
����������
�������

Citation: Nambiar, K.G.;

Morgenshtern, V.I.; Hochreuther, P.;

Seehaus, T.; Braun, M.H. A

Self-Trained Model for Cloud,

Shadow and Snow Detection in

Sentinel-2 Images of Snow- and

Ice-Covered Regions. Remote Sens.

2022, 14, 1825. https://doi.org/

10.3390/rs14081825

Academic Editors: Annett Bartsch,

Gareth Rees and Neil Arnold

Received: 26 February 2022

Accepted: 5 April 2022

Published: 10 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Self-Trained Model for Cloud, Shadow and Snow Detection
in Sentinel-2 Images of Snow- and Ice-Covered Regions
Kamal Gopikrishnan Nambiar 1 , Veniamin I. Morgenshtern 1,* , Philipp Hochreuther 2 , Thorsten Seehaus 2

and Matthias Holger Braun 2

1 Chair of Multimedia Communications and Signal Processing, Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91054 Erlangen, Germany; kamal.nambiar@fau.de

2 Institute of Geography, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany;
philipp.hochreuther@fau.de (P.H.); thorsten.seehaus@fau.de (T.S.); matthias.h.braun@fau.de (M.H.B.)

* Correspondence: veniamin.morgenshtern@fau.de

Abstract: Screening clouds, shadows, and snow is a critical pre-processing step in many remote-
sensing data processing pipelines that operate on satellite image data from polar and high mountain
regions. We observe that the results of the state-of-the-art Fmask algorithm are not very accurate
in polar and high mountain regions. Given the unavailability of large, labeled Sentinel-2 training
datasets, we present a multi-stage self-training approach that trains a model to perform semantic
segmentation on Sentinel-2 L1C images using the noisy Fmask labels for training and a small human-
labeled dataset for validation. At each stage of the proposed iterative framework, we use a larger
network architecture in comparison to the previous stage and train a new model. The trained model
at each stage is then used to generate new training labels for a bigger dataset, which are used for
training the model in the next stage. We select the best model during training in each stage by
evaluating the multi-class segmentation metric, mean Intersection over Union (mIoU), on the small
human-labeled validation dataset. This effectively helps to correct the noisy labels. Our model
achieved an overall accuracy of 93% compared to the Fmask 4 and Sen2Cor 2.8, which achieved
75% and 76%, respectively. We believe our approach can also be adapted for other remote-sensing
applications for training deep-learning models with imprecise labels.

Keywords: deep learning; semi-supervised learning; semantic segmentation; self-training; automatic
cloud screening; Fmask; Sentinel-2 imagery

1. Introduction

Satellite imagery provides a vital source of information for a wide range of remote-
sensing applications. However, such imagery is often contaminated with cloud and cloud
shadows. Screening cloud and shadows is a critical preprocessing step that needs to be
undertaken before any meaningful analysis can be performed on these images.

Traditional algorithms use threshold functions on spectral values of the image to
generate cloud and shadow masks. In addition to this, metadata, such as solar zenith
and azimuth angles, and elevation, are also used in computing these masks. The Fmask
algorithm is widely accepted in the remote sensing community as a reliable method for
generating cloud and cloud shadow masks [1]. Though the initial version of the Fmask was
developed for Landsat-5 and Landsat-7 imagery, subsequent publications adapted the algo-
rithm for use in Landsat-8 and Sentinel-2 imagery and proposed further improvements [2,3].
CFmask, a derivative of the Fmask algorithm, is used by the U.S. Geological Survey (USGS)
in their production environment. The Sen2Cor process used by the European Space Agency
(ESA) to process its Sentinel-2 products generates a scene classification map that detects
clouds, shadows, water and snow [4]. However, the results of these algorithms are known
to be erroneous when the underlying surface is brightly colored, for example, in the case of
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ice and snow, white building tops, salt lakes, etc. The detection of shadows is not reliable
on darker surfaces. Water bodies are often misclassified as shadows and vice versa. In
addition to Fmask and Sen2Cor, several texture-based and threshold-based approaches
have been proposed [5–7]. Early attempts at using data-driven methods, such as support
vector machines [8,9], random forest [10,11] and Markov random fields [12,13], for this
task, have shown improvements over the traditional rule-based methods. In this paper, we
propose a deep-learning-based model that specializes in cloud detection in polar and high
mountain regions that are snow- and ice-covered for most parts of the year.

Over the past decade, deep convolutional neural networks (DCNNs) have made giant
leaps in the field of computer vision and have found application in domains that require
very high precision, such as medical imaging and autonomous driving [14,15]. In contrast
to single pixel classification methods, DCNNs learn spatial relationships between the
neighboring pixels in the image. Hence, the network can make use of texture and structural
information, in addition to the spectral properties, to distinguish objects in the scene—this
contributes towards improved detection performance. DCNNs are typically trained using
large amounts of correctly labeled data. However, labeled data is very expensive because it
is time-consuming to produce.

The open access policy of the Copernicus programme has led to an abundant use of
optical Sentinel-2 data. No cloud mask is provided with this optical data that reliably detects
clouds over bright targets or shadows over dark targets. While there are a few datasets
for cloud detection, they were unsuitable for direct use in our multi-class segmentation
problem. In this study, we propose a self-training framework in order to train our model.
The trained model in our work segments a given Sentinel-2 L1C scene into six classes:
No-Data, Clear-Sky Land, Cloud, Shadow, Snow and Water. We use a large dataset with
labels generated using the Fmask algorithm for the training, and a small human-labeled
dataset for validation. The validation dataset contains numerous examples where the
Fmask classification has given incorrect labels.

