A, S1D Medium Roads, Jinsha River

2 East of
Xiaoyanjiao N, NW 17–52 71 Super large S1A, S1D Medium Roads, Jinsha River

3 lijialiangzi NW 12–48 82 Super large S1A Medium

Villages on back
edge, farmlands,

roads|debris flow
source

4 Laoliukou SE 32–46 14 Large S1A Medium
Roads on back edge,
buildings, farmlands

and roads in gully

5 Qingmen No.1 SW 23–47 15 Large S1D High Villages and roads on
back edge

6 Qingmen No.2 SW 22–39 6 Large S1D Medium Farmlands on
back edge

7 Bainijing SW 24–39 3 Medium S1A, S1D Low Debris flow source

8 Dingjiabaob-ao SW, W 6–35 31 Large S1A, S1D Medium Farmlands, and roads
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Table 4. Cont.

No. Location Name Aspect Slope
(◦)

Area
(ha) Scale Detected from

SAR Images Risk Level Threat Object

9 Songpingzi NW 12–59 159 Super large S1A, S1D High Villages, farmlands,
and roads

10 Laoqing Gully N 28–41 20 Large S1D Medium Farmlands on
back edge

11 Taiping Village W 18–38 14 Large Medium Farmlands, and roads

12 Pingzi Village N 8–41 45 Large S1A Medium Farmlands on back
edge, roads in gully

13 Wujiawan E 16–43 20 Large S1A Medium Roads

14 Baobao Village NW 17–47 140 Super large S1A, S1D Medium Villages, and roads

15 Heinaoke SE 13–51 67 Super large S1A Medium

Farmlands on back
edge, buildings, roads,
and bridges in gully |

debris flow source

16 Jilongao NW, N 9–49 167 Super large S1A, S1D Medium Farmlands

17

18

Sanjiacun-
Xiaogouqing E, SE 8–41 275 Super large S1A, S1D High

Buildings, roads,
bridges and farmlands
in gully|debris flow

source

19 Lanshanao NW 9–36 175 Super large S1A, S1D Medium
Roads, farm-

land|debris flow
source

20 Gelepingzi W 6–56 38 Large S1A, S1D Medium Roads

21 Dongfangho-ng
Gully SE 6–52 62 Super large S1A High

Roads, farmlands, and
buildings in

gully|debris flow
source

22 Laoao Gully W, SW 6–45 134 Super large S1A. S1D Low Debris flow source
1 Notes: S1A and S1D represent ascending and descending Sentinel-1 SAR images, respectively. Newly detected
landslides (No. 20–22) and recorded landslides with an obvious expansion (No. 14, 16–19) are highlighted in red.

At this point, the landslide inventory of the study area has been mapped and updated
by our approach with addition information of the LOS displacement rate, supporting the
regional disaster prevention and risk control. However, for the detected landslides, their
3D displacement rates and long-term time series remain to be further studied, in order
to deepen the understanding of their kinematic mechanism and dynamic evolution. In
Section 5, the Baobao landslide (labeled No.14 in Table 4) is taken as an example case to
retrieve its 3D displacement rates and long-term time series. Furthermore, the spatial-
temporal displacement pattern of Baobao landslide will be discussed in the following
sections.

5. Discussion: Three-Dimensional and Long-Term Displacements of Baobao Landslide
5.1. Three-Dimensional Displacement Rates for Spatial Displacement Pattern Analysis

The Baobao landslide is one of detected landslides on super large scale, the extent of
which is ~0.76 km in width and ~1.57 km in length, located on the east bank of Pucha River
and in the Xiaojiang Fault zone. Its optical remote sensing image acquired in April 2019 is
shown in Figure 7a, where polygons with different colors represent four Blocks B1–B4 of
the landslide, which are divided according to the geomorphological analysis. Following
Step 2, three-dimensional displacement rates are estimated in the vertical, north-south, and
east-west directions during March 2017 to May 2019, as shown in Figure 7b–d, respectively.
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It is worth noting that negative values (red color) indicate downward movements in
Figure 7b, southward movements in Figure 7c, and westward movements in Figure 7d,
and positive values (blue color) indicate northward movements in Figure 7c. The maxi-
mum displacement rates in the vertical, south-north, and east-west directions are more
than −6.6 cm/year, ±11.0 cm/year, and −16.2 cm/year, respectively. The two most ac-
tive movements are observed at the middle of block B1, i.e., Region R1, and lower-left
edge of block B2, i.e., Region R2, with averaging displacement rates of 13.5 cm/year and
14.9 cm/year in the optimal sliding direction (OSD), respectively. Overall, the entire land-
slide presents a trend of westward and downward movement. As evidence in Figure 7c,
northward displacements mainly occurred in block B1, and are sliding toward the north-
west direction, while southward displacements mainly occurred in Region R2 and the
lower half of block B3, and are sliding toward the southwest direction. A distinct sliding
boundary can be clearly observed between block B1 and blocks B2–B3.

