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Abstract: Object detection is a basic and important task in the field of aerial image processing and
has gained much attention in computer vision. However, previous aerial image object-detection
approaches have insufficient use of scene semantic information between different regions of large-
scale aerial images. In addition, complex background and scale changes make it difficult to improve
detection accuracy. To address these issues, we propose a relationship representation network for
object detection in aerial images (RelationRS): (1) Firstly, multi-scale features are fused and enhanced
by a dual relationship module (DRM) with conditional convolution. The dual relationship module
learns the potential relationship between features of different scales and learns the relationship
between different scenes from different patches in a same iteration. In addition, the dual relationship
module dynamically generates parameters to guide the fusion of multi-scale features. (2) Secondly,
the bridging visual representations module (BVR) is introduced into the field of aerial images to
improve the object detection effect in images with complex backgrounds. Experiments with a publicly
available object detection dataset for aerial images demonstrate that the proposed RelationRS achieves
a state-of-the-art detection performance.

Keywords: object detection; aerial imagery; conditional convolution; relationship representation;
bridging visual representations

1. Introduction

The technique of object detection in aerial images refers to extracting the positions of
the objects defined by domain experts, according to whether a kind of object is common and
its value for real-world applications [1,2]. With the rapid development of remote sensing
acquisition technology, object detection methods in aerial images are widely used in ship
monitoring, maritime search and rescue, traffic control, power line inspection, military
reconnaissance, and other fields [3]. In addition, for unmanned aerial vehicles (UAVs) and
satellites with limited energy resources, aerial image object detection technology is also
used as a pre-processing method to select important images with suspected targets and
return them to the ground station first. This puts higher requirements on the accuracy and
speed of object-detection algorithms [4]. Based on this rapidly growing demand, traditional
object-detection algorithms using the logic of extracting hand-designed low-level features,
and then classifying and predicting bounding boxes can no longer meet the detection tasks
under fast, multiple categories and complex background conditions [5–7].
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Widely used convolutional neural networks (CNNs) have greatly promoted the de-
velopment of object-detection technology. Overall, the current object detection networks
can be divided into single-stage detectors and two-stage detectors. On the one hand, the
two-stage detector method can be also called the region proposal-based method. This
type of algorithm usually uses a small two-class network to extract the region proposals
firstly, and then performs a bounding boxes tuning procedure and category prediction. The
region proposal-based method can achieve higher detection accuracy, but its structure is
not suitable for edge computing devices. Deformable part model (DPM) [8], region-based
convolutional neural network (R-CNN) [9], Fast R-CNN [10], Faster R-CNN [11], feature
pyramid network (FPN) [12], Cascade R-CNN [13], Mask R-CNN [14], etc., are the rep-
resentative algorithms. On the other hand, the single-stage detector can be also called
the regression-based method, including Overfeat [15], you only look once (YOLO) [16],
YOLOv2 [17], YOLOv3 [18], YOLOv4 [19], YOLOX [20], single shot detector (SSD) [21],
fully convolutional one-stage object detection (FCOS) [22], and RetinaNet [23]. The single-
stage detector performs object detection on an entire image at one time, and predicts the
bounding boxes as the coordinate regression task. This kind of method is very suitable for
the embedding of edge computing devices, but its accuracy is not as good as the two-stage
detector.

It is worth mentioning that some methods transform the prediction of the bounding
boxes into a task of predicting the key points of the bounding boxes [24–26]. These methods
are fast and efficient, but have difficulty in scenes where the objects obscure each other in
natural images.

At present, encouraged by the great success of deep-learning-based object detection in
natural images [27,28], many researchers have proposed utilizing a similar methodology
for object detection in aerial images [7,29]. Common natural images usually come from
surveillance cameras, mobile phones, cameras, and other imaging platforms, and the
imaging procedure is often carried out from a head-up perspective or a head-up perspective
with a small angle. Scenes in natural images are usually relatively single. This means that
there is no strict logical relationship between people and vehicles and the background.
Vehicles can appear in high-rise buildings, and vehicles can also appear on the beach.
In addition, sizes of objects strictly follow the specification of near–large and far–small.
Remote sensing images usually come from satellites, aircraft, fixed-wing unmanned aerial
vehicles (UAVs), rotary-wing UAVs, and other platforms. When imaging, a vertical view
perspective or tilt photography mechanism can be adopted. As a single image has a larger
size, it covers a larger geographical range and includes more types of ground objects,
with a more complex background. This means a single image can often cover a complete
scene type, such as an airport. Different scenes and their unique objects constitute scene
semantics, such as airplanes and airports, vehicles and roads, cities and viaducts, etc. This
is very different from the representation of scenes in natural images. Figure 1 shows the
difference between natural images and aerial images. First of all, the backgrounds of aerial
images are more complex, which put forward higher requirements on algorithms. Secondly,
the aerial images are taken from the vertical view perspective when acquiring, so there is
almost no occlusion between the objects. In addition, aerial images have rich scene-target
semantic information. Finally, due to the different acquisition platforms, flight trajectories,
and sensors used when acquiring aerial images, almost every aerial image product has
unique resolution and imaging characteristics. This leads to drastic scale changes of the
same object. Moreover, the scales between different objects are also quite different. To sum
up, it is impossible to directly apply the common object-detection algorithms based on
deep learning from the field of natural images to the field of aerial image object detection.
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Figure 1. The difference between natural images and aerial images. (a) A port image data obtained by
aerospace platforms or aviation platforms. (b) A port image data captured by surveillance equipment
or handheld devices.

