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Abstract: A reliable quality assessment procedure for pansharpening methods is of critical importance
for the development of the related solutions. Unfortunately, the lack of ground truths to be used
as guidance for an objective evaluation has pushed the community to resort to two approaches,
which can also be jointly applied. Hence, two kinds of indexes can be found in the literature:
(i) reference-based reduced-resolution indexes aimed to assess the synthesis ability; (ii) no-reference
subjective quality indexes for full-resolution datasets aimed to assess spectral and spatial consistency.
Both reference-based and no-reference indexes present critical shortcomings, which motivate the
community to explore new solutions. In this work, we propose an alternative no-reference full-
resolution assessment framework. On one side, we introduce a protocol, namely the reprojection
protocol, to take care of the spectral consistency issue. On the other side, a new index of the
spatial consistency between the pansharpened image and the panchromatic band at full resolution
is also proposed. Experimental results carried out on different datasets/sensors demonstrate the
effectiveness of the proposed approach.

Keywords: super-resolution; image enhancement; convolutional neural networks; data fusion;
multispectral images

1. Introduction

Image pansharpening is the process of merging two observations of the same scene,
a low-resolution multispectral (MS) component and a high-resolution panchromatic (PAN)
component, to generate a new multispectral image that displays both the rich spectral
content of the MS and the high resolution of the PAN. By following the taxonomy proposed
in [1], pansharpening methods can be roughly grouped into four main categories: component
substitution (CS) [2], multiresolution analysis (MRA) [3], variational optimization (VO) [4,5],
and machine/deep learning (ML) [6,7].

In the CS approach, the multispectral image is transformed in a suitable domain, where
one of its components is replaced with the PAN. In the particular case of three spectral
bands, the Intensity–Hue–Saturation (IHS) transform is an option where the intensity
component can be replaced with the PAN band [8]. This method has been generalized
in [9] (GIHS) to handle a larger number of bands. Other useful transforms to implement a
CS solution include the principal component analysis [10], the Brovey transform [11], and
the Gram–Schmidt (GS) decomposition [12]. More recently, adaptive CS methods have also
been proposed, such as the advanced versions of GIHS and GS [13], the partial replacement
CS method (PRACS) [14], or the band-dependent spatial detail (BDSD) injection method
and its variants [15–17].

In MRA approaches [3], the pansharpening task is addressed from the perspective
of a pyramidal decomposition to separate low-frequency content from detail components.
The high-frequency spatial details are extracted by means of multi-resolution decomposition,
such as decimated or undecimated wavelet transforms [3,18–20], Laplacian pyramids [21–25],
or other nonseparable transforms, e.g., contourlet [26]. Extracted details are then properly
injected into the upscaled MS component.

Remote Sens. 2022, 14, 1808. https://doi.org/10.3390/rs14081808 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14081808
https://doi.org/10.3390/rs14081808
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6458-9107
https://orcid.org/0000-0001-6577-6879
https://doi.org/10.3390/rs14081808
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14081808?type=check_update&version=2


Remote Sens. 2022, 14, 1808 2 of 25

A further set of methods address the pansharpening problem through the variational
optimization of suitable models of the fused image. In [4], the optimization target involves
the degradation filters mapping high-resolution to low-resolution images, while [27]
leverage sparse representations for detail injection. Palsson et al. proposed several methods
of this class. A total variation regularized least square formulation is provided in [28]. The
same research team has framed the pansharpening as a maximum a posteriori problem
in [29] and, more recently, explored the use of low-rank representations of the joint PAN-
MS [5]. Other methods do not fit the above categories and can be roughly classified as
statistical [30–34], dictionary-based [35–40], or matrix factorization approaches [41–43]. The
reader is referred to [1,44] for a more comprehensive review.

In recent years, a paradigm shift from model-based to data-driven approaches has
revolutionized all fields of image processing, from computer vision [45–49] to remote
sensing [7,50–52]. In pansharpening, the first method based on convolutional neural
networks (CNN) was proposed by Masi et al. in 2016 [6], after which many more followed
in the span of a few years [7,53–64]. It seems safe to say that deep learning is currently the
most popular approach for pansharpening. Nonetheless, it suffers from a major problem:
the lack of ground truth data for supervised training. In fact, multi-resolution sensors can
only provide the original PAN-MS data, downgraded in space or spectrum, and never their
high-resolution versions, which remain to be estimated.

Based on this brief and certainly not exhaustive overview, it appears that pansharpening
is a very active research field, with many new methods proposed every year. Reliable
quality assessment procedures are of critical importance for correctly advancing the state of
the art, and an incorrect evaluation paradigm may negatively impact the design or tuning
of any new solution. Unfortunately, by the very nature of pansharpening, no ground truth
(GT) data are available to perform a reference-based assessment. As a consequence, two
kinds of quality assessments are usually employed:

(i) reference-based reduced-resolution assessment (synthesis check);
(ii) no-reference full-resolution assessment (consistency check).

Lacking GTs, the synthesis capabilities of any pansharpening method can only be
assessed on “synthetic” data. In particular, Wald’s protocol [65] suggests taking the real
PAN-MS data and applying a proper resolution downgrade process for scale reduction.
The scaled PAN-MS pair is the synthesized image whose GT is now given by the original
MS component. The way in which the resolution downgrade has to be performed has
been the object of intense research in the last two decades and has a non-negligible impact
on the reliability of the consequent quality assessment. However, no matter how a GT
is obtained, there exist plenty of reference-based image quality indicators. The spectral
angle mapper was introduced in [66] and assesses the balance among the spectral bands.
On the contrary, the spatial correlation coefficient [67] computes the correlation coefficient
across the high-pass-filtered bands of the pansharpened image and of the GT. It is therefore
oriented to the assessment of the spatial quality. The Erreur Relative Globale Adimensionnelle
de Synthése [68] generalizes the root mean squared error, introducing band-wise correction
weights. The universal image quality index [69] compares image statistics to take into
account local correlation, intensity, and contrast. Based on this general-purpose image
quality index, domain-specific variants suitably adapted to the pansharpening have been
proposed in [70,71]. In addition to these indexes, other popular general-purpose options
are sometimes considered for pansharpening, e.g., the peak signal-to-noise ratio or the
structural similarity (SSIM) index.

Furthermore, spectral or spatial consistency indexes suited for full-resolution images
that do not require any GT have also been developed. A first spectral distortion index
proposed by Zhou et al. [67] compares a rescaled version of the pansharpened image
with the MS image. Other spectral distortion indexes follow a similar procedure [72,73].
In [74], the Quality for Low Resolution (QLR) index based on SSIM was proposed and later
updated, exchanging SSIM with the composite image quality measure CMSC based on
means, standard deviations, and correlation coefficient [75]. Basically, most of the known
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spectral distortion indexes follow this protocol: degradation of the pansharpened image
and comparison with the MS image. The different behavior stems from the degradation
model and the error measure. For example, [74] is based on the structural similarity indexes,
while [75] leverages a composite image quality measure based on statistics such as mean,
variance, and correlation coefficient. On the other hand, the spatial consistency can be
checked through the cross-scale invariance of some statistics [72]. A similar approach
is proposed in [73], where only high-frequency components are concerned. In [74], it
is proposed a Quality for High Resolution (QHR) index, which assesses the SSIM index
between the panchromatic band and a projection of the pansharpened image in the PAN
domain. A variant of this approach with a different error term was proposed in [75].
Another similar approach is proposed in [76], where the coefficient of determination is
used to compare the PAN image with its projection from the pansharpened image. It is also
worth mentioning other no-reference quality indexes, such as the Natural Image Quality
Evaluator (NIQE) [77,78], which seeks to assess the image quality by itself, rather than
checking consistency.