The trained model, when compared with widely used automatic methods, such as
Fmask 4 and Sen2Cor 2.8, on our test dataset, showed significant improvement in various
segmentation metrics. Interestingly, the model achieved better performance than its teacher,
Fmask, that was used to automatically generate the labels for training.

To facilitate benchmarking and further research, we have made the labeled dataset
openly accessible via the Pangaea data center (https://doi.org/10.1594/PANGAEA.942321,
accessed on 25 February 2022); the code is available in the GitHub repository (https:
//github.com/kmlnbr/deep-fmask, accessed on 25 February 2022).

2. Previous Related Work
2.1. Self-Training

Given the scarcity of large, labeled datasets required to train the increasingly complex
neural network models, self-training has recently attracted attention in the research com-
munity [16–18]. Self-training refers to a learning paradigm where a base model, which
was trained using a smaller labeled dataset, is used to generate the pseudo-labels for the
unlabeled data that will be used for training another model [19]. Xie et al. proposed a
self-training method that achieved a 2% improvement over the state-of-the-art model on
an Imagenet classification task using weakly labeled images [18]. Babakhin et al. used
a similar iterative training method for segmenting salt deposits in seismic images [20]
and Chen et al. applied a similar iterative training method for scene segmentation from
video sequences [21]. In each of these papers, small clean labeled datasets were used in
combination with a large unlabeled dataset to train the model. In our research, we used
a labeled dataset generated using the Fmask algorithm and a large unlabeled dataset for
training. Unlike the previous papers, the Fmask algorithm did not always provide clean
labels. Hence, we used different regularization techniques in our training to ensure that
the model was robust to label noise in the training dataset. Yilmaz and Heckel showed
that deep neural networks, trained using an early stopping strategy, fit clean labels faster
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than noisy labels [22]. Experiments performed on 10%- to 50%-correctly labeled training
datasets have produced higher test performance than standard training on a clean dataset
for the Imagenet and CIFAR-10 classification tasks.

2.2. Cloud Detection Algorithms

Early cloud-detection algorithms relied heavily on feature engineering to produce
accurate cloud detection models [8,23,24]. The Landsat 8 Cloud Cover Assessment (CCA)
dataset, designed to test the effectiveness of cloud detection algorithms, has helped in the
development of new deep-learning-based methods for Landsat imagery [25–27]. Scene
classification using deep neural networks is treated as a semantic segmentation task, and
several variants of the well-established encoder-decoder architectures, U-Net and Fully
Convolutional Network (FCN), have been proposed. Some of the pioneering studies in
this domain for Landsat-8 imagery include RS-Net [28], Cloud-Net [29], and MF-CNN [30].
Similarly, for images from the GaoFen satellite series operated by the China National
Space Administration (CNSA), Zhan et al. used an FCN with a multiscale prediction
module to distinguish clouds and snow [31], and Yan et al. implemented a multilevel
feature-fused segmentation network called MFFSNet, to perform cloud and cloud shadow
detection [32]. Recently, several improvements, such as attention mechanisms [33,34], and
novel convolution techniques [35], have contributed to advancing the state-of-the-art in this
domain. In contrast to the methods discussed above, which rely on manually labeled, pixel-
level annotations, Li et al. proposed a weakly supervised method, trained using block-level
labels that indicate the presence or absence of clouds in a given block [36]. The network
was used to generate cloud activation maps, which were subsequently segmented, using a
statistical threshold based on clear-sky values, to obtain pixel-level cloud detection output.

Liu et al. proposed a neural network with a residual architecture called CloudNet to
predict clouds and haze from Sentinel-2 imagery [37]. This method uses Sen2Cor corrected
data from Taiwan for training and primarily functions as a cloud-detection algorithm.
Li et al. used a lightweight network, trained using a manually labeled dataset over diverse
land cover and climatic conditions in mainland China, for performing cloud detection [38].
In contrast to these methods, we use data from polar and high mountain regions and
address a more challenging multi-class segmentation problem.

Hughes and Kennedy proposed a fully convolutional network that segmented Landsat-
8 imagery, and Hollstein et al. used a decision-tree model that segmented Sentinel-2 imagery
into the same classes as our investigation [10,39].

3. Materials and Methods
3.1. Dataset

The Sentinel-2 L1C data used for this study was downloaded from the Copernicus
Open Access Data Hub. The data was captured by the Sentinel-2A and Sentinel-2B satellites
using their onboard multi-spectral instrument (MSI) that captures images in 13 frequency
bands. The description of the bands used in this study is provided in Table 1. The L1C data
contains the top-of-atmosphere (TOA) reflectance values and each scene covers an area of
100 km × 100 km.

The sensing period for the images used in our study was between October 2019 and
December 2020. We used 96 scenes in the training dataset, 22 scenes in the validation
dataset and 23 scenes in the test dataset. The sites of these scenes were randomly selected
in the polar and tundra regions. We also included three sites in mountainous terrain that
were not in the polar and tundra region. The geographic distribution of the data is shown
in Figure 1. The tile-wise quarterly distribution of the Sentinel-2 scenes for the training,
validation and test datasets is provided in Tables A1, A2 and A3, respectively.
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Table 1. Description of the spectral bands from Sentinel-2A [40] that were used as input in our study.
The spectral bands of its twin satellite, Sentinel-2B, also had the same resolution for the respective
bands and only varied in the central wavelength by a small fraction. Data from both Sentinel-2
satellites were used in our study without any distinction regarding their source.