Figure 7. Optimal remote sensing image and three-dimensional displacement rate maps during
March 2017 to May 2019 of the Baobao landslide. (a) Optical image acquired in April 2019. White
curves map the boundary of the landslide movement and different colors represent four Blocks B1–B4.
(b) Vertical displacement rate map, where Points P1–P4 are selected to analysis their time series
of displacement in optimal sliding direction. (c) North-south displacement rate map, where black
dotted curves mapped two most active sliding regions (R1 and R2). (d) East-west displacement rate
map, where two lines indicate the locations of Profiles AA’ and BB’. Moreover, yellow dotted lines
are topographic contour lines.
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For spatial displacement pattern analysis, displacement rates and elevation are ex-
tracted along two representative Profiles AA’ and BB’, as shown in Figure 8. The Profile AA’
is along the terrain gradient descent, approximately parallel to the main sliding direction
of Blocks B1-B2, and the Profile BB’ transversely passes through Blocks B2–B3 at similar
elevation (see Figure 7d). In Figure 8a, the sliding movement in OSD of Blocks B1–B2 (along
AA’) presents a negative correlation with the elevation, that is, displacement in the front
part (Block B2) is larger than the posterior part (Block B1). This evidence indicates that
Blocks B1–B2 are developed under a pull-type mechanism [73], which can be preliminarily
verified by geomorphological features (e.g., tensile cracks and scratches at back edge of B1)
presented in Figure 7a. In Figure 8b, evidence illustrates that Block B3 is more stable than
Block B2 (along BB’). Moreover, as evidenced in Figure 7b–d, 3D displacements in Blocks
B3–B4 are significantly smaller than its above Block B1 and present positive correlations
with elevation, which suggest that Blocks B3–B4 is very likely to be deformed with a
thrust-type mechanism [73], under the continuous extrusion of Block B1.

Figure 8. Elevation, three-dimensional displacement rates, and movement in the optimal sliding
direction along the Profiles AA’ and BB’ label in Figure 7d. (a) Profile AA’ and (b) Profile BB’, where
B1, B2, and B3 indicate blocks of Baobao landslide labeled in Figure 7a, and where R1 and R2 indicate
active regions labeled in Figure 7c.

Furthermore, Figure 9 shows the optimal sliding direction (OSD) for each pixel of
landslide, determined using the estimated 3D displacement rates. It worth noting that OSD
vectors indicate that Block B3 is sliding towards the southwest, imposing a direct threaten
on the Baobao Village. Under the pressure of Block B1, the sliding movement of Block B3
will be more active. It is strongly recommended to enhance the monitoring, prevention,
and control of the Baobao landslide, in order to avoid potential losses of life and property
in the surroundings.

Overall, through Figures 7–9, an intuitive description of the sliding direction and
displacement characteristics of each block is provided for the study of Baobao landslide
from a three-dimensional perspective. The spatial pattern and deformation mechanism is
analyzed on a detailed scale. In particular in Figure 9, the OSD vectors superimposed on
the optical image most intuitively exhibit the potential threat of landslide to surrounding
villages, traffics, rivers, etc., playing a positive role in disaster risk management.

5.2. Long-Term Displacement Time Series for Temporal Displacement Pattern Analysis

In order to reconstruct the dynamic evolution of Baobao landslide, four points, P1–P4
(marked in Figure 7b), located in different blocks of the landslide are selected to retrieve
the long-term time series of displacement in optimal sliding direction from ascending and
descending Sentinel-1 images, according to Step 3.
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Figure 10 shows the OSD displacement time series of Points P1-P4 during March
2017 to May 2019, where the triangle and error bar indicate the cumulative displacement
at each epoch and its standard deviation calculated with the Kalman filter, respectively.
Among them, the largest movement is measured at Point P1, with a magnitude of 0.39 m
and a maximum standard deviation of 0.0024 m; the smallest movement is measured at
Point P4, with a magnitude of 0.23 m and a maximum standard deviation of 0.0027 m. In
addition, the cumulative displacement observed at Points P2 and P3 are 0.37 m and 0.29 m,
respectively, with relatively large standard deviations of 0.0096 m and 0.0071 m.