Finally, often, the spectral and the spatial consistency indexes are somehow combined,
e.g., through geometric means, to provide a single hybrid consistency index representing
the overall quality no-reference assessment of the fused images [72–75,78–83].

Both reference-based and no-reference indexes present inherent limitations, which are
analyzed in the next section.

In this work, we propose new full-resolution quality indexes that overcome some
of these problems and provide more reliable guidance for the development of ever more
accurate pansharpening methods. To this purpose, the developed indexes have been made
available to the community through a web repository at https://github.com/matciotola/
fr-pansh-eval-tool/ (accessed on 5 April 2022).

The remainder of the paper is organized as follows. Section 2 provides a brief
critical survey on pansharpening assessment. Section 3 introduces the proposed approach.
Section 4 discusses the experimental results and, finally, Section 5 draws conclusions.

2. A Review of Panshapening Indexes

Due to the lack of ground truths, visual inspection by human experts is the ultimate
benchmark for pansharpening methods. However, this is a lengthy and tedious task,
and numerical indexes are essential for a viable development process. Reduced-resolution
(RR) indexes are computed, according to Wald’s protocol [65], by reducing the scale of
both MS and PAN components. Then, pansharpening is performed on these rescaled
data, and the original MS is used as GT to compute reference-based indexes. Instead, full-
resolution (FR) indexes are computed on the original data and try to assess their spectral
and/or spatial consistency with the pansharpened output. In a comprehensive evaluation,
following Wald’s protocol [65], usually, both types of indexes are considered together, in
addition to visual inspection [1]. In order to highlight the critical points of the current
approaches to the quality assessment, we provide a brief overview of some of the most
representative indexes in the following.

2.1. Reduced-Resolution Assessment

Let M and P be the original MS and PAN components, respectively, and M̂ be the
pansharpened image. The synthesis properties cannot be directly verified on the full-
resolution pair (M, P) due to the lack of GT with which to compare M̂. Leveraging on
a scale invariance hypothesis, it is, however, possible to synthesize datasets with GT by
properly downgrading the available (M, P) pairs by a factor R (PAN-MS resolution ratio).
The resulting reduced-resolution pair (M↓, P↓) can therefore be used as the source input
for the pansharpening task, whereas the original MS image M acts as GT. Once moved to
the reduced-resolution space, many different quality indexes can be computed to assess the
mismatch between the pansharpened image and its reference GT, such as root mean square

https://github.com/matciotola/fr-pansh-eval-tool/
https://github.com/matciotola/fr-pansh-eval-tool/
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error, structural similarity, and so on. In particular, regarding pansharpening, the most
common are the following.

(a) SAM (Spectral Angle Mapper) [66]. It determines the spectral similarity in terms of the
pixel-wise average angle between spectral signatures. If v and v̂ are two corresponding
pixel spectral responses to be compared, SAM is obtained by averaging over all image
locations the following “angle” among vectors:

SAM(v, v̂) = arccos
( 〈v, v̂〉
‖v‖2 · ‖v̂‖2

)
. (1)

(b) ERGAS (Erreur Relative Globale Adimensionnelle de Synthése) [68]. This is one of the most
popular indexes to assess both spectral and structural fidelity between a synthesized
image and a target GT. Such an index presents interesting invariance properties.
Indeed, it is insensitive to the radiometric range, number of bands, and resolution
ratio. If B is the number of spectral bands, it is defined as

ERGAS =
100
R

√√√√ 1
B

B

∑
b=1

(
RMSEb

µGT
b

)2

, (2)

where RMSEb is the root mean square error over the b-th spectral band, and µGT
b is the

average intensity of the b-th band of the GT image.
(c) Q2n [71]. This is a multiband extension of the universal image quality index (UIQI) [69].

Each pixel of an image with B spectral bands is accommodated into a hypercomplex
(HC) number with one real part and B– 1 imaginary parts. Let z and ẑ denote the HC
representations of a generic GT pixel and its prediction, respectively, and then Q2n

can be written as the product of three terms:

Q2n =
|σzẑ|
σzσẑ

· 2σzσẑ

σ2
z + σ2

ẑ
· 2µzµẑ

|µz|2 + |µẑ|2
. (3)

The first factor provides the modulus of the HC correlation coefficient between z and ẑ.
The second and the third terms measure contrast changes and mean bias, respectively,
on all bands simultaneously. Statistics are typically computed on 32 × 32 pixel blocks,
and an average over the blocks of the whole image provides the global Q2n score,
which takes values in the [0, 1] interval, being 1 the optimal value achieved if and only
if z = ẑ in each location.

Behind its appealing simplicity, regardless of the specific error measurement employed,
the reduced-resolution assessment hides some major subtle pitfalls that undermine its
usefulness. On one hand, its accuracy depends critically on the method used for scaling,
which may not correspond to the actual sensing conditions. More fundamentally, it relies
on the arbitrary assumption that a method optimized for the RR scale will keep its good
behavior at the FR scale. Experimental evidence shows this not to be the case. Furthermore,
optimizing parameters for a given scale may lead to a sort of “scale overfitting”, with the
perverse effect of degrading performance on a different scale. For these reasons, many
recent studies focus on no-reference full-resolution quality indexes [76,78,80,82]. It is also
worth recalling that the assessment of spectral and spatial consistencies is not necessarily
linked to a fusion task and is of broader interest, with applications in the medical [84],
agricultural [85], and food [86] sciences, to mention a few.

2.2. Full-Resolution No-Reference Assessment

As a consequence of the above limitations, many studies have moved toward a no-
reference approach to the pansharpening quality assessment. In particular, the same Wald’s
protocol [65] recognizes the problem of invoking a complementary consistency quality
check in addition to the synthesis capacity assessment. In practice, for consistency-based
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assessment, the input data are pansharpened in their original (full) resolution space. The
outcome is then compared with both input components, MS and PAN, for spectral and
consistency assessment, respectively. The spectral consistency check requires a spatial
resolution degradation of the pansharpened image, which is typically done by means of a
low-pass filtering (LPF), followed by decimation, using LPFs that approximate the sensor
Modulation Transfer Function (MTF) [87]. Other approaches have also been explored, such
as wavelet transforms [88,89], averaging operators [90], and pyramid decomposition [21].
The spatial (or structural) consistency check is indeed more controversial, lacking a clear
relationship that allows one to project the pansharpened MS in the PAN domain [91].
No-reference indexes are also often referred to as FR indexes, as they do not require any
resolution degradation of the input data, contrarily to the reference-based ones, which
do need it because of the lack of GTs. For this reason, the latter are also referred to as
RR indexes.

