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Abstract: Semantic segmentation is a crucial approach for remote sensing interpretation. High-
precision semantic segmentation results are obtained at the cost of manually collecting massive
pixelwise annotations. Remote sensing imagery contains complex and variable ground objects and
obtaining abundant manual annotations is expensive and arduous. The semi-supervised learning
(SSL) strategy can enhance the generalization capability of a model with a small number of labeled
samples. In this study, a novel semi-supervised adversarial semantic segmentation network is
developed for remote sensing information extraction. A multiscale input convolution module
(MICM) is designed to extract sufficient local features, while a Transformer module (TM) is applied
for long-range dependency modeling. These modules are integrated to construct a segmentation
network with a double-branch encoder. Additionally, a double-branch discriminator network with
different convolution kernel sizes is proposed. The segmentation network and discriminator network
are jointly trained under the semi-supervised adversarial learning (SSAL) framework to improve
its segmentation accuracy in cases with small amounts of labeled data. Taking building extraction
as a case study, experiments on three datasets with different resolutions are conducted to validate
the proposed network. Semi-supervised semantic segmentation models, in which DeepLabv2, the
pyramid scene parsing network (PSPNet), UNet and TransUNet are taken as backbone networks, are
utilized for performance comparisons. The results suggest that the approach effectively improves
the accuracy of semantic segmentation. The F1 and mean intersection over union (mIoU) accuracy
measures are improved by 0.82–11.83% and 0.74–7.5%, respectively, over those of other methods.

Keywords: semantic segmentation; semi-supervised learning; transformer; adversarial learning;
remote sensing; building extraction

1. Introduction

Massive quantities of high-resolution remote sensing data are collected every day,
along with the progress of sensor technology, which creates great challenges to fast and
accurate remote sensing imagery information acquisition. Recently, convolutional neural
networks (CNNs) have realized excellent presentation on remote sensing imagery interpre-
tation, with their powerful feature representation capability [1,2]. Semantic segmentation
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techniques represented by fully convolutional networks (FCNs) [3] can achieve accurate
pixelwise image classification with sufficient training data, which has become the main-
stream technology in the information extraction field and is widely used for remote sensing
imagery object extraction, including buildings, roads, and water bodies [4–6].

Classical semantic segmentation networks, such as the pyramid scene parsing net-
work (PSPNet) [7], DeepLabs [8] and dual attention network (DANet) [9], are trained in
a fully supervised mode, which relies on massive manual annotations. Remote sensing
imagery is characterized by multisource, multitemporal and complex scenes and acquiring
adequate pixelwise annotations is extremely expensive. Although some datasets have been
established for remote sensing semantic segmentation, such as the Gaofen Image Dataset
(GID) [10], the EVLab-Semantic Segmentation (EVLab-SS) Dataset [11], and the Interna-
tional Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam datasets [12], the
quantity of training data for semantic segmentation is still small, considering the complexity
of remote sensing information extraction tasks. The existing datasets have difficulty in
covering different regions and image types simultaneously, which seriously affects the
generalization capability of models. Therefore, many existing approaches rely on semi-
supervised training schemes to reduce annotation requirements [13,14]. Research on using
unlabeled samples to assist model training and improving the accuracy of object extraction
with a small quantity of annotated data, namely, semi-supervised learning (SSL) strategies,
is of great significance.

SSL can automatically utilize unlabeled samples to enhance the generalization ability
of learners, without interacting with the outside world. End-to-end semi-supervised deep
learning methods include proxy-label methods [15,16], consistency regularization [17,18],
hybrid methods [19,20], and SSL methods combined with generative adversarial networks
(GANs) [21]. GAN-based SSL methods, namely semi-supervised adversarial learning
(SSAL) techniques, have become popular in recent years and have been applied for remote
sensing tasks, involving image segmentation and image interpretation [22,23]. Figure 1
shows a typical SSAL framework for image semantic segmentation [24]. The generator in
an initial GAN framework [25] is replaced by a segmentation network, which inputs labeled
and unlabeled data and outputs the corresponding prediction maps. The discriminator
network inputs the prediction maps and ground-truth maps and outputs confidence maps,
which are taken as supervisory signals for the unlabeled data to guide the SSL process.
Some studies [24] have shown that this framework enables segmentation networks to
learn higher-order structural information without postprocessing, thereby improving the
generalization ability of the networks.

Remote Sens. 2022, 14, x FOR PEER REVIEW 2 of 22 
 

 

networks (CNNs) have realized excellent presentation on remote sensing imagery inter-
pretation, with their powerful feature representation capability [1,2]. Semantic segmenta-
tion techniques represented by fully convolutional networks (FCNs) [3] can achieve accu-
rate pixelwise image classification with sufficient training data, which has become the 
mainstream technology in the information extraction field and is widely used for remote 
sensing imagery object extraction, including buildings, roads, and water bodies [4–6]. 

Classical semantic segmentation networks, such as the pyramid scene parsing net-
work (PSPNet) [7], DeepLabs [8] and dual attention network (DANet) [9], are trained in a 
fully supervised mode, which relies on massive manual annotations. Remote sensing im-
agery is characterized by multisource, multitemporal and complex scenes and acquiring 
adequate pixelwise annotations is extremely expensive. Although some datasets have 
been established for remote sensing semantic segmentation, such as the Gaofen Image 
Dataset (GID) [10], the EVLab-Semantic Segmentation (EVLab-SS) Dataset [11], and the 
International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam datasets 
[12], the quantity of training data for semantic segmentation is still small, considering the 
complexity of remote sensing information extraction tasks. The existing datasets have dif-
ficulty in covering different regions and image types simultaneously, which seriously af-
fects the generalization capability of models. Therefore, many existing approaches rely on 
semi-supervised training schemes to reduce annotation requirements [13,14]. Research on 
using unlabeled samples to assist model training and improving the accuracy of object 
extraction with a small quantity of annotated data, namely, semi-supervised learning 
(SSL) strategies, is of great significance. 

