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Abstract: The KITSUNE satellite is a 6-unit CubeSat platform with the main mission of 5-m-class
Earth observation in low Earth orbit (LEO), and the payload is developed with a 31.4 MP commercial
off-the-shelf sensor, customized optics, and a camera controller board. Even though the payload is
designed for Earth observation and to capture man-made patterns on the ground as the main mission,
a secondary mission is planned for the classification of wildfire images by the convolution neural
network (CNN) approach. Therefore, KITSUNE will be the first CubeSat to employ CNN to classify
wildfire images in LEO. In this study, a deep-learning approach is utilized onboard the satellite in
order to reduce the downlink data by pre-processing instead of the traditional method of performing
the image processing at the ground station. The pre-trained CNN models generated in Colab are
saved in RPi CM3+, in which, an uplink command will execute the image classification algorithm
and append the results on the captured image data. The on-ground testing indicated that it could
achieve an overall accuracy of 98% and an F1 score of a 97% success rate in classifying the wildfire
events running on the satellite system using the MiniVGGNet network. Meanwhile, the LeNet and
ShallowNet models were also compared and implemented on the CubeSat with 95% and 92% F1
scores, respectively. Overall, this study demonstrated the capability of small satellites to perform
CNN onboard in orbit. Finally, the KITSUNE satellite is deployed from ISS on March 2022.

Keywords: wildfire; convolution neural network; optical payload; CubeSat; onboard classification

1. Introduction

The CubeSat has been defined by the factor of 1U (unit) on a 1.33 kg scale that can
increase up to 12U. Since the first successfully operational CubeSat, XI-IV in 2004 [1,2],
researchers from other universities have actively joined the space sector to develop edu-
cational CubeSats [3–6]. The main reason is that small satellites could be built efficiently
by students, as they require a shorter development time and have low costs compared to
traditional satellites. A study has outlined the key factors for a successful small satellite
project, such as limited timeline, adequate team communications, well-informed utiliza-
tion of available volume, and state-of-the-art components [7]. A decent communication
functioning in a close working space is considerably important. Most traditional aerospace
institutions have failed due to the rigidity of management structure and point of view. Since
CubeSat subsystems are continuously evolving, objectives could be selected from the most
straightforward missions, such as an imaging mission [8–10] to complex interplanetary
missions [11,12].
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Although Earth Observation (EO) is an attractive mission for CubeSats, there are
several limitations of having a high resolution (<1 m) using the CubeSat platform [13]. A
1U CubeSat can acquire a high ground spatial distance (GSD) with a significantly narrow-
angle lens such as one with a length of <100 mm; however, the GSD can be increased by
increasing the number of units. Currently, the satellite developers use 3U or 6U CubeSats
to implement medium-resolution camera payloads [14]. Theoretically, the camera sensor
requires a larger form factor lens to improve focal length. Achieving < 10-m resolution by
integrating a high-resolution imaging sensor, including a lens with a fixed focal length,
is challenging. For instance, the Schmidt-Cassegrain reflective telephoto lens is used for
an EO mission, as it provides a large aperture and field of view due to the limited size
of CubeSats [15,16]. In addition, a thermal control design has a vital role in acquiring
high-focus images, which are commonly integrated with the lens in most optical payloads.
For instance, Smith et al. [17] explained how the ASTERIA flight model was equipped with
a thermal strap in order to capture high-quality images by transferring the heat across
the payload.

The spectral resolution has an essential parameter in determining the target applica-
tion for the EO missions from the visible (VIS) to the infrared (IR) range of image sensors.
Nevertheless, multispectral and hyperspectral sensors are also available in current technol-
ogy, which would combine into a single sensor [18,19]. Furthermore, temporal resolution is
another functional specification to achieve a successful EO mission [20]. An EO mission
benefits from low altitude and an increased number of satellites in a constellation in order
to achieve high temporal resolution, and a daily revisit time is required for an EO satellite
to effectively monitor the changes on the ground. For instance, Planet Lab is a company
that has leveraged the EO mission by deploying a constellation of 3U CubeSats named
Doves [21], which had over 250 CubeSats orbiting Earth with 3-m resolution until 2021.
More importantly, Doves can provide worldwide daily images with multispectral bands for
a wide range of remote sensing applications, such as monitoring natural disasters. Various
sensors have been implemented on remote sensing satellites to detect and monitor natural
disasters on Earth. EO CubeSats such as ZaCube-2 can detect fire using a K-line sensor [22]
and PhiSat-1 implemented machine learning to screen cloud images onboard [23]. Mean-
while, GOMX-4 has a mission to monitor the Arctic region [24], and MeznSat carried a
micro-spectrometer to track greenhouse gases [25].

Natural disasters like wildfires occur in significantly increasing numbers every year
around the world [26], and the traditional way to detect and monitor these catastrophes
is to employ EO satellites [27]. These satellites have the ability to monitor multiple re-
gions around the world simultaneously, while their performance depends on spatial and
temporal resolution as well. The importance of wildfire detection by satellites could be
explained by providing imagery data for early-stage fires and mapping fire occurrences
in order to inform regional fire departments. Currently, imagery from active EO satellites
like GOES, Landsat-8, Himawari-8, and Sentinel-2 has been used for fire monitoring [28].
Gibson et al. [29] utilized the Sentinel-2 data to map the fire severity in southeastern Aus-
tralia, while Novo et al. [30] used both Sentinel-2 and aerial LiDAR data for forest fire
assessment in Galacia, Spain. Most researchers have leveraged the high spatial resolu-
tion with a multi-spectral sensor by implementing artificial intelligence (AI) to detect
such disasters.