Among the several FR quality assessment approaches proposed in the last few
years [26,67,72,73,76], we will recall a few of them, which are the most frequently used.
In particular, Alparone et al. [72] proposed a spectral distortion index Dλ defined as

Dλ = p

√√√√ 1
B(B− 1)

B

∑
i=1

B

∑
j=1,j 6=j

∣∣di,j(M, M̂)
∣∣p, (4)

where di,j(M, M̂) = Q(Mi, Mj) − Q(M̂i, M̂j), with subscripts indicating selected bands
and Q(·, ·) being the UIQI [69]. Such an index was also enclosed in the pansharpening
benchmark toolbox [44]. As can be observed, Dλ compares the inter-band relationship
through the UIQI, separately for the input MS M and the pansharpened image M̂, and then
quantifies their divergence over each coupling of spectral bands. As can be assumed,
lacking a direct measurement of the distance between M and M̂, and leveraging an
assumption of cross-scale inter-band correlation invariance only, there can be important
spectral aberrations that can remain unseen by Dλ. The recently published revisited
version [1] of the same toolbox [44], indeed, makes use of an approximated version of
Khan’s index proposed in [73] to monitor the spectral consistency. In particular, Khan’s
index is defined as follows

D(K)
λ = 1−Q2n

(
M̂lp
↓ , M

)
, (5)

where M̂lp
↓ indicates the MTF-based low-pass-filtered and decimated version of the

pansharpened image M̂, while M is the original input MS. Its approximation, used in
the toolbox [1], named D̃(K)

λ , avoids the decimation of M̂ by using an upscaled version M̃
of M:

D̃(K)
λ = 1−Q2n

(
M̂lp, M̃

)
, (6)

being M̂lp the low-pass version of M̂. These indexes range between 0 (optimal value) and
1, and clearly relate to the spectral consistency, since the resolution downgrade process
applied to M̂ eliminates the high-pass content retrieved from the PAN. However, two
critical points should be taken into account:

(a) dependence on the accuracy of the estimated MTF;
(b) sensitivity to the PAN-MS alignment.

In particular, as a consequence of (b), methods such as several CS approaches [12–14,25,92]
that intrinsically address the coregistration problem are penalized by both D(K)

λ and

D̃(K)
λ on misaligned datasets. Hence, in order to fairly use Khan’s index, it is usually

recommended to keep separate the registration and pansharpening problems by means of
a prior coregistration of the datasets to be used for testing [1,44].
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Several indexes have also been proposed for FR spatial consistency check [72–74,76].
In particular, the spatial distortion index proposed in [72] is used in the most recent
pansharpening assessment toolbox [1] and is defined as:

DS =

∥∥∥∥∥ 1
B

B

∑
i=1

Q(M̂i, P)−Q(Mi, P↓)

∥∥∥∥∥
q

, (7)

where P↓ is the original PAN component resized to the MS scale and Q(·, ·) is the UIQI
quality index [69]. This index is somehow similar to Dλ as it checks the cross-scale
invariance of the PAN-MS spectral correlation. Therefore, it inherits similar limitations,
which are:

i. no direct comparison between the pansharpened image M̂ and the PAN P;
ii. a cross-scale invariance assumption for which there are no guarantees.

3. Proposed Full-Resolution Indexes

We now propose some new indexes for assessing the quality of pansharpening, aiming
to overcome some limitations of traditional ones. Given the weakness of the scale invariance
assumption of reduced-resolution quality assessment indexes, we focus on full-resolution
ones, moving our perspective from synthesis to consistency. In the following, we will
discuss spectral and spatial assessment separately.

3.1. Reprojection Protocol for Spectral Accuracy Assessment

The assessment of the spectral consistency is not as controversial as the assessment of
the spatial one. In particular, as far as we know, Khan’s approach is the most trusted one
for this purpose. Nonetheless, as remarked above, it has some limitations and, in particular,
in order to work properly, the datasets must be well aligned.

To cope with this issue without the need to operate any coregistration on the available
datasets, let us now consider a variation of Khan’s index where the decimation of M̂lp

is performed using a band-wise shift that maximizes the correlation coefficient between
the low-pass-filtered PAN Plp and each ideally interpolated MS band M̃b. In the case of
aligned datasets, it returns the usual Khan’s index because no shifts are applied. Otherwise,
before decimation, we apply to M̂ the same shift that would align M̃ and Plp. Let us
indicate as D(K)

λ,align such an index that is formally given by

D(K)
λ,align = 1−Q2n

(
M̂lp
↓a, M

)
, (8)

where ↓a indicates decimation with band-wise alignment.
Let M indicate a generic reference-based distortion index, such as Q2n, SAM, or

ERGAS. We define the reprojection index R-M as

R-M =M
(

M̂lp
↓a, M

)
, (9)

which, in the particular case ofM = Q2n, reduces to the complement of the D(K)
λ,align variant

defined above (Equation( 8)), i.e.,

R-Q2n = Q2n
(

M̂lp
↓a, M

)
= 1− D(K)

λ,align. (10)

In other words, the pansharpened image M̂ is projected in the original MS space
prior to being compared with the MS image M (reference) using the error indexM. The
projection accounts for both eventual misalignment and sensor MTF using matched low-
pass filters. Of course, because of the low-pass filtering, the high-frequency image content
(spatial details) is discarded and some further indexes will be necessary to assess spatial
quality. Note also that, under the hypothesis that the sensor MTF is correctly simulated, the
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reprojection indexes ensure that an ideal pansharpening (GT) would achieve the best score
as expected. This will be experimentally analyzed in Section 4.3.

A pictorial representation of the proposed reprojection indexes, which relates them to
the synthesis assessment protocol proposed by Wald [65], is given in Figure 1. The common
starting point (top-left) is the available (P, M) pair. Indexes based on Wald’s protocol
follow the counterclockwise path: decimation–pansharpening–measure. The proposed
reprojection protocol, instead, consists in following the clockwise path: pansharpening–
decimation–measure, where the actual pansharpened image is first computed, and then
reprojected on the low-resolution domain for quality assessment. Eventually, in both cases,
the original MS is used as a reference for any error measurement. In our proposal, however,
pansharpening precedes the resolution downgrading, thereby exploiting the most valuable
source of spatial information, the original PAN. Furthermore, the overall evaluation no
longer depends on how the PAN is downscaled. Since the the reprojection protocol involves
only the low-resolution component of the synthesized image, it has to be considered a
spectral consistency rather than a synthesis check. A pseudo-code of the reprojection
indexes is given in Algorithm 1.