SSL can automatically utilize unlabeled samples to enhance the generalization ability 
of learners, without interacting with the outside world. End-to-end semi-supervised deep 
learning methods include proxy-label methods [15,16], consistency regularization [17,18], 
hybrid methods [19,20], and SSL methods combined with generative adversarial networks 
(GANs) [21]. GAN-based SSL methods, namely semi-supervised adversarial learning 
(SSAL) techniques, have become popular in recent years and have been applied for remote 
sensing tasks, involving image segmentation and image interpretation [22,23]. Figure 1 
shows a typical SSAL framework for image semantic segmentation [24]. The generator in 
an initial GAN framework [25] is replaced by a segmentation network, which inputs la-
beled and unlabeled data and outputs the corresponding prediction maps. The discrimi-
nator network inputs the prediction maps and ground-truth maps and outputs confidence 
maps, which are taken as supervisory signals for the unlabeled data to guide the SSL pro-
cess. Some studies [24] have shown that this framework enables segmentation networks 
to learn higher-order structural information without postprocessing, thereby improving 
the generalization ability of the networks. 

 
Figure 1. A typical SSAL framework, where CEL , DL , advL  and semiL  respectively represent 
cross-entropy loss, discriminator loss, adversarial loss, and semi-supervised loss, respectively. 

FCNs are commonly used to construct segmentation networks and discriminator net-
works under the SSAL framework. FCNs have powerful feature extraction capabilities. 
However, restricted by the given receptive fields, convolution operations have difficulty 
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FCNs are commonly used to construct segmentation networks and discriminator
networks under the SSAL framework. FCNs have powerful feature extraction capabilities.
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However, restricted by the given receptive fields, convolution operations have difficulty
acquiring global contextual information [26]. To overcome this limitation, some multiscale
modules [7,8] have been proposed to improve the feature extraction capability of the
resulting models. In addition, utilizing deep networks with complex components [27] and
integrating attention modules into FCN architectures, such as DANet [9] and the squeeze-
and-excitation network (SENet) [28], can provide effective global context. However, these
approaches cannot avoid the loss of details when the resolutions of feature maps are
gradually reduced during the encoding phase.

The Transformer first appeared in machine translation tasks and has recently raised
much concern in the computer vision field [29–32]. Transformer layers [33], which contain
stacked multi-head self-attention (MSA) and multilayer perceptron (MLP) blocks, can
capture global contextual information and the long-range dependencies between objects. In
complex remote sensing scenes, acquiring contextual long-range dependencies is important
for accurate object recognition and extraction. Methods combining convolutions with
a Transformer can acquire both the local feature and the global contextual relationship
simultaneously. Some works have shown that this combination effectively improves image
segmentation accuracy [26,34]. However, such studies are rare in semi-supervised remote
sensing image segmentation.

In this article, we develop a novel semi-supervised adversarial semantic segmenta-
tion approach for remote sensing information extraction that combines the advantages
of both convolution and Transformer, called TRANet. The main contributions include
the following:

• A multiscale input convolution module (MICM) and an improved strip-max pooling
(SMP) structure are provided. The MICM adopts multiscale downsampling and skip
connections to capture information of different input scales, while maintaining the
spatial details of objects in complex remote sensing scenes. The SMP preserves both the
global and horizontal/vertical information during feature extraction, thereby reducing
the information loss when the resolutions of the feature maps are gradually reduced.

• TRANet is developed with two subnetworks. The segmentation network is charac-
terized by a double-branch encoder, which integrates the Transformer module (TM)
and the MICM. The discriminator network is designed by using a parallel convo-
lution architecture with different kernel sizes. Two subnetworks are trained under
the SSAL framework. TRANet can extract local features and long-range contextual
information simultaneously and improve generalization capability with the assistance
of unlabeled data.

• Taking building extraction as a case study, experiments on the WHU Building Dataset
(WBD) [35], Massachusetts Building Dataset (MBD) [36] and GID [10] are carried
out to validate TRANet. DeepLabv2, PSPNet, UNet and TransUNet are used as
segmentation networks for a performance comparison under the same SSAL scheme.
The results demonstrate that TRANet improves segmentation accuracy compared to
other approaches when only a few labeled samples are available.

The remainder of this article is arranged as follows. Section 2 introduces some related
works. The design of the proposed approach is detailed in Section 3. The experimental
setup and results are illustrated in Section 4. Section 5 discusses ablation experiments and
parameter selections. Section 6 summarizes this article.
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2. Related Work
2.1. Semi-Supervised Semantic Segmentation

Many existing methods rely on the SSL scheme to reduce the workload of manual
annotation [37,38]. Currently, end-to-end SSL methods can be roughly divided into four
categories (1) Proxy-label methods. Such methods use trained models with labeled data
to produce pseudo-labels for unlabeled data; examples include pseudo-label [15] and
co-training [16]. Their training depends on experience. (2) Consistency regularization.
These approaches assume that if noise is applied to samples, the predictions for noisy
and non-noisy samples should be as consistent as possible, such as the temporal ensem-
bling [17] and mean teacher methods [18]. They require high robustness to perturbations
to achieve improved generalization ability. (3) Hybrid methods. These techniques, such
as MixMatch [19] and FixMatch [20], integrate the aforementioned two SSL methods into
one framework and have complex model structures. (4) SSL methods combined with
GANs [21]. Such methods use the discriminator to facilitate the training of the generator,
thereby improving the performance of the resulting models.

SSL methods combined with GANs have been widely applied in semantic segmenta-
tion tasks and have achieved good performance. Souly et al. [39] used a GAN generator to
create pseudosamples and used a discriminator to classify the pixels into different semantic
categories. Four datasets were used to verify the developed method. Hung et al. [24]
replaced the generator in a GAN framework with the DeepLabv2 model and designed
a fully convolutional discriminator. They utilized the confidence maps generated by the
discriminator as the supervisory signals for the unlabeled data to improve the segmentation
accuracy under adversarial training. Zhang et al. [40] utilized a segmentation network
with two self-attention modules to learn the spatial semantic relationship. They simulta-
neously used a discriminator containing spectral normalization to improve the training
performance. Sun et al. [41] designed a segmentation network with a channel-weighted
multiscale feature module and a discriminator network integrating a boundary attention
module and residual blocks. Their method alleviated the boundary blur of objects and
obtained improved segmentation accuracy on remote sensing datasets.