Band No. Central Wavelength Resolution Image Size Details(nm) (m) (Pixels)

2 492.4 10 10,980 × 10,980 Blue Band
3 559.8 10 10,980 × 10,980 Green Band
4 664.6 10 10,980 × 10,980 Red Band
8 832.8 10 10,980 × 10,980 Near Infrared

11 1613.7 20 5490 × 5490 Short-wave Infrared
12 2202.4 20 5490 × 5490 Short-wave Infrared

Validation	Dataset
Training	Dataset

Test	Dataset
©OpenStreetMap	contributors

Figure 1. Geographic distribution of the datasets. The labeled numbers indicate the number of
Sentinel-2 scenes used from a given site, and their colors indicate the dataset to which they belong.

The six classes that we used in our model: No-Data, Clear-Sky Land, Cloud, Shadow,
Snow and Water, were the same class labels as were used in the segmentation output of
the F-Mask algorithm. The No-Data class was used to indicate pixels in the image that
were saturated or defective and regions along the edge of the image where sensor data
was not available. Such pixels can be identified using the quality indicator information
provided along with the Sentinel-2 imagery. Hence, we did not include this class in the
labeled dataset. The Clear-Sky Land class was used for snow- and cloud-free land, which
was usually rocky surfaces in the sites used for this study. The Shadow class was used
for all types of shadow, irrespective of the object that cast the shadow, or the underlying
surface on which the shadow fell. The samples in the validation set were selected so that
many examples where the Fmask algorithm produced an incorrect label (as per our visual
assessment) were present. The labeling for the validation and test dataset was performed
manually using the QGIS software [41] package. In addition to the true color image, the
short-wave infrared band (B11) and the near infrared band (B08) were used in our labeling
process. Labeling of very small targets was performed occasionally using a thresholding
operation in the local neighborhood of the target.
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The Fmask labels were generated using Fmask 4.3. According to its authors, this
version of Fmask offers substantially better cloud, cloud shadow, and snow detection
results compared to the previous versions for Sentinel-2 imagery [2,3,42]. The cloud buffer
distance, and the cloud shadow buffer distance were set to 0 in the Fmask configuration
settings. All other configuration settings were set to their default values, and the Fmask
output was computed at 20 m (5490× 5490 pixels) resolution.

We also compared our model performance against the results from Sen2Cor 2.8. The
Sen2cor algorithm is part of the European Space Agency’s (ESA) processing pipeline, used
for generating the L2A images [4]. This algorithm produces a scene classification (SCL)
image, in addition to various quality indicators and bottom-of-atmosphere (BOA) images.
The resolution of the SCL was set to 20 m and no additional digital elevation model (DEM)
was provided. While the Fmask segmented the image into the same six classes that we
used for training our model, Sen2Cor provided a more comprehensive class organization.
For example, the Sen2Cor scene classification mask has four classes for clouds: cloud high
probability, cloud medium probability, cloud low probability and thin cirrus clouds. To
perform the comparison, we combined multiple classes from the Sen2Cor mask into the six
classes used in our model, as shown in Table 2.

Table 2. Regrouping of Sen2Cor labels.

Sen2Cor Label New Label

No-Data
No-DataSaturated/Defective Pixels

Unclassified

Vegetation Clear-Sky LandNon-vegatated

Cloud High Probability

CloudCloud Medium Probability
Cloud Low Probability
Thin Cirrus Clouds

Cloud Shadow ShadowShadows/ Dark Area Pixels

Water Water

Snow Snow

As shown in Table 1, the spectral bands in the Sentinel-2 L1C product are provided
in different resolutions. We resampled all the bands to a resolution of 20 m using bicubic
interpolation. Due to hardware limitations, it was not possible to train the network with
the resampled image of size 5490× 5490. Hence, we split the images into sub-scenes of
size 254 × 254 pixels for training. Since the optical sensor data from the satellite may
not always be aligned to fill the complete image, the edges of the image tend to have
zero-valued pixels, i.e., no data. After splitting the image into sub-scenes, we discarded
those sub-scenes in which all pixels were zero-valued. We applied zero-padding of one
pixel around each sub-scene, which increased the network input size to 256× 256. Since
the network did not have any fully connected layers (which requires a fixed input size), we
were able flexibly to use a larger sub-scene size for prediction. In the prediction step, we
used overlapping sub-scenes of size 510× 510, and we also applied zero-padding, as in
the training step. Before stitching together the network output from each sub-scene, we
clipped out a three-pixel border around the sub-scene to eliminate the uncertain network
predictions from the zero-padding [39].

The input to the network consisted of seven channels: the Sentinel-2 RGB bands (B02,
B03, B04), near infrared band (B08), the short-wave infrared bands (B11, B12) and the
normalised difference snow index (NDSI). The NDSI is a well-known index that exploits
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the difference in the spectral reflectance of the green band (B03) and shortwave infrared
band (B11) to detect snow [43]. The NDSI is computed pixel-wise as follows:

NDSI =
B03 − B11
B03 + B11

. (1)

3.2. Neural Network Architecture

The U-Net [14] and its variants are widely used neural network architectures for
semantic segmentation. The network displayed in Figure 2 consists of an encoder-decoder
architecture. Each encoder block operates at a spatial resolution twice that of its succeeding
encoder but has half the number of convolution filters compared to its succeeding encoder.

At each encoder and decoder block, there are two sequences, comprising a convolution
layer, a ReLU layer, and a batch-normalization layer connected in series, followed by a
spatial dropout. The convolution layers used here had a kernel size of 3 × 3 and a stride
of 1.