Algorithm 1 Reprojection error assessment
Require: M̂, M, P, gMTF (MTF parameters),M (error function)
Ensure: R-M
1: M̃ = upscale(M, R) . polynomial interpolation
2: Plp = LPF(P, gMTF) . MTF-tailored low-pass filtering
3: for b = 1 : B do
4: s(b) = arg max

(m,n)∈[1,R]2
corrcoef

(
Plp

i,j , M̃(b)i+m,j+n

)
. band-wise shift for alignment

5: end for
6: M̂lp = LPF(M̂, gMTF)

7: M̂lp
↓a = decimation(M̂lp, R, s)

8: R-M =M
(

M̂lp
↓a, M

)
. Equation (9)

M

pansharpening

LPF + decim.

(MS only)

pansharpening

LPF + decim.

Synthesis

Consistency
(reprojection)

Figure 1. Spectral consistency check using reprojection (clockwise) vs. synthesis check according to
Wald’s protocol (counterclockwise). M is any reference-based index. In gray and red are shown the
PAN and MS channels, respectively.

3.2. Correlation-Based Spatial Consistency Index

In order to complement the reprojection-based assessment, we also propose a new
index to evaluate the spatial consistency with the aim of obtaining indications better
correlated to human judgment than those provided by DS. In particular, to assess the
preservation of fine-scale spatial structures, we compute the average local correlation
between the pansharpened image and the PAN.
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Let Xσ
ij indicate a σ × σ patch of X centered on location (i, j). We compute the

correlation field ρσ
PM̂

given by the local correlation coefficients between P and each band b
of M̂:

ρσ
PM̂(i, j, b) = corrcoef

(
Pσ

ij , M̂(b)σ
ij

)
(11)

Then, we reduce it to its average value ρσ
PM̂

over space and spectral bands. The final
index is then defined as

Dρ , 1− ρσ
PM̂

, (12)

such that Dρ = 0 corresponds to perfect correlation. From a different point of view, we are
studying to what extent a σ×σ patch of any band of M̂ can be linearly predicted from the
corresponding PAN patch. Therefore, Dρ is strictly related to the matching between the
spatial layouts of M̂ and P at a fine scale.

The choice of the scale parameter σ is of critical importance, as we are interested in
the exploitation of the complementary information discarded by the reprojection indexes,
i.e., details appearing only at the PAN scale but not at the MS scale. Therefore, if R is the
resolution ratio, by choosing σ = R (equal to 4 for our datasets), we can place the focus
only on that spatial content that is not visible at the MS scale. By doing so, we reduce
the dependence between the proposed spatial (Dρ) and spectral (R-M) distortion indexes,
assigning to them clear but well-separated evaluation objectives.

As for DS and D(K)
λ , or its variants, Dρ computed for M̂ = GT does not reach the

zero value, given the slightly different spatial layout of different bands in natural images
and the complex relationship between the high-resolution image and its panchromatic
projection [91]. Nonetheless, we expect good-quality pansharpened images to present
relatively small values of Dρ. A detailed discussion in this regard, supported by our
experimental results, will be provided in the following.

4. Experimental Results and Discussion

In this section, we present several experimental analyses. Preliminarily, a summary of
the datasets employed and the involved methods is provided. The first experiment focuses
on the dependence of the spectral consistency indexes on the alignments of the MS bands
with the PAN. Next, we move to the reduced-resolution domain to cross-check reference-
based and no-reference indexes thanks to the availability of the ground truth. Then, it
follows an experimental analysis focused on the assessment of the spatial consistency,
before closing with an overall comparison.

4.1. Datasets and Methods

The experimental validation relies on 25 methods provided in the benchmark toolbox [1]
belonging to the four main categories recalled in Section 1, CS (8), MRA (9), VO (3), and ML
(4), plus an ideal interpolator (EXP). The dataset is composed of two WorldView-2 (WV2)
and two WorldView-3 (WV3) large images, courtesy sample products of DigitalGlobe©. In
total, 20 512 × 512 tiles were extracted from the WV2 images (Washington and Stockholm)
and 20 from the WV3 images (Adelaide and Mexico City) for the experiments at full
resolution. Likewise, 20 + 20 2048 × 2048 tiles were extracted and downscaled to size
512 × 512 for the experiments at reduced resolution. Table 1 summarizes the main spectral
and spatial characteristics of the WV-2 and WV-3 sensors.
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Table 1. Bandwidths of the multispectral channels (left-hand side) and Ground Sample Distance
(GSD) [m] at Nadir (rightmost column) for WorldView-2 and WorldView-3 images.

Sensor Bandwidths of the MS Channels [nm] GSD [m]

Coastal Red Blue Red Edge Green Near-IR1 Yellow Near-IR2 PAN/MS

WV2 396-458 624-694 442-515 699-749 506-586 765-901 584-632 856-1043 0.46/1.84
WV3 400-450 630-690 450-510 705-745 510-580 770-895 585-625 860-1040 0.31/1.24

4.2. Spectral Distortion Dependence on PAN-MS Misalignment

The impact of band misregistration on the quality of the fused products has been
already recognized in the past [93–95]. Here, we propose an ad hoc experimental analysis
to show the robustness of the proposed reprojection indexes to the data misregistration.
The starting point is a WV3 dataset composed of ten 2048 × 2048 tiles extracted from a
larger image of Adelaide (DigitalGlobe© sample product). This dataset presents band
misalignment that we have corrected to produce a companion aligned dataset. In Table 2,
we summarize the average spectral distortion scores for each method for both datasets.
For a convenient reading of these numbers, in Figure 2, we show the impact of data
misregistration on D(K)

λ and D̃(K)
λ in differential terms.

Table 2. Misregistration impact on Dλ, D(K)
λ , D̃(K)

λ and D(K)
λ,align. Detailed information about the

methods can be found in [1].

Dλ D(K)
λ D̃(K)

λ D(K)
λ,align

Aligned Dataset Yes No Yes No Yes No Yes No

EXP (interpolator) 0.0000 0.0000 0.0249 0.0336 0.0394 0.0479 0.1238 0.0670

CS

BT-H [92] 0.0698 0.0823 0.1231 0.0696 0.2310 0.1324 0.0874 0.0697
BDSD [15] 0.0429 0.0377 0.0989 0.0867 0.1834 0.1561 0.1511 0.1064
C-BDSD [16] 0.0514 0.0557 0.1436 0.1195 0.2158 0.1836 0.2346 0.1664
BDSD-PC [17] 0.0141 0.0160 0.0782 0.0896 0.1464 0.1530 0.0705 0.0892
GS [12] 0.0196 0.0177 0.1494 0.0824 0.2611 0.1414 0.0824 0.0839
GSA [13] 0.0576 0.0573 0.1182 0.0604 0.2457 0.1334 0.0760 0.0624
C-GSA [25] 0.0309 0.0333 0.0929 0.0583 0.1925 0.1240 0.0741 0.0625
PRACS [14] 0.0178 0.0193 0.0728 0.0468 0.1464 0.0889 0.0834 0.0610