2.2. Convolution Neural Network and Variants

FCN-based architectures are used to construct both the segmentation and discriminator
networks in the classical semi-supervised adversarial semantic segmentation framework.
CNN is a hierarchical data representation method that gradually abstracts features with
rich semantic information from shallow to deep. FCNs [3], which are extended on the basis
of CNNs, contain encoder-decoder structures and replace the fully connected layers of
CNNs with convolution layers for image segmentation. FCNs can automatically obtain
precise local features and abstract high-level features via end-to-end training, and they
have strong feature representation ability for specific tasks.

Deep learning-based semantic segmentation networks are mostly implemented with
FCNs. However, restricted by the receptive fields, the features captured by the convolution
layers fail to effectively learn long-range dependency information. To overcome this
limitation, multiscale modules, such as the atrous convolution module [7] and spatial
pyramid pooling [8], use convolution or pooling operations with different scales to obtain
features with different receptive fields, thereby enhancing the feature representation ability
of the resulting model. In addition, simply increasing the depths of networks [27], acquiring
multiscale image characteristics, and integrating attention modules into FCN architectures
can provide effective global context. For instance, Luo et al. [42] utilized two uniform
residual networks with five levels in the encoder to process input images and auxiliary
feature data. They also added the channel attention mechanism into the decoder for
remote sensing image feature selection. Huang et al. [43] used a channel-wise attention
mechanism to refine coarse labels of different scales and fused features of different levels
via an attention-based module. Their method reduced the feature differences and improved
the segmentation accuracy in remote sensing datasets. However, the attention modules
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are usually placed at the top of the employed convolution architecture, which restricts
attention learning to high-level features. Such strategies still cannot prevent the loss of
details when the resolutions of feature maps are gradually reduced.

2.3. Transformer

The vision Transformer (ViT) [29] was the first work to apply a pure Transformer with
self-attention to image classification. ViT divides the input image into a series of image
patches for sequence-to-sequence prediction and has achieved state-of-the-art performance
on the ImageNet dataset. Context modeling is extremely important for semantic segmenta-
tion. The Transformer can capture global contextual information via self-attention, which
compensates for the deficiency of convolution operations. Therefore, some scholars have
studied combining Transformers with CNNs to improve semantic segmentation accuracy.
Zheng et al. [26] proposed a segmentation model with a Transformer-alone encoder, which
replaced the stacked convolution layers with a pure Transformer to extract features and
combined it with a convolution-based decoder for image segmentation. Chen et al. [44]
inserted a Transformer into the top of the encoder in UNet to extract global information
and then upsampled the features by a convolution-based decoder to obtain precise segmen-
tation results. However, the aforementioned methods are applied to natural scenes and
medical images in a fully supervised training mode. Few studies have used the Transformer
to segment high-resolution remote sensing images containing complex objects. Further-
more, few studies have focused on constructing semi-supervised segmentation networks
by using Transformers.

The proposed TRANet is mainly characterized by its double-branch encoder segmenta-
tion network. The unique MICM enables the network to acquire features of different input
scales and maintain spatial information. Furthermore, the long-range modeling advantages
of the Transformer compensate for the deficiency regarding the limited receptive fields of
convolution operations. Relying on the SSAL framework, TRANet uses the confidence
map generated by the unique double-branch discriminator network to guide the training of
unlabeled data and further refines the segmentation network, thereby achieving increased
image segmentation accuracy.

3. Methodology
3.1. Algorithm Overview

The semi-supervised adversarial semantic segmentation task is expressed as follows.
Given (m + n) images with sizes of H ×W × C and corresponding labels as inputs:

X = {xl1, xl2, · · · , xlm; xu1, xu2, · · · , xun}
Y = {yl1, yl2, · · · , ylm},

(1)

where xlm and xun denote m labeled images xl and n unlabeled images xu, respectively.
Generally, n� m; that is, unlabeled data are far more abundant than labeled data. ylm is the
binary label map corresponding to xlm, which contains a target value of 1 and a background
value of 0. The segmentation network generates prediction maps by training with the
labeled and unlabeled data. The discriminator network distinguishes the approximation
degree between segmented results and sample labels and optimizes the segmentation
model during adversarial training.

Figure 2 illustrates the TRANet graphically. The segmentation network comprises a
classical encoder-decoder structure, and the discriminator network includes double-branch
convolution structures with different kernel sizes. The two networks are combined for
image segmentation under the SSAL framework (Figure 1).
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3.2. Segmentation Network

As shown in part I of Figure 2, the encoder of the segmentation network contains a
TM and an MICM. The TM acquires the global contextual features FA by self-attention.
The MICM obtains the spatial information of multiscale input images and extracts local
features FB through convolution and pooling operations. The joint feature F is obtained by
Equation (2):

F = FA ⊕ FB, (2)

where ⊕ denotes the feature concatenation operation.

3.2.1. Transformer Module

The TM serializes the input images and captures global contextual information by
using self-attention, which maintains the complete object features and alleviates the detail
loss while gradually reducing the resolutions of the feature maps. The standard Trans-
former [33] receives a 1D sequence as input. As displayed in Figure 3, to handle a 2D im-
age [29], we divide the input X ∈ RH×W×C into a series of image patches Xp ∈ RN×(P×P×C)

and then flatten them into a sequence, where (H, W) indicates the size of the input im-
ages, N = H ×W/P2 indicates the patch number, C indicates the channel number, and P
represents the length and width of each patch, which is set as 16 in our study.
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Figure 3. Transformer module.

Each vector patch is mapped to D dimensions with a learnable linear projection,
resulting in a patch embedding. Then a 1D position embedding is added to this patch
embedding to reserve the associated location information, as displayed in Equation (3):

z0 = [X1
pE; X2

pE · · · ; XN
p E] + Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D, (3)

where E and Epos denote linear projection functions of the patch embedding and position
embedding, respectively, and XN

p denotes the N-th image patch.
Subsequently, the resulting embedding sequences are input into the Transformer

layers. Each layer is composed of stacked MSA and MLP blocks. Layer normalization (LN)
is used before each block, and residual connections are applied after each block [29]. The
hidden feature representations are obtained by Equations (4) and (5):

z′l = MSA(LN(zl−1)) + zl−1, l = 1 . . . L, (4)

zl = MLP(LN(z′l)) + z′l , l = 1 . . . L, (5)

where zl represents the l-th encoder feature. A hidden feature representation of size
(H ×W/P2) × D is obtained by processing the L Transformer layers and reshaping to
(H/P)× (W/P)× D, resulting in the middle feature FA. In this study, D is set to 768, and
the TM module contains 12 Transformer layers and 8 heads in each MSA layer. Section 5
analyses and discusses the parameter selection.