The high computing processing tools have created a big challenge for the satellite
developers to implement processing onboard in space. The traditional EO satellites, such
as GOES, MODIS, Meteosat, and Himawari-8, utilize a ground-based fire thermal anomaly
(FTA) algorithm [31]. The complex algorithm adaptation has improved active fire pixel
detection by approximately 6% for GOES -16 mission compared to GOES-13. On the
other hand, a smaller bus system like IPEX, which is a 1U CubeSat, is limited in onboard
execution of machine learning (ML), and successful mission results presented the feasibility
of flying a Support Vector Machine (SVM) onboard with limited power generation [32].
In addition, the PhiSat-1 constellation of 6U CubeSats was launched in 2020, and they are
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currently operating in orbit. This mission includes the AI cloud detection experiment, which
runs on an embedded vision processing unit (VPU) onboard the satellite [33]. However,
such studies are considerably limited for other remote sensing applications by applying
traditional feature extraction and ML approaches.

Despite the various deep-learning (DL) techniques for satellite image classification,
CubeSat platforms have not been employed particularly for onboard processing for active
fire detection. This study is unique and worth publishing since it is a DL implementation
onboard a small satellite platform such as a CubeSat, which has significantly limited
resources compared to ground applications and traditional large-scale satellites. These
limited resources could be listed as processing power, memory size, downlink capacity
from the satellite to the ground station, and allocated battery power for long-duration tasks
to perform DL techniques with a single-board computer (SBC).

The DL model in this study could be trained on the ground with a dataset, and the
resulting pre-trained model could be employed onboard CubeSat for image classification
such as wildfire detection applications. Since the objective is selected as wildfire detection,
the dataset has been prepared from a set of satellite images containing wildfire occurrences
around the world. In addition, the small satellite in this study is a 6U CubeSat called
KITSUNE, which has been recently deployed from the International Space Station (ISS).
Even though the limited resources would not allow for executing the DL onboard, the
pre-trained algorithm is planned to be demonstrated as a secondary mission. The on-
orbit results for wildfire classification will be compared to the results on the ground
after downloading the images from the camera payload. However, on-orbit DL training
performance results are not in the scope of this study. In this paper, the development of
the DL algorithm used for wildfire classification is discussed in addition to the integration
into a small satellite system. Therefore, the camera payload, which is based on commercial
off-the-shelf (COTS) components, is described together with the satellite bus system and
the testing results for the space environment and functionality since they are related to the
requirements to perform wildfire classification.

To better understand the feasibility of implementing DL wildfire detection onboard
CubeSats, this study conducted the first systematic analysis of developing a CubeSat
payload with a 5-m-resolution imaging mission. KITSUNE, which means fox in Japanese,
is a 6U CubeSat platform developed as a collaboration project that was designed and
developed by the Kyushu Institute of Technology (Kitakyushu), Harada Seiki Co., Ltd.
(Hamamatsu), and Addnics Corp. (Tokyo) in Japan. The project started in September
2019, and KITSUNE was delivered to the Japan Aerospace Exploration Agency (JAXA) in
November 2021. The satellite was deployed to the low Earth orbit (LEO) on 24 March 2022,
and it is currently in the initial operation phase. Overall, the main purposes of the present
paper are to validate the camera payload design for a 5-m-class imaging mission through
the space environment and long-duration operation test, in addition to the study of the
feasibility of classifying wildfire images onboard a CubeSat using the CNN approach. The
imaging mission and DL execution onboard CubeSat during the ground functional tests
showed the novelty of this study.

The paper consists of five parts, starting with the mission design and requirements
in Section 2. Section 3 explains the method of CNN fire detection and the functional test.
The experimental results are presented in Section 4 and, finally, discussion and conclusions
from the study are provided in Sections 5 and 6, respectively.

2. KITSUNE Satellite
2.1. Overview

The KITSUNE CubeSat is designed using a 6U platform consisting of a 3U imaging
payload, 2U main bus system, and 1U SPATIUM-2 (space precision atomic-clock timing
utility mission). Four main objectives are introduced for the 2U main bus and 3U camera
payload: (1) Earth observation with a 5-m-class resolution of visible images, (2) develop-
ment of a 2U Kyutech standard bus system, (3) downlink of a low-resolution image from a
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secondary camera by C-band uplink, and (4) demonstration of C-band communication with
the main and mobile ground station (GS). Each mission design is well-distributed among
the collaborators. Harada Seiki engineers and the Kyutech camera team have focused on
the imaging mission, while missions 3 and 4 are conducted by the Addnics engineer and
Kyutech communication team.