MRA

AWLP [96] 0.0332 0.0416 0.0282 0.0273 0.0415 0.0320 0.0920 0.0495
MTF-GLP [96] 0.0679 0.0759 0.0231 0.0195 0.0434 0.0352 0.0912 0.0428
MTF-GLP-FS [97] 0.0544 0.0669 0.0222 0.0199 0.0400 0.0347 0.0944 0.0439
MTF-GLP-HPM [96] 0.0620 0.0722 0.0310 0.0210 0.0508 0.0376 0.0909 0.0411
MTF-GLP-HPM-H [92] 0.1019 0.1177 0.0270 0.0200 0.0524 0.0401 0.0885 0.0402
MTF-GLP-HPM-R [98] 0.0497 0.0620 0.0272 0.0210 0.0453 0.0362 0.0928 0.0420
MTF-GLP-CBD [87] 0.0551 0.0657 0.0222 0.0200 0.0402 0.0346 0.0942 0.0441
C-MTF-GLP-CBD [25] 0.0089 0.0375 0.0224 0.0225 0.0360 0.0347 0.1129 0.0495
MF [99] 0.0585 0.0711 0.0421 0.0281 0.0681 0.0441 0.0733 0.0371

VO
FE-HPM [4] 0.0579 0.0666 0.0340 0.0210 0.0529 0.0355 0.0784 0.0406
SR-D [27] 0.0225 0.0381 0.0043 0.0064 0.0117 0.0190 0.1254 0.0450
TV [28] 0.0166 0.0238 0.0225 0.0173 0.0459 0.0373 0.0583 0.0252

ML

PNN [6] 0.0589 0.0553 0.0740 0.0629 0.1477 0.1307 0.1815 0.0878
PNN-IDX [6] 0.0837 0.0848 0.2671 0.0546 0.1570 0.1005 0.3344 0.0889
A-PNN [100] 0.0527 0.0636 0.0371 0.0312 0.0773 0.0607 0.0963 0.0522
A-PNN-FT [100] 0.0196 0.0203 0.0414 0.0308 0.0815 0.0579 0.0830 0.0489

Each bar indicates the difference between the values of the given indicator computed
on aligned and misaligned datasets, respectively. As can be clearly noticed, traditional CS
methods such as BT-H, GS, GSA, C-GSA, PRACS, which, by construction, provide fused
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images that are strongly anchored to the PAN geometry, show a considerable spectral loss
according to D(K)

λ or D̃(K)
λ . These results are not aligned with our expectations, as these CS

methods are expected to be more robust to misregistration. The reader can refer to [93] for
a theoretical comparison between CS and MRA methods in the presence of misregistration,
with the former category being superior to the latter.
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Figure 2. Misregistration impact on D(K)
λ and D̃(K)

λ . Bar levels indicate the variation in the indexes
due to data misragistration.

In Figure 3, instead, we compare Khan’s index D(K)
λ with its variant D(K)

λ,align with
alignment. Again, bars indicate their variations due to dataset misalignment.
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Figure 3. Misregistration impact on D(K)
λ and D(K)

λ,align. Bar levels indicate the variation in the indexes
due to data misragistration.

By inspecting the figure, it can be noticed that misregistered data generally cause
an increase in D(K)

λ,align, except for some CS methods, such as BT-H, GS, GSA, C-GSA, and
PRACS, which tend to preserve the PAN geometry operating an intrinsic alignment. On
the contrary, other methods, notably those belonging to the MRA, VO, and ML categories,
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which are oriented to the spectral preservation but do not operate alignment, register an
increase in the spectral distortion when the metric takes into account the misalignment.

Concluding, the proposed experiment suggests that Khan’s index with alignment
correction, which is the complement of the proposed reprojection index R-Q2n, is more
robust to misalignment or, at least, more consistent with the theoretical expectation [93]
than the original Khan’s index D(K)

λ or its variant D̃(K)
λ .

4.3. Reference vs. No-Reference Index Cross-Checking in the Reduced-Resolution Space

In order to assess the consistency between no-reference and reference-based indicators,
we have designed a set of experiments in the reduced-resolution space. Although no-
reference indexes are conceived to work in the full-resolution framework, their use on
(simulated) reduced-resolution datasets allows us to carry out studies on the correlation
between them and objective error measurements (reference-based indexes) thanks to the
availability of GTs. In particular, for this experiment, we have resorted to our WV2 dataset
composed of twenty 2048× 2048 images at full resolution (for the sake of brevity, analogous
results obtained on WV3 images will not be presented). These images come from two
larger images of Washington (13) and Stockholm (7), respectively, courtesy samples of
DigitalGlobe©. Each such tile was resized to 512 × 512 pixels using the usual Wald’s
downgrading protocol. This dataset was already well coregistered; therefore, we have
proceeded to create a misregistered counterpart operating a simple modification of the
downgrading process: a 1-pixel shift (in both directions) has been introduced in the
decimation (after LPF) of the MS bands.

Then, 25 pansharpening algorithms provided by the toolbox [1] were run on each
RR sample image, generating 500 results, for each of the two datasets (registered and
not), for which all the indexes of interest have been computed. Eventually, we have
obtained hundreds of points in a multi-dimensional evaluation space, which enable plenty
of analyses, with some dimensions corresponding to the reference-based indexes (SAM,
ERGAS and Q2n, SSIM, CMSC), and the remaining ones associated with the proposed
indexes (R-SAM, R-ERGAS, R-Q2n = 1 − D(K)

λ,align, Dρ) and other state-of-the-art no-

reference indexes (Dλ, D(K)
λ , D̃(K)

λ , DS, QLR1, QLR2). In particular, by construction, we
expect to observe a good correlation between Khan’s index variants and Q2n. Therefore,
we start from the scatter plots shown in Figure 4 with such variants, in turn, vs. Q2n.

Both the “aligned” (top) and the “misaligned” (bottom) datasets are considered. For
the aligned case, by visual inspection, we can appreciate that D(K)

λ correlates better than

D̃(K)
λ with Q2n. Moreover, D(K)

λ,align behaves similarly to D(K)
λ because no alignment is

operated. For both D(K)
λ and D(K)

λ,align, the GTs (black dots), for which Q2n is always 1,
obtain the ideal value (0) of spectral distortion. Rarely, the alignment process (based
on the maximization of the correlation) embedded in the computation of D(K)

λ,align fails
for some spectral band, giving rise to non-zero results for the GT even if the test image
is aligned. Moreover, D̃(K)

λ is not minimized by the GT, coherently with its definition
(Equation (6)) based on the comparison between the smoothed GT and the upscaled MS. It
is also worth noticing that the correlation degree between Q2n and the different variants
of spectral distortion grows when assessed by category (by colors), supporting the idea
that no-reference indexes are more reliable for intra-class assessment [1]. Moving to the
misaligned dataset (bottom scatters), it can be clearly recognized a bias for both D̃(K)

λ and

D(K)
λ , which does not occur for D(K)

λ,align, represented by the shift of the GT scores, which no

longer achieve the ideal value. In general, the distortion scores in terms of D̃(K)
λ and D(K)

λ
register a degradation, with CS methods (blue) much more penalized than others. This last
observation gives further support to the interpretation provided above about the results
of Figures 2 and 3. A similar behavior is also registered for other state-of-the-art indexes.
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For example, in Figure 5, the score scatters in the QLR1-SSIM (left) and QLR2-CMSC (right)
planes, with registered (top) and misaligned (bottom) datasets.
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Figure 4. From left to right, D̃(K)
λ , D(K)

λ , and D(K)
λ,align = 1−R-Q2n vs. Q2n on the WV2 RR dataset.