3.2.2. Multiscale Input Convolution Module

The MICM consists of four submodules, each of which has the same double-branch
architecture (Figure 4). Taking X as an input, the lower branch extracts features δk by using
two convolution layers, each of which contains a batch normalization (BN) layer and a
rectified linear unit (ReLU) activation function.

δk = g(δk−1), k = {1, 2, 3, 4}, (6)

where g(·) denotes the double convolution operations and δk denotes the convolution
feature of the k-th submodule when k = 1, δ0 = X. Then, the SMP is employed for feature
abstraction and dimensionality reduction.
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In this article, SMP is used to replace the max pooling operations of classical net-
works. Max pooling probes information within square windows, which limits the flexibility
in capturing anisotropic context features. Strip pooling [45] resolves this problem well.
The given convolution feature δk is fed into a horizontal and vertical strip pooling layer
simultaneously, resulting in two 1D features δh

k ∈ RC×H and δv
k ∈ RC×W :

δh
k i =

1
W ∑0≤j<W δk(i,j), (7)

δv
k j =

1
H ∑0≤i<H δk(i,j), (8)

Subsequently, δh
k and δv

k are converted into feature matrices with sizes of H ×W via a
1D convolution. Then, the feature map δ′k of the SMP structure in the k-th submodule is
obtained by Equation (9):

δ′k = MP(δk)⊕ f st=2(ReLU(δk ⊕ f st=1(δh
k i + δv

k j))), k = {1, 2, 3, 4}, (9)

where MP(·) denotes a max pooling, f st(·) denotes a 1× 1 convolution with a stride size of
st, and ⊕ represents the feature concatenation operation.

The upper branch downsamples the input and reshapes the feature dimensions to
make them consistent with δ′k. The resulting feature maps are connected with δ′k, and
subsequently a 1× 1 convolution is utilized to acquire the subfeature Fk:

Fk = f (dsk (Fk−1)⊕ δ′k), k = {1, 2, 3, 4}, (10)

where Fk denotes the intermediate feature of the k-th submodule when k = 1, F0 = X, d(·)
denotes the downsampling operation, s =

{
1
2 , 1

4 , 1
8 , 1

16

}
is the downsampling parameter,

f (·) denotes a 1× 1 convolution, and ⊕ represents the feature concatenation operation.
The sizes of the four intermediate feature maps are {1282,642,322,162} pixels, and the
numbers of channels are {128,256,512,1024}. Finally, the convolution feature FB with a size
of 16× 16× 1024 is obtained via two convolution layers.



Remote Sens. 2022, 14, 1786 9 of 21

3.2.3. Decoder

The decoder takes the joint feature F, which concatenates the outputs of the TM and
MICM, as the input for feature restoration (Figure 2). Two convolution layers are used to
reshape the feature dimensions to 16× 16× 1024. The resulting feature is restored to the
same dimension as the input image by Equation (11):

γk = ReLU(BN(TransposeConv(γk−1))), k = {1, 2, 3, 4}, (11)

where γk denotes the feature map of the k-th upsampling step, when k = 1, γ0 = F, and
TransposeConv(·) denotes the transposed convolution layer. Four skip connections [46]
are adopted to combine the convolution features in the MICM with the upsampled fea-
ture maps. Such an operation effectively alleviates the loss of features over successive
convolution and pooling operations.

γ̃k = ReLU(BN(Conv(γk ⊕ δk))), k = {1, 2, 3, 4}, (12)

where γ̃k denotes the feature map of the k-th double convolution, and the numbers of
feature channels are {512,256,128,64}. Finally, the feature maps with 2 channels are acquired
via a 1 × 1 convolution, and these maps are fed into the sigmoid layer to obtain the
prediction result R.

3.3. Discriminator Network

An FCN-based discriminator network is designed; it contains a double-branch struc-
ture with different convolution kernel sizes. More information about different receptive
fields can be obtained by multiscale inputs and convolution kernels with different sizes.
The discriminator network receives the segmentation result R or ground-truth maps as
input, as shown in part II of Figure 2. Features are extracted from the upper and lower
branches (Equations (13) and (14)):

Fk
U = LeakyReLU(Convst=2

ke=4(FU
k−1)), k = {1, 2, 3, 4}, (13)

Fk
D = LeakyReLU(Convst=2

ke=2(d
s(R)k−1)), k = {2, 3, 4}, (14)

where FU
k and FD

k denote the features obtained by the k-th convolution in the upper and
lower branches, respectively. When k = 1, FU

0 = R, Convst
ke(·) represents a convolution

with strides of st and kernel sizes of ke, LeakyReLU(·) denotes the leaky ReLU activa-
tion function, and ds(·) denotes the downsampling operation with a parameter s = 1/2.
The numbers of channels in the resulting four feature maps are {64,128,256,512}. Subse-
quently, the feature maps generated by the two branches are concatenated and fed into
a 1× 1 convolution and a classification layer. Last, the confidence map is acquired via a
sigmoid operation, in which each pixel represents the approximation degree of the pixels in
the segmented map with respect to the sample label. This map is utilized as a supervisory
signal for unlabeled data.