In this paper, in order to obtain improved object detection results with optical remote
sensing images, we followed these steps: (1) We put forward a fast and effective network
structure based on one-stage detector algorithms, namely, relationship representation net-
work for object detection in aerial images (RelationRS). In RelationRS, to solve the problem
of dramatic scale changes in aerial images, a novel dual relationship module has been
designed to realize the extraction and characterization of multi-scale relations and the
potential relationships between different scenes from one iteration. The dual relationship
module can guide the multi-scale features fusion with weight parameters dynamically gen-
erated by conditional convolutions. Based on FPN [12] algorithm, conditional convolution
mechanism has been used to learn the above two kinds of potential relations and dynam-
ically guide the fusion of multi-scale feature maps. The algorithm of dual relationship
module is different from some methods [2,30] based on extra semantic branches, and can
avoid the serious speed loss caused by extra branches while improving the overall accuracy
of the network. (2) In order to cope with the complex background of aerial images, the
bridging visual representation module (BVR) [31] used in natural image object-detection
task is introduced into the aerial image object-detection task for the first time to fuse the
key-point representation algorithm and the bounding box representation algorithm. Based
on the imaging characteristics of vertical view perspective, there is almost no occlusion
between the objects, so the key-point representation can be introduced into the rectangular
bounding box frame. Therefore, the two object representation methods can be combined
simultaneously to improve the positioning accuracy of objects and reduce the influence of
complex background.

The proposed algorithm tested on the DOTA dataset [1] demonstrates that the pro-
posed RelationRS achieves a state-of-the-art detection performance.

The rest of this paper is organized as follows. Section 2 gives a brief review of the
related work on aerial image object detection based on deep learning, the multi-scale feature
representations, and the conditional convolution mechanism. In Section 3, we introduce
the proposed method in detail. The details of the dataset, the experiments conducted in this
study, and the results of the experiments are presented in Section 4. Section 5 concludes
this paper with a discussion of the results.
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2. Related Work
2.1. Object Detection of Aerial Images

Given the characteristics of aerial images, many researchers currently focus on the
two-stage detector as the baseline to obtain higher-precision detection results, compared to
the single-stage detector.

Zou et al. [32] proposed a singular value decomposition network (SVDNet) for ship
object detection in aerial images. To improve detection accuracy, the SVDNet combines sin-
gular value decomposition and convolutional neural networks. Since the region proposals
are extracted by the selective search algorithm [33,34], this non-end-to-end implementation
greatly reduces the speed of the algorithm. Dong et al. [35] optimized the non-maximum
suppression algorithm, and the proposed Sig-non-maximum suppression method has
better accuracy for small objects. Both Deng et al. [36] and Xiao et al. [37] have used
sliding windows to extract region proposals, then used convolutional neural networks
to extract deep-learning-based features, and finally used non-rotating rectangular boxes
to characterize objects. A large number of regions in aerial images belong to the back-
ground class where no object exists. Therefore, the method of using the sliding windows
to extract region proposals is inefficient, and it is easy to cause an imbalance between
positive and negative samples. Xu et al. [38] and Ren et al. [39] applied deformable
convolution [40] to aerial image object detection tasks with complex boundaries. Through
expanding the receptive field of the convolution kernel, the deformable convolution with
variable sampling position is beneficial to extract the complex boundaries of objects in
aerial images. Similarly, Hamaguchi et al. [41] has used the dilated convolution filters [42]
to optimize the receptive field size of the convolution kernel in aerial image object detection
and segmentation, which is conducive to the extraction of scene semantic information.
Context-driven detection network (CDD-Net) [43] has used an attention mechanism to
improve the ability of multi-scale feature representation. In addition, CDD-Net has used
a local semantic feature network to extract the feature information of the area around an
object, to compensate for the limited filter size of the CNNs. Finally, the detection task
is finished with both the feature maps of region proposals and the information around
objects. To improve the efficiency of multi-scale feature utilization, adaptively aspect ratio
multi-scale network (A2RMNet) [44] adopted a gate structure to automatically select and
fuse multi-scale features and then adopted the same region proposal feature map pooling
method as rotational region convolutional neural network (R2CNN) [45] to obtain three
different aspect ratios. Feature maps and the attention mechanism are also used to optimize
and merge the three feature maps to improve the accuracy of object detection.

Different from the algorithms using the rectangular bounding box frame, some aerial
image object detection methods based on two-stage detectors believe that the use of the
rotating bounding box frame can better describe the object and reduce the influence of
background pixels. Although a rotation region proposal network (RRPN) [46] is proposed
for the task of text detection, it has achieved excellent results in many competitions related
to aerial imagery. Similarly, both Li et al. [47] and Ding et al. [48] adopted the lightweight
structure to obtain more accurate rectangular bounding box characterization with different
angles in the region proposal extraction stage. When performing RoI Pooling operations,
this kind of rotation bounding box frame tries to eliminate the background pixels in
the region proposal to improve the characteristics of the object itself. Yang et al. [49]
constructed a novel multi-category rotation detector for small, cluttered and rotated
objects (SCRDet). Firstly, for SCRDet, a new feature fusion branch (SF-Net) is proposed
to improve the recall value of the region proposals. Then, SCRDet adopted a supervised
multi-dimensional attention network (MDA-Net) with self-attention mechanism to reduce
the interference of background pixels and improve the feature representation ability of the
object itself. Finally, the loss function is improved with a constant factor. Both context-
aware detection network (CAD-Net) [30] and global-local saliency constraint network
(GLS-Net) [2] improved feature representation ability of the object itself by global semantic
branches with attention mechanism or saliency algorithm. These global semantic branches
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are used to compensate for the lack of scene information caused by the limited size of the
receptive field. In fact, saliency algorithm is one of the important ways to combat complex
background. Fang et al. [50] proposed a stereoscopic video saliency detection method based
on 3D convolutional neural networks, namely, deep 3D video saliency (Deep3DSaliency).
Deep3DSaliency makes full use of the spatio–temporal information between frames to
make the target regions more prominent and produce significant differences from the
background. Similarly, Jian et al. [51] proposed an effective visual saliency-detection model
based on spatial position prior of attractive objects and sparse background features.