Both the “aligned” (top) and “misaligned” (bottom) dataset cases are shown. Each marker is
associated with a single pansharpening result on a 512× 512 tile. Black markers correspond to
the ground truth. Light gray ones (EXP) correspond to a simple interpolation. The remaining clusters
correspond to the different algorithms grouped by categories.
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Figure 5. From left to right, QLR1 vs. SSIM and QLR2 vs. CMSC on the WorldView-2 RR dataset.
Both the “aligned” (top) and “misaligned” (bottom) dataset cases are shown. Each marker is
associated with a single pansharpening result on a 512× 512 tile. Black markers correspond to
the ground truth. Light gray ones (EXP) correspond to a simple interpolation. The remaining clusters
correspond to the different algorithms grouped by categories.
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Let us now leave the registration problem out, considering aligned datasets only and
looking at the relationship between the spectral consistency indexes and the three most
used reference-based indexes, i.e., SAM, ERGAS, and Q2n, with the help of Figure 6. From
top to bottom, we can see how different compared spectral consistency indexes agree with
the three (column-wise distributed) reference-based indexes.
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Figure 6. No-reference vs. reference-based indexes’ scores on the aligned WV2 RR dataset. From left
to right, SAM, ERGAS, and Q2n are selected as reference-based indexes (x-axis). From top to bottom,

D(K)
λ , QLR1, QLR2, and R-M are chosen as no-reference indexes (y-axis).

From the top row scatters, it clearly appears that D(K)
λ agrees with SAM and ERGAS

much less than with Q2n. This is because D(K)
λ is based on the same Q2n index but also

because SAM and ERGAS encode a different concept of quality. Similar considerations
apply for QLR1 and QLR2, which, as well as Q2n, are both based on the comparison among
local statistics. For these reasons, we believe that, in addition to R-Q2n, it makes sense to
also provide R-SAM and R-ERGAS for a more comprehensive evaluation of pansharpening
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methods. On the bottom row, we show all three (M, R-M) scatter plots, which speak in
favor of a good level of agreement between each objective indexM and the reprojected
counterpart R-M.

Besides the qualitative interpretation of the score scatters, we can quantify the level
of agreement among the reference-based indexes and the compared no-reference indexes
in terms of correlation coefficients. These are shown in the usual matrix form, for both
the aligned (Table 3) and misaligned (Table 4) datasets, respectively. As expected, the
reprojected indexes show a relatively high correlation with the non-reprojected counterpart,
both for aligned and misaligned datasets. D(K)

λ and D̃(K)
λ also correlate well with Q2n,

but only in the aligned case. Likewise, QLR1 and QLR2 also correlate well with different
reference-based indexes in ideal conditions but register a drop on misaligned data. It is
also worth remarking that GT scores have been discarded so as not to penalize excessively
the competitors on the misaligned dataset (see GT score distribution in Figures 4 and 5).

Table 3. Correlation coefficient among different indexes (some have been complemented for a uniform
polarization) obtained on the aligned RR WV2 datasets.

R-SAM R-ERGAS R-Q2n Dλ D(K)
λ D̃(K)

λ D(K)
λ,align QLR1 QLR2

SAM 0.595 0.353 0.096 0.372 0.101 −0.012 0.096 0.409 0.348

ERGAS 0.141 0.743 0.169 0.050 0.169 0.078 0.169 0.173 0.493

Q2n 0.121 0.306 0.384 −0.326 0.382 0.417 0.384 0.486 0.356

SSIM 0.204 0.338 0.199 −0.106 0.199 0.179 0.199 0.603 0.359

CMSC 0.144 0.390 0.318 −0.095 0.320 0.211 0.318 0.466 0.556

Table 4. Correlation coefficient among different indexes (some have been complemented for a uniform
polarization) obtained on the misaligned RR WV2 datasets.

R-SAM R-ERGAS R-Q2n Dλ D(K)
λ D̃(K)

λ D(K)
λ,align QLR1 QLR2

SAM 0.745 0.200 0.119 0.336 0.054 −0.066 0.119 0.238 0.253

ERGAS 0.022 0.932 0.221 0.041 0.171 0.062 0.221 0.028 0.361

Q2n 0.023 0.152 0.439 −0.329 0.287 0.293 0.439 0.226 0.110

SSIM 0.164 0.168 0.255 −0.142 0.066 0.035 0.255 0.218 0.046

CMSC 0.151 0.298 0.429 −0.106 0.238 0.079 0.429 0.159 0.294

4.4. A Qualitative Assessment of the Proposed Spatial Distortion Index

While objective synthesis quality indexes such as Q2n and ERGAS account for both
spectral and spatial inaccuracies, their reprojected versions clearly limit their scope to the
spectral component as they are computed on low-pass versions of the fused products,
ignoring image “details”. It is therefore necessary to complement these indexes with some
spatial quality indicator.

The assessment of the spatial quality of a pansharpened image in the full-resolution
framework is very difficult and somewhat controversial, lacking a degradation model to
describe the relationship between the full-resolution spatial–spectral data cube (fused
image) and the panchromatic image. In fact, while the spectral degradation can be
reasonably modeled through the sensor MTF, allowing for a spectral consistency check, the
spatial degradation cannot be modeled through a simple global weighted band average [91].
Indeed, in addition to the obvious spatial dependency of the spectral mixing process that
provides the PAN image, there is also a mismatch between the PAN spectral coverage
and the MS coverage [91]. This means that there could be details “seen” by the PAN but
not by the virtual full-resolution MS counterpart, and vice versa. This is the origin of the
ill-posedness of the pansharpening problem, mostly residing in the spatial reconstruction,
which makes the spatial consistency assessment subjective to some extent. On the basis
of this observation, we provide here an interpretation of some sample results through
visual inspection, comparing the proposed index Dρ with the state-of-the-art spatial
distortion index DS. Of course, given the subjective nature of this kind of analysis, we
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will focus on clearly visible phenomena, leaving to the reader the final say based on
his/her visual perception of more subtle patterns, if any. In particular, we propose two
experiments: a “horizontal” comparison among the pansharpening toolbox methods and
a “vertical” comparison where a single machine learning method is optimized using the
proposed Dρ (varying the related scale parameter σ) jointly with a term controlling the
spectral consistency.

Let us start with the first experiment. Figure 7 shows some FR pansharpening results
for crops extracted from a single tile of the WV3 Adelaide image (For visualization purposes,
hereinafter, all displayed crops extracted from multispectral images are obtained combining
the red, green, and blue channels (see Table 1)). The PAN component, used as a reference, is
shown in the middle of different groups of results. In the top half of the figure, the top four
solutions according to DS (left) and the top four according to Dρ (right) are shown with
DS and Dρ computed on the whole tile. Similarly, in the bottom half, the top four results
according to QHR and NIQE are shown with related scores. It appears clearly that images
selected according to the Dρ index ensure better agreement with the reference in terms of
spatial layout and, in general, better quality, with sharp contours, accurate textures, and a
lack of annoying patterns such as those present in some top DS and top NIQE images. It is
interesting to observe that, among the top four DS results, the most convincing one from
visual inspection corresponds also to the relatively lowest Dρ (AWLP). It is also worth
observing a certain degree of agreement between Dρ and QHR. Similar phenomena are
observed on all other tiles.