3.4. Loss Function

The segmentation network and discriminator network are trained jointly via labeled
samples. When inputting unlabeled samples, the discriminator network generates confi-
dence maps to supervise the training of the segmentation network in a self-taught mech-
anism. The discriminator network is optimized by minimizing the binary cross-entropy
loss LD:

LD = −∑
i,j

((1− y) log(1−OR
(i,j)) + y log OY

(i,j)), i ∈ H, j ∈W, (15)

where OR
(i,j) and OY

(i,j) represent confidence maps for the prediction maps R and ground-
truth labels Y, respectively, (i, j) denotes pixel locations, and y represents the label of
each pixel.
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The multitask loss in [24] is optimized to train the segmentation network:

LSeg = LCE + λadvLadv + λsemiLsemi, (16)

where LCE, Ladv and Lsemi respectively indicate the cross-entropy loss, adversarial loss, and
semi-supervised loss, and λadv and λsemi are weights utilized for adjusting LSeg. In this
study, λadv is respectively set to 0.01 and 0.001 while using labeled and unlabeled samples.
λsemi is equal to 0.1. Taking C as the number of categories, LCE is obtained by Equation (17):

LCE = −∑
i,j

∑
c∈C

Y(i,j,c) log(R(i,j,c) ), i ∈ H, j ∈W (17)

The adversarial loss and semi-supervised loss are shown in Equations (18) and (19),
respectively:

Ladv = −∑
i,j

log OR
(i,j), (18)

Lsemi =

{
−∑i,j,c Yu

c log Ru
(i,j,c), if O(i,j) ≥ τ

0, otherwise
, (19)

where Ru
(i,j,c) denotes the class c prediction results of the unlabeled data at location (i, j), Yu

c

denotes the pseudo-label of the class c of unlabeled data, O(i,j) represents the confidence
map, and τ is a threshold value of 0.2.

4. Results
4.1. Datasets

Three open-source remote sensing datasets with different spatial resolutions, including
the WBD [35], MBD [36] and GID [10], were used for method verification. We clipped
all images and labels into 256 × 256 image patches for model training and classification.
Some building examples contained in the three datasets are shown in Figure 5. The labels
were uniformly processed into binary images with a target value of 1 and a background
value of 0.

• WBD: This building dataset consists of 8189 aerial image tiles and contains 187,000 buildings
with diverse usages, sizes and colors in Christchurch, New Zealand. The spatial reso-
lution is 0.3 m. After cropping without overlap, 15,256 image patches were selected
and randomly split into 14,256 patches for training and 1000 patches for testing.

• MBD: The MBD is a large dataset for building segmentation that consists of 151 aerial
images of the Boston area with 1500 × 1500 pixels. The spatial resolution is 1 m. A
total of 11,384 image patches containing buildings with 256 × 256 pixels were chosen
after cropping. These patches were further randomly divided into 10,384 patches for
training and 1000 patches for testing.

• GID: This land-use dataset contains 5 land-use categories and 150 Gaofen-2 satellite
images, obtained from more than 60 different cities in China. The spatial resolution is
4 m. We extracted the building class and constructed a dataset containing 13,671 image
patches for our experiments, among which 12,175 patches were used for training and
1496 were used for testing.

4.2. Experimental Procedure
4.2.1. Method Implementation

Several well-known semantic segmentation networks, i.e., DeepLabv2 [8], PSPNet [7],
UNet [46], and TransUNet [44], with combinations of Transformer and convolution, were
used for method comparisons under the SSAL framework. ResNet-101 was used as the
backbone for DeepLabv2 and PSPNet. The numbers of Transformer layers and attention
heads in TransUNet are set to 12 [44]. To validate the proposed method, we randomly
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sampled 1/8, 1/4 and 1/2 of images as labeled data and the remainder as unlabeled data.
The quantities of labeled data are displayed in Table 1.
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Table 1. Amounts of labeled data.

Datasets
Labeled Data Amount

1/8 1/4 1/2 Full

WBD 1782 3564 7128 14,256
MBD 1298 2596 5192 10,384
GID 1522 3044 6088 12,671

All models were implemented with Python 3.6 and PyTorch 1.2.0, which were powered
by a 24-GB NVIDIA GeForce RTX 3090 GPU. The segmentation network was optimized
using the stochastic gradient descent approach. The original learning rate was 2.5 × 10−4

and was declined via polynomial decay with a power of 0.9. The Adam optimizer [47],
where the learning rate is 1 × 10−4, was utilized to optimize the discriminator network. All
networks were trained over 80 K iterations and the batch size was 4. Adopting the same
strategy used in [24], we started SSL after training 5000 iterations with labeled samples to
avoid the model being influenced by the original noisy masks and predictions.
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4.2.2. Method Evaluation Measures

Four assessment indices, precision, recall, F1 and mean intersection over union (mIoU),
were utilized to evaluate the different methods. Equation (20) gives the definitions of
these metrics:

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2× Precision×Recall
Precision+Recall

mIoU = 1
C

C
∑

c=1

TP
TP+FP+FN

, (20)

where TP indicates the quantity of building pixels correctly categorized, FP indicates
the quantity of nonbuilding pixels categorized as buildings, FN indicates the quantity of
building pixels incorrectly categorized as nonbuildings, and C is the quantity of categories.
The F1 and mIoU metrics were utilized to comprehensively assess the model performance.

4.3. Experimental Results and Analysis

All the networks were trained on the WBD, MBD and GID using different quantities of
labeled samples under the SSAL framework. The test sets did not participate in the model
training and were used for evaluating and comparing the method performance.

4.3.1. Quantitative Analyses

Tables 2–4 show the building extraction accuracies achieved on the three datasets. In
general, adding the quantity of labeled samples increases the accuracy measures of each
approach. The F1 and mIoU measures of the proposed TRANet were the best on the three
datasets, and this finding was consistent with the subsequent visualization analysis.

Table 2. Building extraction accuracies obtained with different quantities of labeled data on the WBD.
The highest accuracy is displayed in bold.