Li et al. [52] proposed a network with refine feature pyramid network and multi-
layer attention network (RADet). RADet improved the feature representation ability for
scale changes by fusing the front-layer feature maps and the deeper-layer feature maps;
this kind of fusion strategy is useful for the small-object-detection tasks. Moreover, on
the basis of on Mask R-CNN [14], RADet can predict the instance mask and the rotating
rectangular bounding box at the same time based on the attention mechanism. In RADet, the
minimum rectangular area of the object is used as the truth of the mask, which actually still
contains the background area. For this reason, RADet does not realize the high-precision
characterization of the object itself. Similarly, inspired by Mask R-CNN, mask-oriented
bounding box representation (Mask OBB) [53] adopted the inception module [54] to fuse
feature maps from different depths and utilized the attention mechanism to construct
semantic segmentation feature maps. Finally, Mask OBB can predict the bounding boxes,
rotated bounding boxes, and instance masks simultaneously. In order to deal with the
problem of scale changes and small objects, Li et al. [55] proposed a method that can predict
bounding boxes and rotated bounding boxes with a module similar to the inception module
and a semantic segmentation module. However, the above two methods require multiple
types of samples in the training stage. Xu et al. [56] believe that it is difficult to directly
predict the rotated bounding boxes, and the detection of the rotated objects should to be
implemented step by step; that is, the non-rotated bounding boxes need to be predicted
first, and then the offset of the four vertices can be calculated. Zhu et al. [57] proposed
that it is difficult and inefficient to directly calculate the angles of the bounding boxes.
Therefore, two different two-dimensional periodic vectors are used to represent angles, and
a new intersection over union (IoU) is used to solve the problem of the object with a large
length and width ratio. Fu et al. [58] extracted features of region proposals with angles
and merged feature maps from different depths through bidirectional information flow to
enhance the representation ability of the feature pyramid network. Rotation-equivariant
Detector (ReDet) [59] encodes the rotation-equivariance and the rotation-invariance, which
can reduce the demand for network parameters while realizing the detection of rotated
objects. Based on the characteristics of images in frequency, octave convolution-based
semantic attention feature pyramid network (OcSaFPN) [3] is proposed to improve the
accuracy of object detection in aerial images with noise.

Object-detection algorithms based on single-stage detectors in aerial images have
developed rapidly, and have narrowed or even surpassed the accuracy gap with two-stage
detectors. The aerial image object-detection algorithms based on single-stage detectors
have the common characteristics of being fast, concise, and conducive to the deployment
of dedicated computing chips and edge computing equipment. For this reason, object-
detection algorithms based on single-stage detectors in aerial images have great potential
in production and application in a variety of scenarios. By adding a new branch for
scene prediction, you Only Look Twice (YOLT) [60] realizes the simultaneous prediction
of the objects and scene information, and forms the association between the object and
the scene information from the loss function. However, this method does not make up
for the shortcomings of YOLOv2 itself, and most of the datasets in aerial image field lack
scene labeling information. Inspired by SSD, feature-merged single-shot detection method
(FMSSD) [61] adopted the dilated convolutional filter to enlarge the size of the receptive
field. Although this method can extract the information of the object and its surrounding
area at the same time, the size of the surrounding area is limited and the feature maps still
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cannot describe the scene semantics well. Zou et al. [62] realized small-objects detection in
high-resolution remote sensing images based on Bayesian priors algorithm, and optimized
the memory overhead when processing large images. On the basis of RetinaNet, a refined
single-stage detector with feature refinement for rotating object (R3Det) [63] predicts the
rotated bounding boxes through the anchor with angles and the first head network. In
addition, a feature-refinement module (FRM) is designed to reconstruct the entire feature
map to solve the problem of misalignment. The FRM has a lightweight structure, rigorous
and efficient code implementation, and can be easily inserted into a variety of cascaded
detectors.

Different representation methods used in detectors usually have different advantages
and disadvantages. Unlike methods that only use a single representation method, the
proposed method introduces the bridging visual representation module (BVR) to combine
multiple characterization methods. Through fusing the key-point representation algorithm
and the bounding box representation algorithm, the positioning accuracy of objects is
improved, while the influence of complex background is reduced.

2.2. Multi-Scale Feature Representations

For convolutional neural networks, the fusion and use of multi-scale feature maps can
greatly improve the detection accuracy of the algorithm in small-target detection tasks and
scenes with dramatic scale changes [3].

In the field of object detection based on convolutional neural networks, FPN [12] is one
of the earliest effective ways to solve multi-scale problems, and it is also the most widely
used feature pyramid structure. FPN receives multi-scale features from the backbone
structure and then builds a top-down information transfer path to enhance the represen-
tation capabilities of the multi-scale features. While retaining the top-down information
flow path of FPN, path aggregation network (PANet) [64] adds a bottom-up information
transmission path to realize the two-way interaction between shallow features and deep
features. Furthermore, the adaptively spatial feature fusion (ASFF) [65] is designed with
dense connections to transfer information between features of different scales.

The scale-transfer module proposed by scale-transferrable detection network
(STDN) [66] reconstructs multi-scale feature maps without introducing new parameters.
Kong et al. [67] first fused multi-scale feature maps and then used a global attention branch
to reconstruct these features. Both augmented feature pyramid network (AugFPN) [68]
and two-level nested octave u-structure network (U2 −ONet) [69] output multiple feature
maps of different scales, and then perform loss calculations on each level.