In the previous experiment, we set the scale parameter σ = R = 4 according to the
above-discussed theoretical motivations (Section 3.2). To gain insight into the effectiveness
of this choice, we have designed an additional ad hoc experiment to provide pansharpening
results with controlled spectral and spatial qualities, with the latter quantified through
Dρ, configurable using different scale settings. This is achieved by leveraging a CNN
model working in target-adaptive modality [101] and using a combination of the wanted
consistency measures as a loss. In this context, the choice of the specific CNN model is
not critical as we work in adaptive modality, by running unsupervised tuning iterations
on each test image until the loss terms reach the desired level (overfitting). In particular,
the optimized loss is defined as

L = max(‖M̂lp
↓a −M‖1,L∗λ) + β max(D(σ)

ρ , D∗ρ), (13)

where L∗λ and D∗ρ are two prefixed target levels for the spectral (‖M̂lp
↓a −M‖1) and spatial

(D(σ)
ρ ) quality indicators, respectively. In practice, the network parameters are pushed to

overfit the test image so that the corresponding loss reaches the target quality (L∗λ, D∗ρ).
These two threshold values could be ideally set to zero, but this would lead to extremely
long tuning and may also generate instability because of a conflicting interaction between
the two loss terms. In particular, we have set L∗λ = 0.015, quite a low value considering the
dynamic range of the pixel values, and D∗ρ = 0.1, which is also quite low according to our
experiments. By doing so, each test requires a different number of tuning iterations. We
have therefore oversized the number (experimentally set to 5000) of iterations to ensure
convergence for all. This process is repeated for several choices of the scale parameter σ
ranging from 2 to 64. In Figure 8, we show some crops from the WV3 dataset. These sample
results reflect a general behavior that we have observed in a wide range of experiments,
which is a relatively good response in the range of σ ∈ [4, 8]. For smaller (σ = 2) or larger
(σ > 8) scale values, noisy patterns arise. These are particularly noticeable on roofs and
roads for the selected samples. The above observations provide experimental validation
of the choice σ = R = 4 proposed in this work on the basis of the theoretical motivations
discussed in Section 3.2.
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↑DS←−− PAN
↑Dρ−−→

DS = 0.031 DS = 0.029 DS = 0.028 DS = 0.011 DS = 0.075 DS = 0.072 DS = 0.099 DS = 0.054
Dρ = 0.174 Dρ = 0.084 Dρ = 0.260 Dρ = 0.195 Dρ = 0.044 Dρ = 0.059 Dρ = 0.063 Dρ = 0.066

TV AWLP A-PNN-FT C-MTF- GSA MTF-GLP- BT-H MTF-GLP
GLP-CBD -HPM-H

↓QHR←−−− PAN
↑NIQE−−−−→

QHR=0.969 QHR=0.970 QHR=0.983 QHR=0.987 NIQE=62.7 NIQE=63.0 NIQE=63.4 NIQE=64.1
Dρ = 0.044 Dρ = 0.144 Dρ = 0.063 Dρ = 0.068 Dρ = 0.262 Dρ = 0.174 Dρ = 0.067 Dρ = 0.087

GSA C-GSA BT-H GS C-MTF- TV BDSD-PC BDSD
GLP-CBD

Figure 7. Pansharpening results on crops from a full-resolution WV3 Adelaide tile. The reference
PAN is in the middle column. In the top half, the four best results in terms of DS and Dρ are on its left
and right, respectively, with best scores (in red) closer to the reference. In the bottom half are shown
the top results according to QHR (leftward) and NIQE (rightward). Best scores are highlighted in
red; second, third, and fourth best results are in blue.
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MS PAN σ = 2 σ = 4 σ = 8 σ = 16 σ = 32 σ = 64

Figure 8. Pansharpening results with controlled spectral (`1-norm) and spatial (Dρ) distortions. From
left to right: MS and PAN, followed by the outputs optimized using σ ∈ {2, 4, 8, 16, 32, 64}.

The present experiment gives us the opportunity to also make some considerations
about the computational load related to the proposed indexes. In general, in the context of
quality assessment, the computation time is not a critical issue as it is carried out offline.
However, with the advent of deep learning, researchers have started to use such quality
indexes as loss functions for training purposes. In this regard, it is worth distinguishing
pixel-based indexes (e.g., SAM, ERGAS, `α-norms), which are relatively light to compute,
from other indexes that involve local statistics computed at a certain scale for each location
(e.g., Q2n, Dρ, D(K)

λ ). When using the latter as loss, the training may slow down. In the
particular case of Dρ, which has been included in the loss function to fine-tune the sample
CNN employed in the experiment, we have actually registered a moderate impact on the
training time. In fact, using a training batch composed of a single 2048 × 2048 image, the
time consumption per iteration, without or with the additional Dρ loss component (second
term in Equation (13)), shifts from 1.27 s to 1.6 s on an NVIDIA P6000 GPU.

4.5. Comparative Results

To conclude, we present here an overall comparison among the available pansharpening
methods provided by the toolbox [1], using the proposed quality indicators and supported
by the visual inspection of some sample results. In Figures 9 and 10, we gather the average
numerical results obtained on our WV3 and WV2 datasets, respectively.

As expected, the numerical results clearly show a good level of agreement among the
three reprojection error indexes, all essentially linked to the spectral consistency. However,
some exceptions can be observed, particularly for the WV2 dataset (Figure 10), where some
CS methods register a performance loss in terms of D(K)

λ,align not observed on R-SAM and
R-ERGAS. We also recognize good agreement with some literature findings, particularly
on WV3 (Figure 9), such as the spectral accuracy gap between MRA and CS methods [44]
or the competitiveness of some MRA, VO, and ML solutions. Moreover, for the ML
solutions, it is worth noticing a performance gap moving from one dataset (WV3) to
another (WV2). Indeed, such variability is not unusual for data-driven approaches, which
can suffer generalization limits when the training dataset is not sufficiently representative.
In this particular situation, it could likely be the case that the WV2 test images used are too
different from the images used for the training of the involved ML methods.
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Figure 9. Full-resolution assessment on the WV3 dataset. R-Q2n is replaced by its complement
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λ,align for the sake of readability (0 is the ideal value for all). For details on methods and related
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Figure 10. Full-resolution assessment on the WV2 dataset. R-Q2n is replaced by its complement

D(K)
λ,align for the sake of readability (0 is the ideal value for all). For details on methods and related

categories (CS, MRA, VO, ML), refer to Table 2.