Figure 9. (a) Horizontal movement vectors of the Baobao landslide and (b) the enlarged horizontal
movement vector over the Baobao Village. The base map is the optimal image acquired on April
2019.

Figure 10. The displacement time series with optimal sliding direction for points P1–P4 (marked in
Figure 7b) of the Baobao landslide during March 2017 to May 2019 against monthly precipitation.
The error bars indicate the standard deviations of the time series derived using the Kalman filter.
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Except for gravity, the primary driving factor, the acceleration of landslide movement
may also be caused by some external environment factors, including earthquakes, heavy
precipitation, and river and groundwater level fluctuations. Specific to the study area, two
recorded earthquakes marked in Figure 1 occurred in 2009 and 2013, respectively, outside
the temporal coverage of SAR acquisition. With this in mind, focusing on the correlation
between displacement time series and monthly precipitations, the evolution process of
Baobao landslide is analyzed in combination with the standard three-stage creep rupture
curve model (refer to Figure 14a in [41]). From March 2017 to May 2018, the displacements
of Points P1–P4 all present linear evolution trends. Landslide displacement during this
period exhibits creep behavior of the secondary creep stage, i.e., constant state with a steady
displacement rate. After June 2018, a significant signal of displacement acceleration is
observed at all points P1–P4, which may be correlated with heavy rainfalls in flood season.
Large amounts of rain infiltration can increase the pore-water pressures of slopes and, thus,
reduce the shear strength of materials, resulting in an increase in sliding movement. The
Baobao landslide has entered the tertiary creep stage. Then, with the arrival of dry season
(from October 2018 to May 2019), precipitation gradually decreased and, thus, the Baobao
landslide reached a new limit equilibrium.

6. Conclusions

In this paper, a full-scale workflow is designed for the current increasingly systematic
and multi-level InSAR study of landslides, in terms of three levels: (i) early detection on a
regional scale, in favor of landslide inventory and risk assessment, (ii) 3D displacement
rates estimation on a detailed scale, enhancing understanding on kinematic mechanism
and failure mode, and (iii) time series analysis on long-term temporal scale, presenting
benefits in landslide forecasting. This workflow is applied for landslide research on the
Xiaojiang River Basin, Eastern Yunnan, China, using ascending and descending Sentinel-1
images acquired from March 2017 to May 2019. A relatively complete landslide inventory is
mapped and updated for geohazard prevention. New landslides are discovered, and known
ones are re-evaluated on their activities and boundaries. Furthermore, three-dimensional
and long-term displacement information of Baobao Landslide are estimated through the
proposed Total Least Squares–Kalman Filter-based approach. Based on these outcomes, the
spatial-temporal pattern is further analyzed to deduce the failure mechanism and current
evolution stage.

Through this study, the potential of Sentinel-1 images in InSAR study of landslides
has been fully explored and demonstrated. As a rare open resource, Sentinel-1 satellites
provide a large amount of free valuable observations since their launch, greatly promoting
the development of InSAR technology and its applications in landslide studies. However,
Sentinel-1 data with C band are relatively sensitive to seasonal variation in vegetation
coverage, often resulting in unsatisfactory performance on landslide monitoring in natural
environments with lush flora. Moreover, medium ground resolution of Sentinel-1 data
(~15 m) can hardly detect small to medium landslides, let alone to characterize motion
mechanism in detail. These two points limit the capability of Sentinel-1 in the InSAR study
of landslides to some extent. In contrast, ALOS-2 data with L band and high ground resolu-
tion (~3 m under ultra-fine mode) could have played a greater role in this filed. However,
its unstable data acquisition results in that the actual observation interval is several times
longer than the revisit period (14 days) in most regions. Previous experience indicates
that stable data acquisition with high observation frequency is of great significance to
closely monitor the landslide development and capture the omen of failure. A hot prospect
of new and forthcoming SAR satellites (e.g., LT-1, Tandem-L), with longer wavelengths,
higher resolution, and shorter revisit period, is predictable in InSAR study of landslides,
focusing on two aspects: (i) regional early detection based on multi-source and multi-mode
data integration and (ii) 3D displacement time series estimation and prediction combing
high-resolution high-frequency observations and landslide models.
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