The output of the encoder takes two paths. In one path, the output of the spatial
dropout is downsampled by a factor of two in the spatial dimensions using a max-pool
layer, and is provided as input to the next encoder. The other path, referred as the skip
connection, is connected to the decoder block that operates, at the same resolution, on the
other side of the network.

At each decoder, two inputs are received and these two inputs have to be concatenated
as a single input before applying the layers of the decoder. The input received from the
preceding layer is upsampled using a 2 × 2 up-convolution operation with a stride of 2,
which results in an increase in spatial dimensions by a factor of two, and a decrease in the
number of feature maps by a factor of two. The upsampled output is then concatenated
with the input received from the encoder of the corresponding step via the skip connection
(denoted as a blue box in the decoder block in Figure 2). The decoder layers are then applied
to the concatenated output and the result is provided as the input to the next decoder.

This sequence is repeated until the final decoder that operates at the same spatial
resolution as the input. At the final decoder, an additional 1× 1 convolution, and a softmax
layer, is applied to obtain the class probabilities for each pixel of the image. The network
output has the same spatial dimensions as the input and has six channels, where each
channel contains the probability map for the respective class. The segmentation map can
be generated by selecting the class with the highest probability at each pixel position.
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Up Conv. 2×2

Max Pool 2×2

Conv. 1×1; Softmax

Conv. 3×3; ReLU;
Batch Normalization

Concatenate

Spatial Dropout

Layer Output in Encoder

Layer Output in Decoder

N*
7 32 32*

32 64 64*

64 128 128*
128 256*256 512 512*

25
62

256
512 256*256

256 128 128*

128 64 64*

64 32 32 6

12
82

64
2

32
2

16
232

264
2

12
82

25
62

Skip Connection

Encoder Decoder

Figure 2. The U-Net architecture [14] with 32 start filters and a depth of 5, used in stage 2 of the
self-training framework. The layers that constitute each encoder and decoder block are shown inside
the boxes with dotted borders. The number of feature maps is indicated below each colored box. The
resolution is the same for all layers in the encoder/decoder block; this is indicated at the top left of
the dotted box. The output of the encoder, which is provided via the skip connection, is concatenated
with the output of the up-convolution operation from the previous layer.

3.3. Self-Training Framework

We used a four-stage iterative approach to train our model. The network architecture
and training data organization of the iterative approach is summarized in Table 3. The
training dataset, consisting of sub-scenes of size 254× 254 pixels, was divided randomly
into four equal batches. In the first stage, a deep neural network with a modified U-Net
architecture was trained using batch-1 of the training dataset. The imperfect labels used
in this stage were generated automatically using the Fmask algorithm. We evaluated the
model performance on the validation dataset with human-labeled data after each training
epoch, and, importantly, the human-labeled data was never used as training data. Based on
the performance metrics, we selected the model from the best epoch, and called the selected
model the teacher model. Using the teacher model, we inferred labels for the data in batch-2
of the training dataset. We used only the labels for which the network confidence was
greater than a threshold of 0.33 (twice the probability of a random guess). We assigned the
label as 0 (No-Data label) to pixels where the confidence was lower than this threshold. In
the second stage, we trained another neural network model, called the student model, using
a combined dataset of batch-1 and batch-2. For the batch-1 data, we continued to use the
Fmask labels exactly as in the previous stage. Once we had selected the best student model
from stage 2 using the validation dataset, we made this student model our new teacher
model. Using the new teacher model, we inferred new labels for batch-2 and batch-3 data.
In each subsequent stage, we trained a new student model with a combined dataset of
Fmask labels for batch-1, and model-inferred labels from the teacher model, i.e., the best
model of the previous stage, for the remaining batches, as shown in Table 3.

A new batch of the data containing previously unseen images was available for
training the model at each stage. Hence, the size of the training data increased linearly at
each stage. A smaller model was used for the training in the first stage, and the model size
incrementally increased at each stage with increase in the training data. This was done to
make sure that the model did not overfit on the smaller training data in the early stages.
Hence, we defined two hyperparameters, number of start filters and depth, which we used
to control the model size. The number of start filters was the number of filters used in the
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convolution layer present in the first encoder of the network. The number of filters in the
subsequent encoders was defined as multiples of this parameter. The depth of the network
set the number of encoder blocks used in the network. A network architecture with 32 start
filters and a depth of 5 is illustrated in Figure 2.

Table 3. Network architecture and training data used at each stage of the iterative approach. The
number of parameters in the network at each stage was controlled using the number of start filters
and depth hyperparameters. The size of the training dataset given below was the number of 254× 254
image patches.

Network Architecture Training Data

Training Stage No. Start Filters Depth No. Parameters Size Training Batch Label Source

1 16 5 1.9 M 11,263 Batch-1 Fmask

2 32 5 7.8 M 22,524 Batch-1 Fmask
Batch-2 Model Stage-1

3 24 6 17.5 M 33,785
Batch-1 Fmask
Batch-2 Model Stage-2
Batch-3 Model Stage-2

4 32 6 31.1 M 45,046

Batch-1 Fmask
Batch-2 Model Stage-3
Batch-3 Model Stage-3
Batch-4 Model Stage-3

3.4. Training Implementation
3.4.1. Regularization Techniques

We employed the regularization techniques described below at each stage of the
self-training framework to aid in generalization of the trained model.

We used an online augmentation strategy where we performed augmentation “on the
fly” before the data was provided as input to the network. The training dataset already
consisted of a large number of data samples, and using the online strategy helped us
achieve diversity across each training epoch without an explosive increase in the dataset
size. The augmentations used included cutout [44], horizontal flip, vertical flip, and rotation
in steps of 90◦. These transformations were applied on randomly selected input samples
and more than one transformation could be applied to the same image.