The 2U main bus system is solely designed by the Kyutech team, which is adopted
from the BIRDS project configuration [34]. Onboard computer (OBC), electrical power
system (EPS), attitude determination and control system (ADCS), and communication
boards (COM) are well-integrated by stacking horizontally on a backplane board (BPB)
(Figure 1). This design reduces the number of harnesses where a point of failure might
happen. The OBC has a redundant pair of PIC microcontrollers that act as the central
command and data handling as well as communication for transmitting the beacon of the
satellite. On the other hand, the EPS has a vital role in supplying sufficient power to the
satellite. The primary EPS of KITSUNE has 34 solar cells attached to every solar panel board
of each axis, except the -Z axis. Meanwhile, the secondary EPS is the rechargeable batteries
that can provide a maximum of 14 W. An MAI-401 active control module is used for the
ADCS. It is a commercial off-the-shelf (COTS) product that consists of reaction wheels and
sun sensors, where the GPS and magnetometer are integrated into the other boards. The
GPS is placed on the solar panel, and the magnetometer is connected 10 cm away from
the ADCS module in order to avoid the electromagnetic noise generated by the reaction
wheels. Two communication subsystems are installed in the KITSUNE satellite for uplink
and downlink purposes. First, the C-band radio is mainly used for the camera payload to
download the images to the Kyutech GS and the ADCS data during the image capturing.
Secondly, an ultra-high-frequency (UHF) transceiver receives the uplink commands from
the GS, downlinks the thumbnail images, and transmits the telemetry and continuous wave
(CW) beacon. Nevertheless, the focus of this paper is only on the main mission, which is
the camera payload and related main bus systems.
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2.2. Mission and System Requirements

In the early stages of KITSUNE development, the idea is to capture artificial colorful
patterns or characters within a 100 × 100 m2 space for entertainment and social purposes.
The primary objective is to provide a 5-m-class resolution imaging service aligned with
the mission statement. Wildfire detection is included as a secondary objective to increase
the functionality of the imaging payload. Therefore, the following success criteria are
generated to categorize the mission outcome: (1) minimal success with downlinking an
out-of-focus image to the GS, (2) full success with capturing any letters or characters done
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by a group of people within a 100 × 100 m2 space, and (3) extra success of capturing images
with 5-m-class resolution (<6 m/pixel) as well as correctly classifying wildfire images.

The payload system requirements are generated according to the mission statement
and objectives in addition to the following 6U CubeSat limitations:

1. The ground resolution should be <6 m/pixel in addition to the ground swath of
approximately 20 km;

2. The overall payload should be able to fit within a volume of 90.0 mm × 90.0 mm ×
327.5 mm;

3. The camera sensor should have a pixel size larger than 3.0 µm with a global shutter
and a shutter speed of less than 1/3200 s. In addition, it should be able to capture six
images in a row with approximately 1 frame per second;

4. The camera controller board (CCB) should capture images and transfer over C-band
communication for downlink when it is requested by uplink commands. This
could be either in real-time mode or downlink mode over C-band flash memory
for stored images;

5. The camera sensor should capture RGB images with JPG compression (>90%) with
correct colors;

6. The power consumption of the overall mission should be less than 10.0 Wh per orbit,
and the in-rush current should be less than the overcurrent protection settings of
the EPS;

7. The mission should be operated by the uplink commands both from UHF GS and
C-band mobile GS. In addition, images and telemetry should be received by UHF GS
and C-band main GS;

8. The satellite should point the camera and C-band Tx antenna with approximately
0.25◦ accuracy in target and nadir pointing modes by using the ADCS subsystem;

9. The electronics should survive a total ionization dose of approximately 200.0 Gy. In
addition, they should be able to operate within the temperature range of −20.0 ◦C
to +50.0 ◦C while the range of temperature difference should be between −5.0 ◦C to
+5.0 ◦C for the lens components.

2.3. Hardware

The 3U imaging payload is connected via a harness to the main bus system, which
consists of three components: (1) camera controller board (CCB), (2) camera sensor (CAM),
and (3) camera lens (Table 1). A COTS CMOS camera sensor with 31.4-megapixel (MP)
resolution is controlled by Raspberry Pi Compute Module 3+ (RPi CM3+) attached to the
CCB (Figure 2). The payload is enabled to capture a full resolution of 6464 × 4852 pixels
through a 300-mm custom-made RICOH lens. These three components are based on
the mission objectives and requirements. Therefore, several trade-off studies have been
conducted before choosing the final components to achieve a 5-m resolution. The sensor
pixels and lens focal length are the two critical parameters to determine the resolution of
image output and field of view. The ground spatial distance (GSD) can be easily calculated
using Equation (1):

GSD =
h × tan(FOVH)

(ρH/2)
, (1)

where h is the altitude of the satellite, FOVH is the field of view for horizontal, and ρH is
the pixel number of the image sensor for horizontal.

The payload is turned on only during mission execution from the uplink command.
The activation is mainly controlled by the OBC, which provides the CAM parameters. As
the payload system interfaces with each of the 2U main bus systems (Figure 3), the total
energy consumed is the highest during downlink images through C-band communication,
followed by camera mission execution. The detailed results are discussed thoroughly in
Section 4.



Remote Sens. 2022, 14, 1874 6 of 22

Table 1. Imaging payload properties.