Neural architecture search-based feature pyramid network (NAS-FPN) [70] adopted
an adaptive search algorithm to allow the system to automatically find the optimal multi-
scale feature information flow path, thereby forming a pyramid structure with a fixed
connection path. This kind of network design logic is different from the common feature
pyramid, which can avoid the complicated manual design process, but the automatically
search process requires huge computing resources. Inspired by NAS-FPN, mobile-friendly
neural architecture search-based feature pyramid network (MnasFPN) [71] added the
characteristics of mobile hardware to the search algorithm. Therefore, when searching for
the optimal network structure, the search algorithm not only considers accuracy as the only
basis for judgment but also takes the hardware characteristics into account. Therefore, the
deployment of MnasFPN on mobile is more advantageous.

Weighted bi-directional feature pyramid network (BiFPN) [72] improved multi-scale
expression ability through connections across different scales and short-cut operations.
OcSaFPN [3] improved the robustness of multi-scale features on noisy data by assigning
different weights to feature maps from different depths.

The existing multi-scale information fusion methods mainly adopt convolution of
fixed-weight parameters. By contrast, proposed method guides the multi-scale features
fusion with weight parameters dynamically generated by conditional convolutions. This



Remote Sens. 2022, 14, 1862 7 of 21

variable parameter form is more flexible and can better adapt to aerial images with dramatic
scale changes.

2.3. Conditional Convolution Mechanism

Conditional convolution, which can also be called dynamic filter, was first proposed
by Jia et al. [73]. Different from the traditional convolutional layers with fixed-weight
parameters in the inference stage, the parameters of a conditional convolutional layer are
constantly changing with different input data. Therefore, the parameter form is more
flexible. This variable parameter form can better adapt to the input data, thus it has
gradually attracted the attention of many researchers.

At the same time, hyper network [74] is proposed to generate weights for another
network. Later, this mechanism is also adopted to the style transfer task [75]. A kind of
dynamic upsampling filter is used by Jo et al. [76] for the task of high-resolution video
reconstruction. Similarly, magnification-arbitrary network for super-resolution (Meta-SR)
also adopted the idea of dynamic parameter generation for super-resolution reconstruction
tasks [77]. Conditionally parameterized convolutions (Condconv) [78] described the logic
of conditional convolution in detail and used the form of group convolution to deal with
the situation of multiple data in a batch. Wu et al. [79] generated optical flow data based
on a dynamic filtering strategy. Both Harley et al. [80] and conditional convolutions for
instance segmentation (CondInst) [81] adopted the conditional convolution mechanism to
predict the instance masks. Xue et al. [82] adopted the conditional convolution mechanism
to generate the future frames. Both Sagong et al. [83] and Liu et al. [84] introduced
the conditional convolution mechanism into the generative adversarial network. Top-to-
down lane-detection framework based on conditional convolution (CondLaneNet) [85]
and full-scale fusion network based on conditional dilated convolution (ConDinet++) [86]
are used for lane line extraction tasks and the road extraction tasks, respectively, in remote
sensing images.

In summary, most of the current research on conditional convolution focus on pixel-
level tasks, and the number of related research is generally small. Applications related to
remote sensing images are even rarer.

3. Proposed Method

In this section, we introduce the RelationRS algorithm. The flow chart of the proposed
object detection method is shown in Figure 2. The proposed RealationRS is based on
the classic anchor-free detector, namely FCOS [22], with the backbone module (residual
network-50 (ResNet50) [28]) and FPN structure [12]. Firstly, the input aerial image data
flows through the backbone network and FPN module, and then feature maps of five
scales can be obtained (P2, P3, P4, P5, P6). In order to better adapt to multi-scale object
detection tasks, the dual relationship module is designed to fuse features of different
scales, which is explained in Section 3.1. On the one hand, this dual relationship module
can learn the relationship of an object at different scales, and dynamically generate the
fusion weights according to the input data to guide the fusion of multi-scale information.
On the other hand, the dual relationship module can learn the potential scene semantics
between different patches in one batch, and improve the detection accuracy through the
comparison between different scenes. In Section 3.2, on the basis of fusion of multi-scale
information, we use the bridging visual representations module to suppress the influence
of complex background information in aerial images, and improve accuracy through the
combination of multiple features. Aerial imagery usually adopts top-view perspective
imaging; thus, there is little occlusion between objects (Figure 3). One of the disadvantages
of the key-point-based object-detection algorithm is that it is not robust enough when
encountering occlusion problems, and its advantage lies in better positioning accuracy.
Based on the above reasons, the use of key-point detection technology in aerial imagery
can achieve strengths and avoid weaknesses. By combining rectangular bounding box
detection, center detection, corner detection, and classification, the interference of complex
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background information can be suppressed, and the positioning accuracy of objects on
complex background data can be improved. Finally, high-precision aerial image object
detection can be achieved.

Figure 2. The proposed framework, namely, the relationship representation network for object
detection in aerial images (RelationRS), is made up of three components: the baseline network, which
is made up of the fully convolutional single-stage detector with no anchor setting (FCOS) [22] and
the feature pyramid network (FPN) [12]; the dual relationship module, which learns the potential
relationship between different scales of the objects and the potential relationship between different
scenes of aerial images in one batch; and the bridging visual representation module for aerial
image object detection task, which learns the potential relationship between different coordinate
representations based on BVR module [31].

Figure 3. Comparison of target occlusion in images under different viewing angles. (a) There are
serious occlusion problems between different people in natural images. (b) In images acquired by
drones, due to the overhead perspective, there is almost no problem of mutual occlusion between
people and vehicle objects.