Unlike for fully connected layers, it has been shown that element-wise dropout is not
very effective in the case of convolutional layers. The spatial dropout used in this study set
entire feature maps of the output to zero instead of just individual pixels [45]. The applica-
tion of spatial dropout leads to learning from an ensemble of sub-networks consisting of
randomly selected feature maps and hence helps in regularizing the trained model.

Each stage of the self-training framework was trained for 100 epochs. An early
stopping strategy that stopped the training if the average class accuracy on the validation
dataset did not improve after 10 epochs, was employed. The Adam optimizer was used
for the training with a weight decay of 1× 10−5. The weight decay resulted in `2 norm
regularization for the network weights.

3.4.2. Loss Function

As shown in Table 4, the training data had a class imbalance problem. This could
have resulted in the network predicting the abundant class more often than the classes
that were scarce. Hence, we used a weighted cross-entropy function as the loss function
for the training. The weights for each class were calculated using the median frequency
balancing (MFB) method [46]. It has been shown that this technique is effective in semantic
segmentation of small targets in remote-sensing images [47]. The weights were calculated
using the frequency of the class in the training dataset: Let the set C = {1, 2, . . . , M} denote
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the set of the M classes in the given segmentation problem. The frequency of class i, denoted
as fi, is the ratio of the number of pixels that are labeled as class i to the total number of
pixels. The median of the class frequencies in the set C is given by median({ fi|i ∈ C}). The
weight wi for class i is given by:

wi =
median({ fi|i ∈ C})

fi
. (2)

The target label used for training has a one-hot encoding, i.e., it is a vector whose
elements are all zero except for one element corresponding to the true class set to one. The
weighted cross entropy loss is given by:

L = − 1
N

N

∑
j=1

M

∑
i=1

wi × y(j)
i × log(ŷ(j)

i ), (3)

where N is the number of training samples (pixels), wi is the weight of class i calculated
using the MFB method, y(j)

i is the target label at the dimension corresponding to class i

for the training sample j, and ŷ(j)
i is the softmax output of the model at the dimension

corresponding to class i.

Table 4. Class distribution of the datasets used for training and validation of the model. The size of
each dataset is quantified as the number of 254× 254 image patches.

Class Distribution (%)

Dataset Label Source Size No-Data Clear-Sky Land Cloud Shadow Snow Water

Train Fmask 45,046 0.48 13.04 39.62 5.51 29.97 11.36
Validation Human-labeled ∼204 a 0 10.64 40.70 24.80 13.83 10.03
Test Human-labeled ∼180 b 0 5.59 55.71 12.07 18.28 8.34

a The labels in the validation dataset are of irregular shapes and of varying sizes. The validation dataset consists
of 13,147,329 labeled pixels, which corresponds to approximately 204 images of size 254× 254. b The test dataset
consists of 11,596,941 labeled pixels, which corresponds to approximately 180 images of size 254× 254.

3.5. Validation Metrics

The performance metrics used for the model evaluation were computed from a pixel-
level confusion matrix: Consider the confusion matrix for an M-class segmentation problem
shown in Figure 3. Each element in the matrix, denoted by ni,j, is the total number of pixels
that belong to class i and predicted as class j by the model. For class i,

TPi = ni,i, FPi =
M

∑
j=1,
j 6=i

nj,i, and FNi =
M

∑
j=1,
j 6=i

ni,j, (4)

are the number of true positives, false positives and false negatives, respectively. Precision
or user accuracy for class i is defined as follows:

Pi =
TPi

TPi + FPi
, (5)

i.e., the ratio of the number of pixels that were correctly predicted as class i to the total
number of pixels that were predicted as class i. Recall or producer accuracy for class i is
defined as follows:

Ri =
TPi

TPi + FNi
, (6)

i.e., the ratio of the number of pixels that were correctly predicted as class i to the total
number of pixels that actually belong to class i, i.e., the ground truth.
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n1,1 n1,2 n1,3 n1,4 n1,6n1,5

n2,1 n2,2 n2,3 n2,4 n2,6n2,5

n3,1 n3,2 n3,3 n3,4 n3,6n3,5

n4,1 n4,2 n4,3 n4,4 n4,6n4,5

n5,1 n5,2 n5,3 n5,4 n5,6n5,5

n6,1 n6,2 n6,3 n6,4 n6,6n6,5

1 2 3 4 5 6

1

2

3

4

5

6

True
Labels

Model Labels

Figure 3. Confusion matrix of an M-class segmentation problem with M = 6. Each element in the
matrix, denoted ni,j, is the total number of pixels that belong to class i and predicted as class j by the
model. For class 3, the True Positive pixels are represented by the green cell; the False Negative pixels
are represented by the blue cells and the False Positive pixels are represented by the red cells.

Cases of over-segmentation and under-segmentation are often misinterpreted as
good results when either recall or precision is analyzed individually. Hence, in semantic
segmentation tasks, metrics such as the F1 Score and the Intersection over Union (IoU)
are the preferred evaluation metrics. The F1 score is the harmonic mean of the precision
and recall:

F1 Scorei = 2× Ri ×Pi
Ri + Pi

. (7)

Given the set of pixels that are predicted to be a particular class by the model, and the
set of pixels that actually belong to that class (ground truth), IoU is defined as the ratio of
the size of the intersection to the size of the union of these two sets. The IoU is expressed in
terms of the number of true positives, true negatives and false positives as follows:

IoUi =
TPi

TPi + FPi + FNi
. (8)

The overall performance of the model can be evaluated using the mean Intersection
over Union (mIoU) and the total accuracy. The mIoU for a segmentation task with M
classes is defined as follows:

mIoU =
1
M

M

∑
i=1

IoUi, (9)

i.e., the mean of the IoU metric computed over each class. The total accuracy is then defined
as follows:

Total Accuracy =

M
∑

i=1
ni,i

M
∑

i=1

M
∑

j=1
ni,j

, (10)

i.e., the ratio of the number of correctly labeled pixels to the total number of pixels.