Item Information

Sensor

Number of pixels 31.4 million pixels
Sensor type CMOS

Shutter method Global shutter
Shutter speed 30 µs to 10.0 s

Interface Ethernet
Data transmission speed 10 Mbps

Power supply +12.0 V

Camera controller board

Model Customized board with Raspberry Pi Compute Module 3+
Operating system GNU/Linux Ubuntu distribution version 18.04

CPU ARMv8, 1.2 GHz
Memory 32 GB (flash), 1 GB (RAM)

Image capturing speed 0.42–8.75 frames per second (depending on image resolution)

Interface Ethernet (camera), USB (programming), UART (OBC and
C-band board)

Power supply +5.0 V

Optics

Focal length 300 mm
Temperature control Active control and multi-layer insulator

Heaters Polyimide heaters
Heater power supply 7.4–8.4 V (unregulated power line)
Temperature sensors Radial glass thermistor (G10K3976)
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After the camera payload was selected, the thermal design was another essential task
to maintain the internal temperature of KITSUNE CubeSat. It does not have an on-orbit
focus adjustment function due to the difficulties of designing a system to endure the launch
and space environment. The camera lenses and the associated image quality are susceptible
to temperature variations. Therefore, the focal length under space conditions was calculated
based on several thermal vacuum test results.
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2.4. Software
2.4.1. Camera Controller Board

The RPi CM3+ on the CCB is where all the code scripts are written. It is installed
with the GNU/Linux Ubuntu distribution version 18.04 operating system (OS) that is very
compatible with the Application Programming Interface (API) of the CAM. C++ and Perl
are used to communicate the RPi CM3+ with the CAM software and other subsystems (OBC
and C-band). In addition, wildfire classification is executed using DL libraries. OpenCV
version 4.4.0 and Tensorflow version 2.4.0 are installed in the RPi CM3+ to train the dataset
and classify the input image based on a convolution neural network algorithm. The limited
size of the random access memory (RAM) without graphics processing unit (GPU) of RPi
CM3+ created a tight DL training process but may be possible by choosing the optimum
CNN model and training parameters. A second option is to train the CNN algorithm
using other computers or Colaboratory (Colab), generating a pre-trained model that can
be used for classifying input images captured by the KITSUNE payload onboard the RPi
CM3+. The classification step has no trouble running on RPi CM3+ as the process has
lower computational costs than the training step. Finally, for KITSUNE, the second option
is chosen to train the CNN model on Colab with more RAM and GPU availability.

The CAM software, DL libraries, CNN pre-trained models, and code scripts are
installed and organized in dedicated directories for smooth execution. Forty-nine percent
of the 32-GB embedded multi-media card (eMMC) has been consumed, and the rest is
reserved for flight image data. The size of the pre-trained models is 200 MB, which uses
less than 1% of the memory on the RPi CM3+; however, the DL libraries are significantly
heavy and utilize most memory. An erase-flash-memory command is also implemented in
case there is no available space. The free memory could survive for around four months
without erasing the eMMC for an image captured daily. Hence, the mission operation will
be carefully coordinated in order to avoid any losses of images captured by the payload.

The CAM codes are created based on the mission operation scenario. The entire
mission case is an uplink capture command sent to the CubeSat in the first pass, the initial
downlink command in the second pass, and the final downlink command in the third
and following passes. The capturing command script worked to acquire six images in
PNG (or JPG) file format with sensor parameters, such as resolution, gain, and exposure
values. The full resolution of the payload is 6464 × 4852 pixels, while the gain and exposure
values can be input manually or automatically. Finally, the initial downlink retrieved six
thumbnails and selected one PNG (or JPG) image in the following downlink satellite passes.
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The camera payload consists of two modes: target pointing and nadir pointing. The
first mode is where the coordinates and time are provided from the orbital parameters of
the CubeSat. The GS monitors the latitude and longitude of the satellite while the time
is generated from the GPS onboard. Meanwhile, the nadir pointing is time-sensitive only.
Therefore, both modes require a degree of high accuracy from the ADCS to point the
payload to face Earth. After the photo was captured, KITSUNE would have the option
to classify image data onboard or directly downlink to the GS. The DL algorithm can be
executed by choosing these three CNN models: ShallowNet, LeNet, and MiniVGGNet. The
classified result will be appended to the image. On the other hand, the downlink options
are real-time and from the buffer memory. The real-time option is conducted through
C-band communication. However, the second option has two possibilities: either C-band
or UHF communication. Due to the limited speed of UHF (4800 bps), the thumbnail images
are saved in the buffer memory of the transceiver before the mission downlink. Thus, it
creates the feasibility of retrieving the images in a pass-time window. The high-quality
images in PNG format are planned to be downloaded via the C-band transceiver. Overall,
the capturing process is illustrated in Figure 4 until the image data analysis takes place at
the GS.
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2.4.2. Ground Station Software

The KITSUNE GS software is created and tested before the satellite is launched. The
input of the uplink command to the CubeSat, particularly for taking pictures and DL
execution commands are included in the GUI. The operator can use manual (default) or
scheduled modes. Both modes are required to send three uplink commands: take a picture,
execute DL, and downlink image data. The scheduled mode has the advantage of sending
the commands within one satellite pass, while the manual mode has two options: to directly
downlink the image data or go through the DL algorithm in the next pass. The reasons
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are to create flexibility for the operator and to avoid any undesired impact on the primary
mission of KITSUNE.