To gain insight into the effectiveness of the proposed indexes, let us take a look at
some sample results for a complementary subjective analysis. In Figure 11, we show some
clips from a single WV3 tile of the Adelaide dataset. On the leftmost column are gathered
the PAN and MS input components on two consecutive rows. Then, the corresponding
pansharpening results of the best-performing solutions according to R-Q2n are shown in
decreasing order from left to right, next to the PAN. Next to the MS, we also show the
“reprojection” error map, which is the difference between the input MS and the reprojection
(LPF plus decimation) of the output. On the bottom lines are gathered the R-Q2n and
Dρ scores. Therefore, the spectral quality of the results decreases left to right. This can
also be appreciated through the inspection of the reprojection error maps. Moreover, the
best methods from the spatial perspective (Dρ) follow a different ordering. This partially
reflects a tradeoff between spectral and spatial features. Particularly interesting is the case
of the method TV, which scores first in terms of R-Q2n (actually, it is the best according to
R-SAM and R-ERGAS, as well) but shows the worst Dρ value, 0.215, corresponding to a
78.5% average correlation between the PAN and the pansharpened bands. The impact of
this low correlation level is clearly visible in the pansharpening results of TV, which show
underlying noisy patterns. Such patterns disappear with the reprojection, explaining why
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the reprojection indexes do not worsen. The other methods achieve much lower values
of Dρ, ranging from 0.084 to 0.115 (around 90% of correlation), which corresponds to a
higher coherence between the spatial features of the results and the PAN, easily appreciable
through visual inspection. For completeness, in Figure 12, we show analogous results for a
WV2 tile, which basically confirms the same considerations made above for WV3.

PAN TV MF ...-GLP-HPM AWLP ...-HPM-H FE-HPM MTF-GLP

MS Reprojection error maps: difference between the MS and the reprojected pansharpening

PAN TV MF ...-GLP-HPM AWLP ...-HPM-H FE-HPM MTF-GLP

MS Reprojection error maps: difference between the MS and the reprojected pansharpening

PAN TV MF ...-GLP-HPM AWLP ...-HPM-H FE-HPM MTF-GLP

MS Reprojection error maps: difference between the MS and the reprojected pansharpening

R-Q2n=0.950 R-Q2n=0.945 R-Q2n=0.939 R-Q2n=0.937 R-Q2n=0.937 R-Q2n=0.937 R-Q2n=0.936
Dρ=0.215 Dρ=0.115 Dρ=0.090 Dρ=0.105 Dρ=0.096 Dρ=0.114 Dρ=0.084

Figure 11. Sample crops from a WV3 sample image (Adelaide) and related full-resolution
pansharpening. For each crop, in addition to the PAN and MS components (left-most column),
the best-performing solutions according to R-Q2n are shown from left to right in decreasing order,
next to the PAN. For each method, both the R-Q2n and Dρ scores are reported on the bottom lines of
the figure. Moreover, next to the MS, for each pansharpening result, the corresponding reprojection
error map is shown.
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PAN TV MF FE-HPM SR-D ...-GLP-HPM MTF-GLP AWLP

MS Reprojection error maps: difference between the MS and the reprojected pansharpening

PAN TV MF FE-HPM SR-D ...-GLP-HPM MTF-GLP AWLP

MS Reprojection error maps: difference between the MS and the reprojected pansharpening

PAN TV MF FE-HPM SR-D ...-GLP-HPM MTF-GLP AWLP

MS Reprojection error maps: difference between the MS and the reprojected pansharpening

R-Q2n=0.986 R-Q2n=0.977 R-Q2n=0.976 R-Q2n=0.974 R-Q2n=0.974 R-Q2n=0.974 R-Q2n=0.973
Dρ=0.227 Dρ=0.102 Dρ=0.095 Dρ=0.238 Dρ=0.079 Dρ=0.076 Dρ=0.097

Figure 12. Sample crops from a WV2 sample image (Washington) and related full-resolution
pansharpening. For each crop, in addition to the PAN and MS components (left-most column),
the best-performing solutions according to R-Q2n are shown from left to right in decreasing order,
next to the PAN. For each method, both the R-Q2n and Dρ scores are reported on the bottom lines of
the figure. Moreover, next to the MS, for each pansharpening result, the corresponding reprojection
error map is shown.

5. Conclusions

To cope with the limitations of the reference-based reduced-resolution procedures
for the quality assessment of pansharpening methods, in this work, we propose a new
full-resolution no-reference evaluation framework. By following Wald’s protocol [65], the
full-resolution assessment must be carried out checking the “consistency” of the fused
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products with the MS and PAN input components rather than the “synthesis” capacity,
which would require the availability of GTs. In particular, inspired by Khan’s index [73],
we have proposed the use of reprojection-based indexes with embedded alignment to
handle misregistered datasets for the assessment of the spectral consistency between the
pansharpened image and the input MS. Moreover, the spatial consistency between the
fused image and the PAN is quantified by averaging, spatially and spectrally, the fine-scale
local correlation of individual super-resolved bands with the high-resolution PAN.

A key qualifying aspect of the proposed indexes is the absence of any resolution
downgrading of the input data, which frees the assessment from the effect of scale-dependent
phenomena. Experiments on reduced-resolution datasets show that the reprojection indexes
are reliable predictors of image quality as quantified by reference-based indexes, supporting
their use in the full-resolution domain. On the other hand, experiments on full-resolution
data make clear that the local correlation-based index provides indications on image quality
that largely agree with the judgement of human experts. The proposed approach can
be readily generalized to fusion tasks other than pansharpening, such as, for example,
the combination of low-resolution hyperspectral and high-resolution multispectral images.

On the other hand, the user must also be aware of some limitations. In particular,
the reprojection requires the knowledge of an accurate estimation of the sensor MTF
for a correct low-pass filtering. A wrong estimation would lead to inaccurate spectral
consistency assessment, a problem shared with preexisting solutions. Moreover, the
proposed correlation distortion index is based on the assumption that the PAN correlates
well with all spectral bands. Such a hypothesis is globally acceptable but there can be rare
cases, spatially and spectrally well localized, for which it may be too strong.

In order to ensure reproducible research, the code for the proposed indexes can be
found at https://github.com/matciotola/fr-pansh-eval-tool/ (accessed on 5 April 2022).
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Abbreviations
The following abbreviations are used in this manuscript:

MS Multispectral
PAN Panchromatic
GT Ground Truth
CS Component Substitution
MRA Multiresolution Analysis
VO Variational Optimization
ML Machine Learning
IHS Intensity–Hue–Saturation
GIHS Generalized IHS
GS Gram–Schmidt
PRACS Partial Replacement Adaptive Component Substitution
BSDS Band-Dependent Spatial-Detail
RR Reduced-Resolution
FR Full-Resolution
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SAM Spectral Angle Mapper
ERGAS Erreur Relative Globale Adimensionnelle de Synthése
RMSE Root Mean Squared Error
HC HyperComplex
LPF Low-Pass Filter
UIQI Universal Image Quality Index
WV2 WorldView-2
WV3 WorldView-3
GSD Ground Sample Distance
SSIM Structural SIMilarity
QLR Quality Low Resolution
QHR Quality High Resolution
NIQE Natural Image Quality Evaluator
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