4. Results

We compared the performance of our model with two widely used methods for cloud
masking, Fmask and Sen2Cor.

The confusion matrices comparing the prediction of Fmask, Sen2Cor and our model
with the true labels in the test dataset are presented in Tables 5, 6 and 7, respectively. Table 8
shows that our model was able to achieve high precision and recall simultaneously. In the
case of Fmask 4 and Sen2Cor 2.8, the high values of precision or recall for certain classes,
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such as the class Clear-Sky Land, were accompanied by lower values of recall or precision,
respectively. Therefore the overall segmentation performance suffered. In contrast, our
model outperformed both these methods in this regard; this is clearly reflected in the
F1 score and IoU metrics shown in Table 9 and in Figure 4. We also observed that the
performance of the class Water was slightly better for Fmask compared to our model.

Table 5. Confusion matrix comparing the predictions of Fmask 4 with the true labels in the test dataset.

Fmask 4 Labels
Recall

No-Data Clear-Sky Land Cloud Shadow Snow Water

True
Labels

No-Data 0 0 0 0 0 0 0.00
Clear-Sky Land 0 629,977 7605 2727 3431 4772 0.97
Cloud 0 647,645 4,663,884 98,931 1,050,628 82 0.72
Shadow 73 67,800 32,191 513,100 585,632 201,325 0.37
Snow 0 71 114,551 7800 1,990,272 7744 0.94
Water 5 1123 1117 4823 420 959,212 0.99

Precision 0.00 0.47 0.97 0.82 0.55 0.82

Table 6. Confusion matrix comparing the predictions of Sen2Cor 2.8 with the true labels in the
test dataset.

Sen2Cor 2.8 Labels
Recall

No-Data Clear-Sky Land Cloud Shadow Snow Water

True
Labels

No-Data 0 0 0 0 0 0 0.00
Clear-Sky Land 164,756 385,323 85,479 10,415 870 1669 0.59
Cloud 69,182 4772 5,106,178 2626 1,262,053 16,359 0.79
Shadow 78,465 1529 32,579 252,020 333,368 702,160 0.18
Snow 5238 0 88,040 8 2,011,819 15,333 0.95
Water 221 0 511 2412 0 963,556 1.00

Precision 0.00 0.98 0.96 0.94 0.56 0.57

Table 7. Confusion matrix comparing the predictions of our model with the true labels in the
test dataset.

Our Model Labels
Recall

No-Data Clear-Sky Land Cloud Shadow Snow Water

True
Labels

No-Data 0 0 0 0 0 0 0.00
Clear-Sky Land 1 573,931 65,119 7777 1468 216 0.88
Cloud 85 23,195 6,111,259 156,238 170,347 46 0.95
Shadow 207 4232 10,126 1,076,655 39,761 269,140 0.77
Snow 102 22 54,618 24,948 2,032,404 8344 0.96
Water 0 0 0 5445 0 961,255 0.99

Precision 0.00 0.95 0.98 0.85 0.91 0.78
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Table 8. Comparison of precision and recall with Fmask 4 and Sen2Cor 2.8.

Fmask 4 Sen2Cor 2.8 Our Model

Class Precision Recall Precision Recall Precision Recall

Clear-Sky Land 0.47 0.97 0.98 0.59 0.95 0.88
Cloud 0.97 0.72 0.96 0.79 0.98 0.95
Shadow 0.82 0.37 0.94 0.18 0.85 0.77
Snow 0.55 0.94 0.56 0.95 0.91 0.96
Water 0.82 0.99 0.57 1.00 0.78 0.99

Table 9. Comparison of F1 score and IoU with Fmask 4 and Sen2Cor 2.8.

Fmask 4 Sen2Cor 2.8 Our Model

Class F1 Score IoU F1 Score IoU F1 Score IoU

Clear-Sky Land 0.63 0.46 0.74 0.59 0.92 0.85
Cloud 0.83 0.70 0.87 0.77 0.96 0.93
Shadow 0.51 0.34 0.30 0.18 0.81 0.68
Snow 0.69 0.53 0.70 0.54 0.93 0.87
Water 0.90 0.81 0.72 0.57 0.87 0.77

Total Accuracy 0.76 0.75 0.93
mIOU 0.57 0.53 0.82

No-Data
Clear-Sky	Land
Cloud
Shadow
Snow
Water

True	Color	Image False	Color	Composite

Fmask	4 Sen2Cor	2.8

Tile	:	10WDE

Labeled	Polygons

Our	Model

©	OpenStreetMap	contributors

Figure 4. Comparison of test image results from Tile 10WDE in Northwest Territories, Canada,
captured on 1 June 2020.

In Figures 5, A1, A2 and A3, we provide several more examples of results from the
test and validation datasets to visually demonstrate the model performance. The results
in each figure are supplemented with the false color composite image and the labeled
polygons to aid in understanding the scene. The false color composite image comprises of
the short-wave infrared band (B11), near infrared band (B08) and red band (B04) in the red,
green and blue channels, respectively.
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True	Color	Image

No-Data
Clear-Sky	Land
Cloud
Shadow
Snow
Water

False	Color	Composite

Fmask	4 Sen2Cor2.8

Tile	:	26XNQ

Labeled	Polygons

Our	Model

©	OpenStreetMap	contributors

Figure 5. Comparison of test image results from Tile 26XNQ in North East Greenland, captured on
14 September 2020.