In addition, the picture-taking command is executed at random (default) or targeting
wildfire images. Capturing a random image is a more straightforward option to apply
(nadir pointing), while the coordinates and time are strictly required in the uplink command
for taking a wildfire image (target pointing). A complete image will be downloaded and
analyzed thoroughly at the GS if the image is correctly classified as a wildfire from the
downlink data result. In the end, the number of those images that are positively predicted
is recorded and evaluated to show the effectiveness of applying an onboard DL algorithm
while counting how much of the downlink communication load it can reduce.

3. Methods
3.1. Wildfire Image Classification

A comprehensive study has been conducted to collect 715 wildfire cases between
2010 and 2020 around the globe. The sources were from the news, research papers, and
fire department reports (British Columbia wildfire service website and Cal Fire website).
Several incidents have complete reports, which were very helpful to generate a wildfire
database. The database consists of dates, locations, a geographic coordinate system, burned
areas, causes, suppression costs, and casualties. It also refers to and compares with other
databases, such as Monitoring Trends in Burn Severity (MTBS), the National Interagency
Fire Center (NIFC), the Global Fire Emissions Database (GFED), the Fire-CCI dataset, and
the TERN AusCover dataset [35–37]. The differences and limitations were the burned area
size and the designated locations. In this study, the fire sizes collected worldwide are more
than 0.05 km2, classified based on National Wildfire Coordinating Group (NWCG) values.
The wildfire database development is the beginning of the study method, as illustrated
in Figure 5.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 23 
 

 

2.4.2. Ground Station Software 
The KITSUNE GS software is created and tested before the satellite is launched. The 

input of the uplink command to the CubeSat, particularly for taking pictures and DL ex-
ecution commands are included in the GUI. The operator can use manual (default) or 
scheduled modes. Both modes are required to send three uplink commands: take a pic-
ture, execute DL, and downlink image data. The scheduled mode has the advantage of 
sending the commands within one satellite pass, while the manual mode has two options: 
to directly downlink the image data or go through the DL algorithm in the next pass. The 
reasons are to create flexibility for the operator and to avoid any undesired impact on the 
primary mission of KITSUNE. 

In addition, the picture-taking command is executed at random (default) or targeting 
wildfire images. Capturing a random image is a more straightforward option to apply 
(nadir pointing), while the coordinates and time are strictly required in the uplink com-
mand for taking a wildfire image (target pointing). A complete image will be downloaded 
and analyzed thoroughly at the GS if the image is correctly classified as a wildfire from 
the downlink data result. In the end, the number of those images that are positively pre-
dicted is recorded and evaluated to show the effectiveness of applying an onboard DL 
algorithm while counting how much of the downlink communication load it can reduce. 

3. Methods 
3.1. Wildfire Image Classification 

A comprehensive study has been conducted to collect 715 wildfire cases between 
2010 and 2020 around the globe. The sources were from the news, research papers, and 
fire department reports (British Columbia wildfire service website and Cal Fire website). 
Several incidents have complete reports, which were very helpful to generate a wildfire 
database. The database consists of dates, locations, a geographic coordinate system, 
burned areas, causes, suppression costs, and casualties. It also refers to and compares with 
other databases, such as Monitoring Trends in Burn Severity (MTBS), the National Inter-
agency Fire Center (NIFC), the Global Fire Emissions Database (GFED), the Fire-CCI da-
taset, and the TERN AusCover dataset [35–37]. The differences and limitations were the 
burned area size and the designated locations. In this study, the fire sizes collected world-
wide are more than 0.05 km2, classified based on National Wildfire Coordinating Group 
(NWCG) values. The wildfire database development is the beginning of the study 
method, as illustrated in Figure 5. 

 
Figure 5. Flowchart of the study methods. 

Satellite imagery data were then retrieved following the previously created wildfire 
database information. Doves (3-m resolution), Sentinel-2 (10-m resolution), Landsat-8 (30-
m resolution), and MODIS (250-m resolution) data have been chosen to be downloaded 

Figure 5. Flowchart of the study methods.

Satellite imagery data were then retrieved following the previously created wildfire
database information. Doves (3-m resolution), Sentinel-2 (10-m resolution), Landsat-8
(30-m resolution), and MODIS (250-m resolution) data have been chosen to be downloaded
through the Sentinel Hub EO browser and Planet Explorer using free registered as well
as the Education and Research Standard (PlanetScope) accounts, respectively. Having
multi-resolution data creates a robust dataset of the DL training afterward. Generally,
a CubeSat imaging payload is within the chosen resolution, and the KITSUNE payload
also falls within the selected resolution range. Moreover, previous studies have utilized
multispectral bands for wildfire detection applications [28,38,39]. However, in this study,
only the visible 3-band (RGB) spectral resolution was retrieved from satellite imagery
to generate the dataset. This was due to the consistency with the spectral resolution
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installed for the KITSUNE camera sensor and, eventually, eased the training process of the
DL algorithm.