Method

Labeled Data Amount

1/8 1/4

Recall Precision F1 mIoU Recall Precision F1 mIoU

DeepLabv2 0.8965 0.8713 0.8837 0.8714 0.9187 0.8586 0.8876 0.8759

PSPNet 0.8834 0.8267 0.8541 0.8429 0.8886 0.8301 0.8583 0.8470

UNet 0.9293 0.9284 0.9288 0.9182 0.9421 0.9352 0.9387 0.9290

TransUNet 0.9193 0.9202 0.9197 0.9084 0.9362 0.9282 0.9322 0.9219

TRANet 0.9364 0.9301 0.9332 0.9230 0.9495 0.9346 0.9420 0.9327

Method
1/2 Full

Recall Precision F1 mIoU Recall Precision F1 mIoU

DeepLabv2 0.8973 0.8924 0.8949 0.8824 0.9204 0.8831 0.9013 0.8895

PSPNet 0.9002 0.8220 0.8593 0.8483 0.9020 0.8294 0.8642 0.8529

UNet 0.9512 0.9394 0.9453 0.9364 0.9554 0.9408 0.9480 0.9394

TransUNet 0.9457 0.9317 0.9387 0.9290 0.9496 0.9337 0.9416 0.9323

TRANet 0.9547 0.9402 0.9474 0.9387 0.9571 0.9421 0.9495 0.9411
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Table 3. Building extraction accuracies obtained with different quantities of labeled data on the MBD.
The highest accuracy is displayed in bold.

Method

Labeled Data Amount

1/8 1/4

Recall Precision F1 mIoU Recall Precision F1 mIoU

DeepLabv2 0.7706 0.4964 0.6038 0.6704 0.7032 0.5799 0.6356 0.6856

PSPNet 0.7296 0.5224 0.6088 0.6714 0.7576 0.4923 0.5968 0.6659

UNet 0.7490 0.6819 0.7139 0.7380 0.7752 0.6943 0.7325 0.7523

TransUNet 0.7252 0.6437 0.6820 0.7156 0.7630 0.6852 0.7220 0.7443

TRANet 0.7839 0.6693 0.7221 0.7454 0.7785 0.7178 0.7469 0.7627

Method
1/2 Full

Recall Precision F1 mIoU Recall Precision F1 mIoU

DeepLabv2 0.7398 0.5526 0.6326 0.6858 0.7292 0.6312 0.6766 0.7124

PSPNet 0.7590 0.5062 0.6073 0.6720 0.7623 0.5060 0.6083 0.6726

UNet 0.7988 0.7225 0.7588 0.7723 0.8127 0.7402 0.7748 0.7848

TransUNet 0.7926 0.7001 0.7435 0.7608 0.8047 0.7180 0.7589 0.7726

TRANet 0.7987 0.7355 0.7658 0.7775 0.8160 0.7482 0.7806 0.7894

Table 4. Building extraction accuracies obtained with different quantities of labeled data on the GID.
The highest accuracy is displayed in bold.

Method

Labeled Data Amount

1/8 1/4

Recall Precision F1 mIoU Recall Precision F1 mIoU

DeepLabv2 0.8560 0.6946 0.7669 0.7679 0.8281 0.7381 0.7805 0.7773

PSPNet 0.8003 0.6553 0.7205 0.7302 0.8064 0.6701 0.7320 0.7388

UNet 0.7647 0.7460 0.7552 0.7535 0.7731 0.7442 0.7583 0.7565

TransUNet 0.7904 0.7534 0.7715 0.7679 0.7538 0.7711 0.7624 0.7582

TRANet 0.7659 0.7939 0.7797 0.7728 0.7765 0.8052 0.7905 0.7823

Method
1/2 Full

Recall Precision F1 mIoU Recall Precision F1 mIoU

DeepLabv2 0.8288 0.7533 0.7893 0.7844 0.8358 0.7507 0.7910 0.7862

PSPNet 0.7850 0.7122 0.7468 0.7486 0.8268 0.6851 0.7493 0.7530

UNet 0.8154 0.7326 0.7718 0.7697 0.8326 0.7532 0.7909 0.7860

TransUNet 0.8368 0.7519 0.7921 0.7872 0.8240 0.7687 0.7954 0.7892

TRANet 0.8406 0.7597 0.7981 0.7923 0.8433 0.7720 0.8061 0.7991

As shown in Table 2, the building extraction accuracies of all methods on the WBD
were higher than 90%, except DeepLabv2 and PSPNet. PSPNet performed worst among all
the models. When trained with fully labeled data, the four measures yielded by TRANet
increased by 5.51%, 11.27%, 8.53% and 8.82%, compared with those of PSPNet. The UNet
model performed the second best. With only 1/8 of the labeled data, UNet’s F1 and
mIoU values were 92.88% and 91.82%, respectively, which were 0.5% lower than those of
TRANet. The accuracy of TransUNet was slightly lower than that of UNet. The Transformer
structure is added only at the top of the TransUNet encoder, resulting in limited global



Remote Sens. 2022, 14, 1786 14 of 21

information. TRANet, which combines the Transformer and convolution, performed the
best on the WBD.

Table 3 lists the accuracy measures produced by the different methods on the MBD. The
accuracies of all models were lower than 80%. With 1/8 of the labeled data, the F1 and mIoU
measures of TRANet were 72.21% and 74.54%, respectively, which were 5% lower than those
obtained using fully labeled data. However, this method still performed the best. TRANet’s
F1 and mIoU increased by approximately 0.82%~11.83% and 0.74%~7.5%, respectively,
compared with those of other methods. The UNet model performed suboptimally. The
F1 and mIoU measures of TransUNet were 3.19% and 2.24% lower than those of UNet,
respectively, under 1/8 of the labeled data. The performances of DeepLabv2 and PSPNet
were poor, and all the F1 and mIoU values were lower than 70%. The DeepLabv2 model
performed slightly better than PSPNet.

On the GID, as shown in Table 4, TransUNet, using the Transformer structure, achieved
better building extraction accuracy than UNet. When trained with 1/8 labeled samples,
TransUNet’s F1 and mIoU values were 1.63% and 1.44% better than those of UNet, re-
spectively. DeepLabv2 performed better than PSPNet and UNet. When trained with fully
labeled data, DeepLabv2’s F1 and mIoU were 1.51% and 1.29% less than those of TRANet,
respectively. TRANet performed the best. The four measures of TRANet, when training
with 1/2 labeled data, decreased by 0.27%, 1.23%, 0.8%, and 0.68% relative to the metrics
obtained when training with fully labeled data, where TRANet achieved an accuracy
similar to that of using fully supervised training.