5. Discussion

In our study, we showed that, even with a small manually labeled validation dataset,
the self-training framework enabled us to train a segmentation model using noisy labels
from the Fmask algorithm. Our model outperformed two widely used cloud-screening
methods, Sen2Cor and Fmask, and can be considered a better alternative to its teacher, the
Fmask algorithm. The results showed that the model performed particularly well for the
Cloud and Snow classes, which were the two prominent classes observed in the geographical
sites that we used in our study.

Shadows in satellite imagery can be classified based on their source as cloud shadows
or topographic shadows. Topographic shadows are the shadows that are cast by topo-
graphic features, such as mountains, and are static features that depend on acquisition
geometry and solar position. In contrast, cloud shadows are dynamic features whose
location and representation also depend on the prevailing meteorological conditions during
image acquisition. The spectral characteristics of cloud shadows and topographic shadows
are similar [48]. Topographic shadows can be detected accurately using digital elevation
models (DEM) and solar angles. However this information is not provided to the network
explicitly. The Fmask algorithm also makes use of the image metadata, such as solar zenith
and azimuth angles, along with the cloud detections, in order to predict cloud shadow
pixels. However, visual inspection of the Fmask results showed that they were not always
very accurate. In Figure 5, both Sen2Cor and Fmask tended to incorrectly label topographic
shadows as Water. Our model offered an improvement in this regard, correctly labelng them
as shadow in many instances. A suitable post-processing technique using the metadata
and DEM can be applied to separate the cloud shadows and topographic shadows.

In Table 10, we compare the performance metrics for different stages of the self-
training framework. We observe that the performance of the model improved over the first
three stages of the self-training framework and subsequently saturated in the last stage.
We attribute this pattern to improvement in the quality of data labels as a result of our
framework. The performance on the class Water did not improve across the different stages.
We know that shadows and water tend to have dark-colored pixels and it is often difficult
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to distinguish between them by visual inspection. We believe the network infers that the
class Water and the class Shadow are similar, and, in cases of ambiguity, prefers Shadow over
Water due to higher loss function weights used during training. As shown in Figure 6, the
network focused on improving the performance in the shadow class at each stage and this
improvement was also reflected in the performance metrics.

We also trained two models using the conventional supervised training approach.
The first model was trained using the same training dataset, but using the noisy Fmask
labels, while the second model was trained with the small human-labeled dataset that was
previously used for model selection in our proposed framework. The network architec-
ture used was the same as the architecture from the model in Stage-4; we also used all
regularization techniques discussed previously for training this model. Hence, the key
difference between the supervised models and the self-trained model (Stage-4) was the
labels used for the training. We present the performance metrics for these two models and
our self-trained model in Table 11. The results for the clean supervised model show that the
limited number of labeled examples in our validation dataset was insufficient to generalize
the task effectively. We believe that the large noisy dataset offered greater data diversity
over the smaller clean dataset, and that his helped the noisy model to outperform the clean
model. One might be inclined to argue that the improvement in performance across the
stages of the self-training framework was due to the increase in the number of parameters
used in the network architecture. However, the performance of the noisy supervised model
demonstrated that a larger network alone does not guarantee better performance. We
observed that the improvement in data labels achieved through a self-trained framework
enabled the stage-2 and stage-3 models to outperform the supervised model despite their
smaller network size. Hence, we believe our approach has great potential for training
models with noisy labels.

Jeppesen et al. demonstrated the capability of neural networks to learn from noisy
Fmask labels in their RS-Net model trained for cloud detection in Landsat Imagery using
the supervised learning approach [28]. Our study can be viewed as a next step in this
research direction, and we also further extend this approach for the multi-class segmenta-
tion task. Similar to our research, Li et al. offered a solution for addressing the difficulty
of obtaining large pixel-level annotated datasets for training neural networks [36]. The
block-level annotated dataset used for training their weakly supervised model can po-
tentially simplify the annotation process in comparison to the more laborious pixel-level
annotation. However, it may prove to be challenging to adapt this approach for multi-class
segmentation, particularly for shadow detection. We used the simple, yet effective, U-Net
architecture in our self-training framework. However we note that the network used in our
framework can be easily adapted to take advantage of recent advances in network architec-
tures and training techniques, which have shown improved cloud-detection capabilities in
supervised models.

Table 10. Comparison of F1 score and IoU across the trained models from different stages of the
self-training framework.

Stage-1 Stage-2 Stage-3 Stage-4

Class F1 Score IoU F1 Score IoU F1 Score IoU F1 Score IoU

Clear-Sky Land 0.61 0.44 0.81 0.68 0.92 0.84 0.92 0.85
Cloud 0.88 0.79 0.94 0.89 0.96 0.93 0.96 0.93
Shadow 0.68 0.52 0.76 0.62 0.81 0.67 0.81 0.68
Snow 0.83 0.71 0.91 0.83 0.93 0.86 0.93 0.87
Water 0.89 0.80 0.88 0.78 0.87 0.77 0.87 0.77

Total Accuracy 0.83 0.90 0.93 0.93
mIoU 0.65 0.76 0.82 0.82
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Figure 6. Comparison of test image results from different stages of the self-training framework and
the results from the models trained using supervised training, from Tile 04WDV in Alaska, USA,
captured on 27 October 2020.