3.1. Dual Relationship Module (DRM)

Aerial images have obvious characteristics of diverse scales and the existence of scene
semantics. To deal with the scale changes within and between classes, FPN [12], PANet [64],
NAS-FPN [70], MnasFPN [71], BiFPN [72], OcSaFPN [3], etc. have all been proposed.
These methods effectively improve the multi-scale object detection problem. However,
the structures and weights of these methods are fixed in the inference stage and will not
change according to the input data. As shown in Figure 4, for different aerial image patches,
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the semantic information of the scene contained in it is different, and the object types and
scales in the two scenes are also quite different. Based on the above reasons and inspired
by CondInst [81], the dual relationship module is designed to learn scale changes from
multi-scale information, implicitly extract the connections and differences between the
scenes contained in different patches in the one batch. In addition, the neural network
parameters of the multi-scale information fusion module are dynamically generated to
guide the fusion of multi-scale features with semantic information of the input data.

Figure 4. Sample aerial image patches with different scenes. The sizes of patches are all 1024× 1024.
Different patches have different scene semantics, forming a potential semantic contrast with each
other. There are also intra-class and inter-class scale differences for objects between different scenarios.
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Figure 5 shows the construction of the dual relationship module. Taking batchsize = 2
as an example, the four scale feature maps extracted from the backbone network are
marked as C2, C3, C4, C5. Then, after taking C2, C3, C4, C5 as input, the feature maps output
by FPN [12] can be marked as P2, P3, P4, P5, P6. Among them, P6 is generated by P5 with the
maximum pooling operation. Inspired by CondInst, the key point of the dual relationship
module is the generation of P′2 feature maps, and the generation process of P′2 can be
described by Equation (1):

P′2 = Conv2(Conv1(concate(resize((P2, P3, P4, P5))))), (1)

where Conv1(·) and Conv2(·) denote two convolution operations with kernel size [1, 1],
concate(·) denotes the concatenation. The parameters of Conv1(·) and Conv2(·) are ob-
tained by CondConv [78], and the process can be expressed by Equation (2):

w1, w2, b1, b2 = CondConv(FO(C2, C3, C4, C5)), (2)

where CondConv(·) denotes the conditional convolution module from CondConv [78],
FO(·) denotes the fusion operation seen in Figure 5 and can be built by Equation (3):

FO(C2, C3, C4, C5) = Conv3×3(concate(resize(C2, C3, C4, C5))), (3)

where Conv3×3(·) denotes the convolution operation with kernel size [3, 3].

Figure 5. The construction process for the dual relationship module.

Based on the above formulas, C2, C3, C4, C5 are resized and concatenated in the channel
dimension. In order to obtain w1, w2, b1, b2, the feature map after fusion first passes through
a convolutional layer with kernel size [3, 3] for feature alignment and channel dimen-
sionality reduction. Then, the dimensionality-reduced feature map is sent to CondConv
module to generate the required weights and bias values. To solve the situation where
batchsize is not equal to 1, we treat different patches in a batch as different experts. This is
different from the way in CondInst. Finally, we generate the parameters to initialize the two
convolutional layers for the fusion of P2, P3, P4, P5, and finally output the required feature
maps P′2. In this way, we obtain a series of multi-scale feature maps P′2, P2, P3, P4, P5, P6 and
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send them to the head network. To reduce the amount of parameters (w1, w2, b1, b2), the
group convolution mechanism from AlexNet [87] is used in Conv1(·) and Conv2(·).

It is worth noting that we treat two patches in a batch as experts (Figure 6), and then
generate weight parameters. These parameters potentially obtain the relationships and
differences between two scenarios; thus, the network can dynamically extract features based
on the input data. This is different from the idea of using semantic extraction branches in
CAD-Net [30] and GLS-Net [2] to extract the semantics of a single patch scene.

Figure 6. CondConv [78] layer architecture with n = 2 kernels. CondConv: (α1W1 + α2W2)× x.

3.2. Bridging Visual Representations for Object Detection in Aerial Images

Generally speaking, different representation methods usually lead detectors to per-
form well in different aspects. According to the structures of the current object detection
networks, the two-stage detector can usually obtain a more accurate object category predic-
tion. The detection method based on the center point can improve the detection accuracy
of small objects. The corner-based method reduces the characterization dimension of the
bounding boxes; thus, it has more advantages in positioning tasks [31]. As shown in
Figure 3, in the face of the character that objects in aerial images are less occluded, we
believe that the introduction of the key-point detection algorithm based on FCOS can
suppress the influence of complex backgrounds and improve detection accuracy. Based
on this point of view, the BVR module is introduced into the aerial image object detection
task. Through the combination of multiple characterization methods, the accuracy of aerial
image detection tasks for complex backgrounds can be improved.

For a detector, the main idea of the BVR module is to regard its main representation
as the master representation. Thus, other auxiliary representations are adopts to enhance
the master representation by a kind of transformer module [88]. That is, the transformer
mechanism is used to bridge different visual representations.

As for the anchor-free algorithm (FOCS), the center point location and the correspond-
ing features are regarded as the master representation and the query input at the same time.
Compared with standard FOCS head network, the BVR module constructs an additional
point head network (Figure 7). The point head network consists of two shared convolu-
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tional layers with kernel size [3, 3], followed by two independent sub-networks to predict
the scores and sub-pixel offsets for center and corner prediction [31]. The representations
produced by the point head network are regarded as the auxiliary representation and the
keys in the transformer algorithm. To reduce the amount of calculation, a top-k key selec-
tion strategy is adopted to control the set of keys no larger than k (default = 50), according
to their corner-ness scores. Indeed, the cosine/sine location embedding algorithm is used
to reduce the complexity of coordinate representations. Here, according to the characteristic
of the aerial images, the maximum number of key points is set to 400.