4.3.2. Qualitative Analyses

The semantic segmentation results obtained when training with 1/8 labeled sam-
ples under the SSAL framework were used for visual analysis. Figures 6–8 show the
representative building regions derived with the three datasets.
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The WBD has high resolution and good image quality. Figure 6c,d show that the
results obtained by DeepLabv2 and PSPNet exhibited many missed extractions and falsely
extracted areas, and obvious distortions were present on the edges of buildings, especially
in subregions 1 and 2. The extraction results of UNet and TransUNet had fewer missed
extractions (subregions 1 and 2) and falsely extracted areas (subregion 4). TRANet extracted
more complete building surfaces in subregions 2–5, and the details were closer to the
reference labels.

The resolution of the MBD is 1 m. Many buildings with small areas are represented by
only a few to more than a dozen pixels in the corresponding images; this situation brings
difficulties to the fine extraction of buildings. As shown in Figure 7c,d, all results obtained
by PSPNet and DeepLabv2 had large numbers of missed extractions, and the extracted
buildings had irregular shapes and fuzzy boundaries. UNet extracted more complete small
buildings with clear boundaries, as shown in Figure 7e, but obvious losses existed in the
large buildings of subregion 3. In addition, the strip buildings in subregions 1, 2, and 4 were
extracted incompletely. TRANet extracted complete buildings, especially in subregions 4
and 5 of Figure 7g, and the boundaries of small buildings and the surfaces of strip buildings
demonstrated the better performance of this method, although small, missed extractions
existed in subregions 2 and 3.

The GID has good image quality but relatively low resolution. Multiple complex
objects, i.e., water bodies, roads, farmland, bare land, etc., are contained in one image.
Buildings have irregular edges and are mostly distributed in pieces, which are easily mixed
with other types of objects. Such a situation increases the difficulty of building extraction.
Overall, all extraction results had missed extractions and falsely extracted areas. The falsely
extracted areas in the results obtained by DeepLabv2, PSPNet, UNet and TransUNet were
smaller, as shown in Figure 8c–f, but there were more missed extractions in subregions 2, 4
and 5. TRANet extracted more complete buildings than other models.

Based on the aforementioned quantitative and qualitative analyses, the proposed
TRANet performed the best. TRANet uses the Transformer to obtain global contextual
information and the MICM to extract local multiscale features simultaneously. The pro-
posed SMP structure is designed to retain horizontal and vertical features, which alleviates
the loss of details over continuous convolution operations. All these designs facilitate
improvements in the building extraction accuracy.

5. Discussion

We performed four groups of ablation experiments to validate the performance of the
designed double-branch segmentation network, the MICM, the SMP, and the discriminator
network. The double-branch encoder is the core of TRANet, and it was verified by semi-
supervised experiments with the WBD, MBD and GID under different amounts of labeled
data, to fully illustrate the advantages of the Transformer combined with convolution. For
the other three groups, 7128 labeled samples and 7128 unlabeled samples from the WBD
were selected for the ablation experiments.

5.1. Comparison between Single/Double-Branch Encoder Structures

The encoder of the TRANet segmentation network contains a parallel TM and MICM,
and it was verified via module replacement, along with the fixed decoder and discriminator
network under the SSAL framework. Table 5 shows that the accuracies were low when the
TM was used alone as the encoder, among which the F1 and mIoU were approximately
8.11~18.96% and 8.44~12.69% less than those obtained by the encoder using the MICM
alone, respectively. The Transformer focuses on context modeling during the encoding
phase and ignores the detailed localization of low-level features, which is hardly restored
by upsampling. Convolution operations can extract rich low-level features. Combining the
Transformer with convolution facilitates the improvement in the segmentation accuracy.
The F1 and mIoU increased by approximately 0.13~19.44% and 0.14~13.09%, respectively,
over the results obtained by using the single encoder. Therefore, TRANet utilizes the ad-
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vantages of the Transformer and convolution to extract robust features, thereby improving
semantic segmentation accuracy.

Table 5. Building extraction accuracies with single/double-branch encoders. The highest accuracy is
displayed in bold.

Dataset Encoder

Labeled Data Amount

1/8 1/4 1/2

Recall Precision F1 mIoU Recall Precision F1 mIoU Recall Precision F1 mIoU

WBD
TM 0.8258 0.8205 0.8231 0.8125 0.8599 0.8465 0.8532 0.8411 0.8801 0.8505 0.8650 0.8529

MICM 0.9355 0.9293 0.9324 0.9221 0.9364 0.9396 0.9380 0.9282 0.9562 0.9361 0.9461 0.9373
TM+MICM 0.9364 0.9301 0.9332 0.9230 0.9495 0.9346 0.9420 0.9327 0.9547 0.9402 0.9474 0.9387

MBD
TM 0.5461 0.5187 0.5321 0.6169 0.6161 0.4859 0.5433 0.6291 0.6579 0.5050 0.5714 0.6466

MICM 0.7477 0.6688 0.7060 0.7327 0.7809 0.7103 0.7439 0.7607 0.7892 0.7348 0.761 0.7735
TM+MICM 0.7839 0.6693 0.7221 0.7454 0.7785 0.7178 0.7469 0.7627 0.7987 0.7355 0.7658 0.7775

GID
TM 0.7228 0.5878 0.6483 0.6762 0.7534 0.6269 0.6843 0.7019 0.7630 0.6299 0.6901 0.7065

MICM 0.7584 0.7734 0.7658 0.7613 0.7815 0.7702 0.7758 0.7708 0.8039 0.7787 0.7911 0.7846
TM+MICM 0.7659 0.7939 0.7797 0.7728 0.7765 0.8052 0.7905 0.7823 0.8406 0.7597 0.7981 0.7923

5.2. Comparison among Different Pooling Modules

The proposed SMP was verified by module replacement along with the fixed decoder
and discriminator network under the SSAL framework. One set of experiments used a
single-branch encoder, containing four simple “convolution-pooling” architectures, where
the pooling layer was successively replaced by max pooling, strip pooling [45], and the
SMP structure. These corresponding alternates were represented by CNN_MP, CNN_SP,
and CNN_SMP. Another set of experiments used a double-branch encoder combining the
TM and the aforementioned “convolution-pooling” architectures, which were represented
by TM+CNN_MP, TM+CNN_SP, and TM+CNN_SMP. The achieved accuracy measures are
listed in Table 6. The single- or double-branch encoders using the SMP performed the best
when compared with those using other pooling structures, thereby proving the proposed
SMP structure.