Table 11. Comparison of F1 score and IoU with the models trained using the supervised training
approach. The model in column Supervised (noisy) was trained on the entire training dataset using
the Fmask labels and the model in column (clean) was trained on the validation dataset using the
manually annotated labels.

Our Model Supervised (Noisy) Supervised (Clean)

Class F1 Score IoU F1 Score IoU F1 Score IoU

Clear-Sky Land 0.92 0.85 0.90 0.81 0.87 0.77
Cloud 0.96 0.93 0.95 0.90 0.94 0.88
Shadow 0.81 0.68 0.69 0.52 0.34 0.20
Snow 0.93 0.87 0.90 0.81 0.77 0.62
Water 0.87 0.77 0.82 0.69 0.85 0.74

Total Accuracy 0.93 0.89 0.84
mIoU 0.82 0.75 0.64
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6. Conclusions

Our study demonstrates the effectiveness of self-training neural networks in the Earth
observation domain. The key challenge in this study was to train the model using the noisy
labels from the Fmask cloud detection algorithm. Many other remote-sensing applications
face the same difficulty with existing, but imprecise, training data, that often limits the
deployment of deep-learning technologies.

Even though the proposed method offers better performance compared to Fmask
and Sen2Cor, we believe that the performance can be improved further. As well as the
detection of shadows, the detection of thin clouds, particularly those above water bodies,
can be improved. The clear-sky land class is the most heterogeneous of the six classes in
this investigation. When training a similar model that can be applied to all geographical
environments, this class is expected to pose some challenges. The use of other indices in
addition to NDSI would allow advantage to be taken of the domain knowledge that has
been acquired as a result of years of research.

Our classification strategy has the potential for more nuanced class separation and
for integration into information retrieval algorithms. The use of other existing masks or
data sets (e.g., ocean, lakes or vegetation) might lead to even higher precision on specific
problems or over certain surfaces.
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Appendix A. Tile-Wise Quarterly Distribution of Sentinel-2 Scenes

Appendix A.1. Training Dataset

Table A1. Tile-wise quarterly distribution of scenes present in the training dataset. The size column
indicates the count of 254× 254 patches used for training.

Tile No. Location Jan.–Mar. Apr.–Jun. Jul.–Sep. Oct.–Dec. Size

06WVC U.S.A 1 1 1 1390
07VCG U.S.A 1 2 1452
11TLG U.S.A 1 1 1 1452

11WNV Canada 1 1 1 1452
12XVM Canada 1 2 1452
14CMC Antarctica 2 1 1452
15WXQ Canada 1 2 1452
16CEU Antarctica 1 2 1452
18DVF Antarctica 2 1 1405
19DEE Antarctica 1 1 1 1324
19JEH Argentina 1 1 1 1452

19WER Canada 1 2 1452
19XEH Greenland 1 2 1348
20WMT Canada 1 1 1 1452
20XNR Greenland 1 2 1442
21CWJ Antarctica 1 2 1121
21UUA Canada 1 2 1452
21XWC Greenland 1 1 1 1452
27XVB Greenland 1 1 1 1452
27XWH Greenland 1 2 1356
30XWR Greenland Sea 1 1 1 1283
34WED Norway 3 1448
42XVJ Russia 1 1 1 1452
44XMF Russia 1 2 1452
45DWG Antarctica 1 1 1 1075
47XMJ Russia 1 2 1452
49XDE Russia 1 1 1 1452
54WVT Russia 1 1 1 1452
55XDD Russia 1 2 1368
58CDV Antarctica 2 1 1452
59CMU Antarctica 2 1 1452
60WWT Russia 1 1 1 1446

Appendix A.2. Validation Dataset

Table A2. Tile-wise quarterly distribution of scenes present in the validation dataset.

Tile No. Location Jan.–Mar. Apr.–Jun. Jul.–Sep. Oct.–Dec. No. Labeled
Pixels

16XEG Canada 1 2 1,491,148
18CWU Antarctica 1 678,120
19FDU Chile 2 868,457
26XNR Greenland 1 3 1,514,134
27XVL Greenland 4 2,646,020
41XNE Russia 1 1 913,888
45SVV China 2 2 3,971,467
45WXR Russia 1 1 1,064,095
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Appendix A.3. Test Dataset

Table A3. Tile-wise quarterly distribution of scenes present in the test dataset.

Tile No. Location Jan.–Mar. Apr.–Jun. Jul.–Sep. Oct.–Dec. No. Labeled
Pixels

04CEU Antarctica 1 1 1,072,859
04WDV U.S.A 1 2 590,574
10WDE Canada 1 2 1,922,806
18XVM Canada 2 1 1,438,918
26XNQ Greenland 3 2,086,371
27XWK Greenland 3 1,251,262
32VMP Norway 1 1 764,357
42DVG Antarctica 1 295,047
52XDF Russia 3 2,174,747

Appendix B. Additional Image Results
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No-Data
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Cloud
Shadow
Snow
Water
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Tile	:	04CEU

Labeled	Polygons
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Figure A1. Comparison of test image results from Tile 04CEU in Marie Byrd Land, Antractica,
captured on 12 December 2020.
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Figure A2. Comparison of validation image results from Tile 16XEG in Nunavut, Canada, captured
on 15 March 2020.

True	Color	Image False	Color	Composite

Fmask	4 Sen2Cor2.8

Tile	:	41XNE

No-Data
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Cloud
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Water

Labeled	Polygons
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Figure A3. Comparison of validation image results from Tile 41XNE in Arkhangelsk Oblast, Russia,
captured on 23 September 2020.
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