A DL algorithm can be created after the satellite imagery dataset has been collected.
Four labels of the dataset were manually organized: (1) wildfire, (2) land, (3) cloud, and
(4) sea. Each label consisted of a thousand images. The convolution neural network (CNN)
parameters are set in the training script, which runs in Colab, generating the pre-trained
model in the ‘.hdf5’ file, classification report, and confusion matrix. Several parameters
have been tuned extensively: (1) input pixel, (2) data augmentation, (3) CNN models,
(4) optimizers, and (5) learning rate. Then, the dataset was divided into training and
testing, 75% and 25%, respectively. The labels were pre-processed to 100 × 100 pixels
(128 and 224 pixels for comparison) before training using the CNN networks. Multiple
combinations of variables were tested, including type of optimizer (SGD and Adam),
learning rate (0.005 and 0.05), and data augmentation (rotate, zoom, shift, and flip). Three
models: (1) ShallowNet, (2) LeNet, and (3) MiniVGGNet were chosen, based on the
evaluation metrics, to complement the classification results as well as the limitation of
executing on the RPi CM3+ platform. The performance of a classification model depended
on the number of correct and incorrect predictions. True positive (TP) referred to pixels
assigned as the target object in both ground truth and detection results. If pixels were
identified as the target object in prediction only and not in the ground truth, they are called
false positives (FP). False negatives (FN) and true negatives (TN) are vice versa from the
FP and TP, respectively. These four parameters are essential for illustrating the confusion
matrix and calculating the performance. Accuracy (A), precision (P), recall (R), and F1
score were the evaluation metrics that have been commonly used to thoroughly analyze
networks. The formula is shown in Equations (2)–(5), accordingly.

A =
TP + TN

TP + FN + FP + TN
, (2)

P =
TP

TP + FP
, (3)

R =
TP

TP + FN
, (4)

F1 score = 2 × P × R
P + R

, (5)

The CNN models consist of three different architectures with distinctive hidden layers:
ShallowNet, LeNet, and MiniVGGNet (Figure 6) [40]. ShallowNet has one hidden layer
(conv1), while the other two have two layers (conv1 and conv2). MiniVGGNet was convo-
luted twice in each hidden layer compared to only once with LeNet. The fully connected (fc)
function was commonly applied with the softmax classifier, which will directly output the
input if it was positive; otherwise, it will output to zero. In addition, batch normalization
and dropout have also been implemented in the MiniVGGNet network. Hence, they help
reduce the effects of overfitting and ultimately increase classification accuracy. Finally,
these networks are classified into four outputs: cloud, land, sea, and wildfire.

3.2. Functional Test

In the satellite system, a functional test (FT) was performed to verify each subsystem’s
communications and interfaces, including the payload. Functional testing of pre-, during,
and post-environmental testing was advisable to conduct in the same way as the mission
plan of satellite operation in orbit. The FT was carried out on the ground during the space
environment and long-duration operation tests (LDOT). The camera mission with DL
execution is discussed in Section 4.

As mentioned in Section 2, wildfire detection was an extra mission in the KITSUNE
operation. The DL algorithm shall be executed only from an uplink command after camera
mission execution. Any images captured by the payload have the option to downlink
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immediately or through the classification method. The image recognition result will be
appended to the image data, not affecting the main mission. On the GS side, the satellite
operator can classify the image using only one model or all three networks. This gives
flexibility for the GS operator to determine which algorithm was well-suited to the image
captured by the payload. Moreover, KITSUNE will execute the ShallowNet model in
any captured images in an early demonstration of wildfire detection due to its very low
computational memory yet high accuracy. Later, the CubeSat can be planned to take any
wildfire events from a dedicated coordinate based on the news source. However, several
places were identified as having the highest possibility for wildfire occurrence, namely,
California (USA), British Columbia (Canada), New South Wales and Victoria (Australia),
Sarawak (Malaysia), and Kalimantan (Indonesia). Utilizing STK software, the prediction of
KITSUNE passing these locations was simulated based on the International Space Station
(ISS) orbit (Figure 7). The blue dashed lines with red x’s are the area covered by KITSUNE
orbit between January and March 2022. However, British Columbia will be discarded from
the prediction operation plan due to no passes towards the location in the designed orbit.
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4. Results
4.1. Total Ionizing Dose (TID) Radiation Test

The total ionizing dose (TID) radiation test was conducted at the unit system level
before any other space environment test, such as a thermal vacuum test (TVT). The primary
objective of the test was to show that the RPi CM3+ stays operational and that the interfaces
were stable in radiated environments. The central processing unit (CPU) of BCM2837B0 and
embedded multimedia card (eMMC) are the main components that need to be observed by
running the ‘flash test’ script. The secondary objective was to prove that the DL algorithm
(training and classification tests) can be executed, and the last objective was to measure the
power consumption during the TID test. The RPi CM3+ was exposed to a radiation source
of Co-60 in the chamber facility. Six hours of the test were equivalent to 200 Gy of radiation
simulated for two years in orbit. Similar tests were also carried out by Toumbas [41] on
RPi CM3 and by Slater et al. [42] on Jetson Nano GPU. The differences between the test in
this study and that in the study by Toumbas [41] were the type of radiation source and the
amount of radiated energy.