Table 6. Accuracy assessment of TRANet in terms of building extraction with different pooling
modules. The highest accuracy is displayed in bold.

Method Recall Precision F1 mIoU

CNN_MP 0.9476 0.9360 0.9418 0.9325
CNN_SP 0.9502 0.9346 0.9424 0.9332

CNN_SMP 0.9532 0.9391 0.9461 0.9373
TM+CNN_MP 0.9518 0.9398 0.9458 0.9369
TM+CNN_SP 0.9453 0.9366 0.9409 0.9315

TM+CNN_SMP 0.9547 0.9402 0.9474 0.9387

5.3. Comparison among Different Multiscale Modules

The MICM was verified by module replacement along with the fixed decoder and
discriminator network under the SSAL framework. One set of experiments used a single-
branch encoder, containing four simple “convolution-pooling” architectures and added
atrous spatial pyramid pooling (ASPP) [8], selective kernel (SK) [48], and MICM modules
to the encoder, which were represented by CNN, CNN+ASPP, CNN+SK, and CNN+MICM,
respectively. Another set of experiments used the aforementioned double-branch encoder
with different multiscale modules, which were represented by TM+CNN, TM+CNN+ASPP,
TM+CNN+SK, and TM+CNN+MICM. Table 7 shows that the methods using multiscale
modules achieved higher accuracy than those that did not utilize multiscale modules. Both
the single- and double-branch encoders using the MICM performed better than those
using other multiscale modules. The MICM captures multiscale input maps before feature
extraction, which reduces the loss of details caused by continuous convolution operations
with limited receptive fields.
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Table 7. Building extraction accuracies with different multiscale modules. The highest accuracy is
displayed in bold.

Method Recall Precision F1 mIoU

CNN 0.9476 0.9360 0.9418 0.9325
CNN+ASPP 0.9515 0.9357 0.9435 0.9344

CNN+SK 0.9546 0.9379 0.9462 0.9374
CNN+MICM 0.9559 0.9379 0.9468 0.9381

TM+CNN 0.9518 0.9398 0.9458 0.9369
TM+CNN+ASPP 0.9540 0.9377 0.9458 0.9370

TM+CNN+SK 0.9539 0.9391 0.9464 0.9377
TM+CNN+MICM 0.9547 0.9402 0.9474 0.9387

5.4. Comparison among Different Discriminator Networks

The discriminator network in [24] and that proposed in this paper (represented by an
additional *), along with five segmentation networks, including DeepLabv2, PSPNet, UNet,
TransUNet and TRANet, were utilized for model training under the SSAL framework.
Table 8 presents the achieved accuracy measures. The developed discriminator network
facilitated the same segmentation network to obtain higher segmentation accuracy. This
strategy was effective for all five segmentation networks. The proposed discriminator
network can capture more information with different receptive fields by utilizing multiscale
inputs and convolutions with different kernel sizes.

Table 8. Building extraction accuracies with different discriminator networks. The highest accuracy
is displayed in bold.

Method Recall Precision F1 mIoU Method Recall Precision F1 mIoU

DeepLabv2 0.9042 0.8564 0.8797 0.8677 DeepLabv2 * 0.8973 0.8924 0.8949 0.8824
PSPNet 0.8738 0.8283 0.8504 0.8391 PSPNet * 0.9002 0.8220 0.8593 0.8483
UNet 0.9415 0.9329 0.9372 0.9274 UNet * 0.9512 0.9394 0.9453 0.9364

TransUNet 0.9451 0.9302 0.9376 0.9279 TransUNet * 0.9457 0.9317 0.9387 0.9290
TRANet 0.9504 0.9386 0.9445 0.9354 TRANet * 0.9547 0.9402 0.9474 0.9387

5.5. Model Parameter Discussions

Two important parameters in the TM of TRANet, the number of Transformer layers
and number of heads, are represented by layer_num and head_num, respectively. We used
7128 labeled data and 7128 unlabeled data from the WBD for semi-supervised training, with
different parameter settings, and analyzed the network performance. When the influence of
layer_num was analyzed, head_num was fixed to 8, and layer_num was set to {4,8,12,16,20}.
When the influence of head_num was analyzed, layer_num was fixed to 12, and head_num
was set to {2,4,8,12,16}. Tables 9 and 10 show that the highest accuracy was obtained when
layer_num was 12 and head_num was 8. Therefore, this set of values was used in all
experiments in this study.

Table 9. Building extraction accuracies under different layer_num settings when head_num = 8. The
highest accuracy is displayed in bold.

layer_num Recall Precision F1 mIoU

4 0.9477 0.9236 0.9355 0.9257
8 0.9502 0.9282 0.9391 0.9296
12 0.9547 0.9402 0.9474 0.9387
16 0.9443 0.9361 0.9402 0.9307
20 0.9453 0.9278 0.9365 0.9267
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Table 10. Building extraction accuracies under different head_num settings when layer_num = 12.
The highest accuracy is displayed in bold.

head_num Recall Precision F1 mIoU

2 0.9461 0.9336 0.9398 0.9303
4 0.9467 0.9347 0.9407 0.9313
8 0.9547 0.9402 0.9474 0.9387
12 0.9456 0.9327 0.9391 0.9295
16 0.9328 0.9407 0.9367 0.9268

6. Conclusions

In this article, we designed a novel semi-supervised adversarial semantic segmentation
network for object extraction, from high-resolution remote sensing imagery, which lever-
ages both the local feature extraction advantages of CNNs and the global context modeling
abilities of the Transformer. Experimental results on three datasets with different spatial
resolutions show that TRANet significantly increases the building extraction accuracies
and makes the acquired segmentation results close to those obtained via fully supervised
learning when a small number of labeled data are available. Future works will further
fuse the multilevel features of the Transformer and CNNs to obtain more refined object
information, thereby enhancing the performance of the segmentation network and applying
it to segmentation tasks involving other objects in high-resolution remote sensing imagery.
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