Figure 7. The construction process for the BVR module based on FCOS.

Based on the above settings of the queries and the keys, the enhanced features f ′qi can
be calcuted by Equation (4):

f ′qi = f q
i + ∑

j
S( f q

i , f k
j , gq

i , gk
j ) · Tv( f k

j ), (4)

where f q
i and gq

i are the input feature and geometric vector for a query instance i; f k
j and

gk
j are the input feature and geometric vector for a key instance j; Tv(·) is a linear value

transformation function; S(·) is a similarity function between i and j [31]. S(·) can be
described as Equation (5):

S( f q
i , f k

j , gq
i , gk

j ) = so f tmaxj(S
A( f q

i , f k
j ) + SG(gq

i , gk
j )), (5)

where SA( f q
i , f k

j ) denotes the appearance similarity computed by a scaled dot product

between query and key features, and SG(gq
i , gk

j ) denotes a geometric term computed by
cosine/sine location embedding-based method [31].

The BVR module based on FCOS can be seen in Figure 7.

4. Experiments and Results

For proving the effectiveness of the proposed method, a widely used “A Large-Scale
Dataset for Object Detection in Aerial images” (DOTA) [1] dataset was used in the experi-
ments for the object detection task in aerial images. In this chapter, the DOTA1.0 dataset,
the implementation details, and the ablation studies conducted with the proposed method
can be introduced in detail in order.

4.1. Dataset

DOTA1.0. DOTA1.0 dataset is one of the largest published open-access datasets for
object detection in aerial images. The dataset consists of 2806 large-size aerial images from
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Google Earth and satellites including Julang-1 (LJ-1) and the Gaofen-2 satellite (GF-2), with
188,282 annotated bounding boxes in 15 categories, including plane, baseball diamond
(BD), bridge, ground track field (GTF), small vehicle (SV), large vehicle (LV), ship, tennis
court (TC), basketball court (BC), storage tank (ST), soccer-ball field (SBF), roundabout
(RA), harbor, swimming pool (SP), and helicopter (HC). Most of the ground sampling
distance(GSD) values of the images in the DOTA1.0 dataset are better than 1 m. The
DOTA1.0 dataset has the characteristics of diverse scenarios, categories, scales, etc. It is still
challenging to achieve high-precision object detection with this dataset.

In the experiments, the training set and validation set of DOTA1.0 were used in the
training stage, and the test set was used for the inference stage and evaluation stage. The
original images were all cropped to a size of 1024× 1024, overlapping by 500 pixels. If
the size of a patch is less than 1024× 1024, the zero padding method was adopted for
completion. Based on the above settings, we obtained a total of 38,504 patches for the
training stage and a total of 20,012 patches for the evaluation task. Since the ground truth
files of the test set from the DOTA1.0 dataset were not disclosed, we submitted the final
test results to the online evaluation website in the format of ’.txt’ (https://captain-whu.
github.io/DOTA/evaluation.html (accessed on 6 July 2021)).

4.2. Evaluation Metrics

For quantitative accuracy evaluation, the mean average precision (mAP) is used in this
paper. The mAP describes the mean value of the average precision (AP) values for multiple
categories in a dataset. For a certain category, the AP value is the area enclosed by the coordinate
axis and the broken line in the corresponding precision-recall graph. The larger the area, the
higher its AP value. The details of the evaluation follow the official DOTA1.0 evaluation website
(https://captain-whu.github.io/DOTA/evaluation.html (accessed on 6 July 2021)).

4.3. Implementation Details

For the realization of the RelationRS, we built the baseline network based on FCOS [22]
with FPN [12]. The ResNet50 [28] pretrained on ImageNet [89] was adopted as the backbone
network. A series of experiments were designed to better evaluate the effects of the dual
relationship module and the bridging visual representations module for aerial image object
detection in this paper. The environment used was a single NVIDIA Tesla V100 GPU with
16 GB memory, along with the PyTorch 1.8.0 and Python 3.7.10 deep learning frameworks.
The initial learning rate was 0.0025, the batch size of the input data was 2, the value of the
momentum is 0.9, the value of the weight decay was 0.0001, and the minibatch stochastic
gradient descent (SGD) was also used for optimization. And the project was build on the
mmdetection v2.7.0 [90].

4.4. Ablation Experiments

Two ablation experiments were used to further discuss the influence of the dual rela-
tionship module and the bridging visual representations module. Here, the abbreviations
in the DOTA data set are explained again: plane, baseball diamond (BD), bridge, ground
track field (GTF), small vehicle (SV), large vehicle (LV), ship, tennis court (TC), basketball
court (BC), storage tank (ST), soccer-ball field (SBF), roundabout (RA), harbor, swimming
pool (SP), and helicopter (HC).

4.4.1. Dual Relationship Module

We conducted the ablation experiment to verify the effectiveness of the proposed dual
relationship module. The baseline is the FCOS algorithm. +DRM means the combination
of the FCOS and the dual relationship module. The difference between the baseline and
the +DRM is only whether the dual relationship module is additionally used, and the
parameters used in the experiment are strictly kept consistent.