The first objective was verified using a pseudo-random number generator. A known
seed was used to generate files with uniformly dispersed byte values. Each file was seeded
differently, resulting in unique files. This way, the same test can be run multiple times and
create identical test files each time. During the TID test, a total of 75 files were generated and
compared with the equal number of files previously created in the computer. Later, each
generated file was hashed using the sha256 algorithm. This hash function had the virtue of
returning a 256-bit-long result that was significantly different, even with only a single bit
of difference. Additionally, hash collisions between separate files were improbable, and
none have been documented so far for the sha256 algorithm. Each file was generated in
about two minutes using RPi CM3+. After generating a collection of 15 files, a 30-min
delay was added. The reason for this was to manually execute the DL algorithm. On the
following day, the hashes were compared between the reference test (before the TID test),
the actual test, and the post-functionality test using RPi CM3+. The results showed that no
discrepancies were discovered for every 75 files. It verified that the eMMC on RPi CM3+
could stay operationally stable for two years in orbit. However, several anomalies were
observed on the CPU of RPi CM3+. Overall, the flash test code was run five times and twice
for the DL algorithms (training and classification tests) with a second of time sampling.
Based on Figure 8, the RPi CM3+ consumed extra power without executing any code that
started right before the execution of flash test5 (at 4 h). The issues were recovered after
running the DL training test2 (at 4 h 55 min) and rebooting the RPi CM3+ at the end of
the TID test. It showed that a single event latch-up occurred at the time of 133 Gy being
exposed to the test article.
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4.2. Thermal Vacuum Test (TVT)

The thermal vacuum test was focused on simulating the satellite operation in space
conditions, the worst hot and cold in a vacuum environment. Two main objectives were
verifying the functionality of the camera payload and the feasibility of running the classifi-
cation algorithm at the satellite system level. The external solar panel board of KITSUNE
experienced two thermal cycles between −30 and +50 degrees Celsius, which, based on
the BIRDS project [34] and ISO 19683 Space systems—design qualification and acceptance
tests of small spacecraft and units. Overall, both objectives met the mission requirements
without anomalies observed during TVT.

4.3. Long-Duration Operation Test (LDOT)

The third important step after the space environment test was the long-duration
operation test (LDOT). The main objective was to validate the software design of the camera
payload. Every mission scenario was executed with multiple parameter combinations:
number of images, image format, exposure time, gain, and compression quality. Several
days were spent running the LDOT, finding software bugs, and resolving them. The critical
point of this test was to calculate the exact timing of mission execution. For instance,
the camera sensor needs enough time to copy the image data into the flash memory of
CCB before cutting off the power line. Due to the limited speed of the LAN chip used
(10 Mbps), the mission command had to be sent ahead of time from the OBC. That was
also to guarantee that the image was captured by the camera at the targeted location.
Moreover, the power consumption during the LDOT was observed and plotted, simulating
four passes of KITSUNE in space (Table 2). The satellite was connected to a power supply
where it was programmed for charging and discharging conditions to precisely verify the
mission feasibility. Finally, the test was only monitored thoroughly using the GS setup in
the cleanroom, with the serial cable connected to KITSUNE for any debugging issues.

Table 2. Summary of mission execution in four passes during the long duration operation test
(“+” means turn on and “−” means turn off).

Pass

1 2 3 4

Purpose Camera
capture

Downlink
thumbnails and

JPG image

Downlink PNG
image via

C-band

Deep-learning
execution

12 V + − − −
5 V + + − +

Unregulated power1 − + + −
Unregulated power2 − + + −

Total duration (s) 1400 130 512 137
Peak power (W) 18.40 20.10 23.14 5.31

Energy
consumption (Wh) 2.90 2.81 2.33 0.10

A complete main camera mission was tested in four passes. The first pass was when
the camera payload captured six photos at the desired time and coordinates. Before the
sensor was turned on, the ADCS was set to nadir (or target) pointing mode an hour ahead.
The 12-V power line was designated for the camera sensor, and CCB used the 5-V line. The
result of the overall energy consumption during the first pass was recorded at 2.90 Wh for
1400 s. In addition to this pass, the CCB was programmed to convert PNG images into JPG
format files and autonomously generate thumbnails. The mission plan was to downlink the
thumbnails via UHF communication first before deciding to retrieve the complete targeted
PNG/JPG image data through the C-band.

The thumbnails and JPG images were downloaded in the second pass through UHF
and C-band communications. The unregulated power1 (for UHF) and unregulated power2
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(for C-band) were mainly used and consumed 2.81 Wh. The thumbnails were retrieved
and selected first before downlinking the corresponding JPG image via the C-band. Later,
high-quality PNG image data was downloaded in the third pass. In summary, the complete
mission from capturing six PNG photos to downlinking them through the UHF and the
C-band took three satellite passes, including several margins, as shown in the LDOT result
in Table 2.