From Table 1, +DRM obtains a mAP of 65.63%, which is 1.38% higher than the mAP
value of the baseline (64.25%). For DOTA datasets with 15 categories, the baseline method

https://captain-whu.github.io/DOTA/evaluation.html
https://captain-whu.github.io/DOTA/evaluation.html
https://captain-whu.github.io/DOTA/evaluation.html
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only has advantages in three categories, plane, soccer-ball field (SBF), and basketball court
(BC), which are 0.17%, 4.21% and 5.4% higher than the values of +DRM. This indicates
that the performance of +DRM is not stable enough for objects with relatively large scales.
For small objects, +DRM has achieved better accuracy in multiple categories. The AP
values of small vehicle (SV), large vehicle (LV), ship, storage tank (ST), and helicopter (HC)
of the +DRM outperform the values of the baseline by 1.66%, 3.07%, 4.97%, 6.48%, and
6.46%. In addition, The AP values of baseball diamond (BD), bridge, ground track field
(GTF), roundabout (RA), harbor and swimming pool (SP) of the +DRM are also higher than
values of the baseline. Therefore, the +DRM method can effectively improve the detection
accuracy of small targets.

Table 1. Detection accuracy in the ablation study of using DRM or not with DOTA test dataset. The
bold numbers denote the highest values in each class.

Method
Plane BD Bridge GTF SV LV Ship TC

mAP(%)
BC ST SBF RA Harbor SP HC

baseline
88.12 70.77 44.04 47.46 76.36 65.34 77.96 90.83

64.25
74.31 78.37 48.3 52.62 72.25 42.77 34.27

+DRM
87.95 71.66 44.1 52.48 78.02 68.41 82.93 90.83

65.63
68.91 84.85 44.09 53.6 72.44 43.42 40.73

4.4.2. Bridging Visual Representations for Object Detection in Aerial Images

To evaluate the efficiency of the bridging visual representations module in aerial
images, an ablation experiment are designed to compare the BVR module with the baseline
in the DOTA test dataset. From Table 2, the baseline is the FCOS algorithm the same
as Section 4.4.1. +BVR is a combination of the baseline method and the bridging visual
representations module.

For the 10 categories—plane, baseball diamond (BD), bridge, ground track field (GTF),
small vehicle (SV), large vehicle (LV), ship, storage tank (ST), swimming pool (SP) and
helicopter (HC)—the AP values of the +BVR are higher than values of the baseline by
1.2%, 1.98%, 1.17%, 5.55%, 2%, 0.31%, 0.84%, 1.9%, 5.01%, and 9.8%, respectively. Thus,
+BVR achieves a higher mAP values by 1.67%. The value increase of the mAP proves the
effectiveness of the BVR method in the field of aerial image detection.

Table 2. Detection accuracy in the ablation study of using BVR module or not with DOTA test dataset.
The bold numbers denote the highest values in each class.

Method
Plane BD Bridge GTF SV LV Ship TC

mAP(%)
BC ST SBF RA Harbor SP HC

baseline
88.12 70.77 44.04 47.46 76.36 65.34 77.96 90.83

64.25
74.31 78.37 48.3 52.62 72.25 42.77 34.27

+BVR
89.32 72.75 45.21 53.01 78.36 65.65 78.74 90.83

65.92
72.88 80.27 45.42 52.36 72.12 47.78 44.07

4.5. Comparison with the State-of-the-Art

To examine and evaluate the performance of the proposed framework RelationRS, the
proposed framework is compared with the state-of-the-art algorithms with the DOTA test
dataset. Table 3 shows the AP and the mAP values of different algorithms.
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Table 3. Comparisons with the state-of-the-art single-stage-based detectors in the DOTA1.0 test
dataset with horizontal bounding boxes. The baseline is the FCOS algorithm. +DRM means the
combination of the FCOS and the dual relationship module. +BVR is a combination of the baseline
method and the bridging visual representations module, and the RelationRS is a network adding the
DRM and the BVR module to the baseline detector. The red numbers and the blue numbers denote
the highest values and the second highest values in each class.

Method
Plane BD Bridge GTF SV LV Ship TC

mAP(%)
BC ST SBF RA Harbor SP HC

YOLOv3-tiny [18]
61.48 24.35 4.3 15.49 20.27 30.22 26.96 72

25.73
26.21 22.91 14.05 7.27 28.78 27.07 4.55

SSD [21]
57.85 32.79 16.14 18.67 0.05 36.93 24.74 81.16

29.86
25.1 47.47 11.22 31.53 14.12 9.09 0

YOLOv2 [17]
76.9 33.87 22.73 34.88 38.73 32.02 52.37 61.65

39.2
48.54 33.91 29.27 36.83 36.44 38.26 11.61

RetinaNet [23]
78.22 53.41 26.38 42.27 63.64 52.63 73.19 87.17

50.39
44.64 57.99 18.03 51 43.39 56.56 7.44

YOLOv3 [18]
79 77.1 33.9 68.1 52.8 52.2 49.8 89.9

60
74.8 59.2 55.5 49 61.5 55.9 41.7

SBL [91]
89.15 66.04 46.79 52.56 73.06 66.13 78.66 90.85

64.77
67.4 72.22 39.88 56.89 69.58 67.73 34.74

SFFMd [92]
88.1 82.4 47.7 72.9 45.9 73.5 64.4 90.4

66.3
66.7 50.1 54 60.1 77.8 51.7 69.5

baseline [22]
88.12 70.77 44.04 47.46 76.36 65.34 77.96 90.83

64.25
74.31 78.37 48.3 52.62 72.25 42.77 34.27

+DRM
87.95 71.66 44.1 52.48 78.02 68.41 82.93 90.83

65.63
68.91 84.85 44.09 53.6 72.44 43.42 40.73

+BVR
89.32 72.75 45.21 53.01 78.36 65.65 78.74 90.83

65.92
72.88 80.27 45.42 52.36 72.12 47.78 44.07

RelationRS
88.27 72.96 45.47 53.7 79.73 70.98 82.38 90.83

66.81
69.86 83.29 45.26 54.61 72.79 47.85 44.18

As shown in Table 3, the proposed RelationRS achieves the highest mAP value, and
it outperfors YOLOv3-tiny [18], SSD [21], YOLOv2 [17], RetinaNet [23], YOLOv3 [18],
SBL [91], SFFMd [92], and FCOS (baseline) [22] by 41.08%, 36.95%, 27.61%, 16.42%, 6.81%,
2.04%, and 0.51%. For 15 categories of objects, RelationRS obtains the highest mAP value
on 1 class (small vehicle) and the second highest mAP value on 6 classes (large vehicle,
ship, tennis court, storage tank, harbor, and helicopter).

RelationRS has good detection performance for small objects, such as small vehicle
(SV), large vehicle (LV), ship, storage tank (ST), and helicopter (HC), etc. This phenomenon
is similar to the one discussed in Section 4.4.1. In addition, the BVR module is also used
in the RelationRS method to improve the performance of the detector on images with
complex background. Therefore, the overall accuracy of multiple categories is improved
to a certain extent. Interestingly, SFFMd obtains the highest mAP value on 7 classes and
the second highest mAP value on 1 classes, but its mAP value is slightly lower than the
RelationRS method.
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As shown in Figure 8, the first line is the visualization of the baseline inference result,
the second line is the visualization of the proposed RelationRS algorithm in this paper. For
the first column, it can be seen that the baseline algorithm missed a small-vehicle target,
while the RelationRS correctly detected the target. The overall probability score of the
vehicle target in the picture has been improved, which is consistent with the numerical
performance in Table 3. This can prove the effectiveness of the RelationRS algorithm for
multi-scale feature fusion. Similarly, a vehicle in the central area in (b) is falsely detected
as a ship with a probability of 0.53, while in (f) the target is still falsely detected, but its
probability drops to 0.33. The introduction of scene information (from DRM) and accuracy
position representation (from BVR) can suppress false detection results that violate logic to
a certain extent. Compared with (b), the overall probability scores of vehicle objects in (f)
are improved. For the third column, the false detection at NO.4 in (c) is eliminated in (g),
and it is possible to avoid the detection of objects on the coast as ships based on the scene
semantics. It is very interesting that the false detection at NO.2 in (c) can be eliminated
by the combination of the two representations of BVR, but the scene information of the
complex area will affect the detection of difficult targets, such as the miss detection at
the NO.2 in (g). In the fourth column, BVR suppresses the background and improves the
positioning accuracy of the target. Combined with the scene information obtained by DRM,
it is easy to eliminate the false detection at NO.1 in (d), hence the better detection results
obtained in (h).

Figure 8. The visualization comparison between the baseline method and the proposed RelationRS
in this paper. The first line (a–d) is the visualization of the baseline inference result, and the second
line (e–h) is the visualization of the RelationRS inference result. Each column represents the detection
results of two algorithms in the same scene, where the red circle represents the failure case in the
column, and the green circle represents the better case in the column. Circles with the same number
in the same column form a contrasting pair.

Table 4 shows the inference speed and memory usage of the proposed method. Al-
though the RealationRS algorithm proposed in this paper has certain disadvantages in
terms of speed and GPU memory usage, it is still a useful exploration for the extrac-
tion and use of remote sensing image scene semantics and the combined use of multiple
representation methods.
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Table 4. The inference speed (frames per second, FPS) and graphics processing unit memory occu-
pancy of the method proposed in this paper. Bold numbers indicate the best value in that column.

Method FPS (fps) Memory (MByte)

baseline 11.65 1691
+BVR 7.97 2081

RelationRS 7.67 2157

In conclusion, RelationRS constructs a novel dual relationship module to guide the
fusion of multi-scale features. DRM learns the comparison information of scenes from dif-
ferent patches in one batch and dynamically generates the weight parameters of multi-scale
fusion through conditional convolution. Furthermore, the bridging visual representations
module for natural image object detection is introduced into RelationRS to improve the
performance of the detector on aerial images with complex background information. To
the best of our knowledge, this is the first time that BVR module is introduced into remote
sensing image object detection task. The BVR module can combine the two representation
methods of rectangular box and key-point representation to better locate the target position
in the complex background, so that the network can better learn the information of the
target itself. Some examples of detection results in different scenarios are shown in Figure 9.

Figure 9. Object detection results on DOTA1.0 dataset. (a–l) are schematic pictures of detection
results in different scenarios.

5. Conclusions

In this paper, a single-stage-based object detector for aerial images is proposed, namely
RelationRS. The framework combines a dual relationship module and a bridging visual
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representations module to solve the problem of multi-scale fusion and improve the object
detection accuracy in aerial images with complex backgrounds. The proposed novel dual
relationship module in this paper can extract the relationship between different scenes
according to the input images and dynamically generate the weight parameters required for
feature maps fusion. This feature-fusion method can improve the detection accuracy and
probability score of small objects. In addition, based on the characteristics of less mutual
occlusion of objects in remote sensing images, from the viewpoint of introducing a key-
point detection algorithm, we prove the effectiveness of the bridging visual representations
module in the field of aerial image object detection. The BVR module can combine the
two representation methods of the rectangular box and the key-point representation to
better locate the target position in the complex background. To the best of our knowledge,
this is the first demonstration of the performance of the BVR module on remote sensing
images. Furthermore, BVR-based accurate positioning and DRM-based scene information
introduction can eliminate false detections with serious scene logic errors to a certain extent,
such as vehicles onshore being detected as ships. The experiments under taken with the
public DOTA1.0 dataset confirmed the remarkable performance of the proposed method.

On the other hand, single-stage detectors are still not as accurate as two-stage detectors.
The current neural networks still cannot be better explained. Therefore, how to better
explain the features extracted by neural networks and combine the imaging parameters of
aerial images is one of the key points to improve the detection accuracy of aerial image in
the future.
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