At the final pass of the LDOT, the DL algorithm for wildfire classification was tested.
Three pre-trained CNN models have been used onboard KITSUNE: ShallowNet, LeNet, and
MiniVGGNet. The objective was to identify which models are applicable and to correctly
classify the images captured by the payload. A complete cycle of DL execution, from
classifying images to saving the processed image data into the C-band flash memory, was
shown in this LDOT (Figure 9). The DL was run five times using different combinations
of models and images between 0 and 1142 s. Six short peaks of 7 W unregulated power1
were recorded because the uplink command was received for DL execution purposes. The
result of the LDOT showed that the algorithm took about 137 s to classify the images and
consumed about 680 MB of RPi CM+ memory, referring to the 5-V line in Figure 9. At
the end of this pass (1200 s above), both the RPi CM3+ and C-band transceivers were
turned on for transferring the image data between the flash memories. Furthermore, the
final classification results were appended to the image data for further analysis at the GS.
Therefore, it verified the demonstration of running a DL-classification algorithm onboard
KITSUNE simulated in orbit.
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4.4. Convolution Neural Network for Wildfire Dataset

The confusion matrix and classification report were calculated and tabulated as stan-
dard techniques to verify the accuracy of DL models. Similar analysis methods were also
conducted to test the dataset with respect to the CNN or other ML classifiers [43–46]. In
this study, the results were also generated using the scikit-learn library included in the
python script (Table 3). The gray color shows the true positive (TP) with and without the
normalized values, respective to the four labels. The confusion matrix shows that the CNN
models were chosen based on the small number of false positive (FP) and false negative
(FN) results: 14 and 25 for ShallowNet, 5 and 17 for LeNet, and 0 and 14 for MiniVGGNet,
respectively (Figure 10). Ultimately, the MiniVGGNet model was considered the best CNN
network, when compared with LeNet and ShallowNet, with minor type 1 errors (FP) and
type 2 errors (FN).

In addition, the classification reports were supported by the confusion matrix results.
The pre-trained CNN models of ShallowNet, LeNet, and MiniVGGNet had 95%, 97%, and
98% of the overall accuracy (OA), respectively (Figure 11). The F1 scores of the wildfire label
were also analyzed to have a more accurate comparison between these networks. Similar
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to the OA results, the F1 scores of MiniVGGNet had the highest score at 97%, followed
by 95% for LeNet and 92% for ShallowNet. The MiniVGGNet model used in this study
shows significantly higher accuracy compared to other approaches. Giuffrida et al. [33]
discussed that applying a Deep Neural Network for cloud detection could achieve 92%
accuracy. Meanwhile, utilizing CNN onboard for binary image classification could obtain
90% accuracy, as Maskey et al. [45] presented. Therefore, the main contributions are the
training dataset and the parameter tuning of the neural network.

Table 3. Confusion matrix of ShallowNet, LeNet, and MiniVGGNet (gray color means TP value).

CNN Models True/Predicted Labels Cloud Land Sea Wildfire

ShallowNet

Cloud 228
94.6%

4
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0
0%

9
3.7%

Land 2
0.8%
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Furthermore, the training loss and accuracy were also plotted to correlate how the
models were trained concerning 100 epochs (Figure 12). MiniVGNet achieved 90% training
accuracy at epoch 6 and less than 20% of training loss at epoch 20. It was also noticeable
that these three models were trained at different learning rates to gain the highest accuracy
possible, 0.05 for MiniVGGNet, whereas it was 0.005 for LeNet and ShallowNet. On the
other hand, other parameters, like input pixel size and type of optimizers, were measured
to see whether they would increase the F1 scores of the CNN models. Figure 13 shows
the differentiation results on the MiniVGGNet network. Increasing the input size would
not increase the scores, while the best optimizer implemented was the Stochastic Gradient
Descent (SGD) combined with data augmentation (rotate, zoom, shift, and flip). Therefore,
the optimum combination of the MiniVGGNet model parameter was 100 × 100 pixels,
SGD, and using augmentation images.
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(MVGGN) models.

Several raw images were also tested by running the three DL models. The wildfire
images were retrieved from the Doves, Sentinel-2, and Landsat-8 satellites. They were
captured during the Kincade-Maria fire in the USA in October 2019 and the Turkey wildfire
in July 2021 (Figure 14). Overall, the classification results showed the correct and incorrect
predictions by implementing the pre-trained MiniVGGNet model. Most of the images
from Sentinel-2 and Landsat-8 were correctly predicted, while fewer were correctly pre-
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dicted based on Doves images. Although the dataset was robustly trained using multiple
resolution images, the difficulties of positive classification remained, especially for high
resolution. The misclassified results were frequently labeled as clouds. The result would be
improved if a visible and infrared camera payload were used, and infrared images were
added to the training dataset. Nevertheless, in this study, wildfire-detection processing
onboard the CubeSat was verified using a visible camera, with the best CNN model being
MiniVGGNet, followed by LeNet and ShallowNet.
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5. Discussion

The interface speed is a parameter that should be highlighted for designing a cam-
era payload, especially with regard to communication between the CPU and the camera
sensor. It will affect the time taken for data transfer and, eventually, increase the power con-
sumption during the mission execution. The USB3.0 and Ethernet interfaces are currently
considered the high-speed communication options offered by the COTS camera sensor.
A similar study was also applied to a Korean 6U CubeSat using an Ethernet interface
design [47]. They had integrated a medium resolution of 3 m with an Intel CPU SBC. Thus,
it shows an essential balance in terms of using high-end components for both CPU and
camera sensors with high-speed communication.

In current technology, the camera sensor has evolved from a single band to hyperspec-
tral on a miniaturized scale. Multiple bands of images are significantly helpful for remote
sensing applications. The fundamental challenges are the considerable data size for both
the DL training algorithm and the captured images by the camera payload in addition to
the processing power onboard a small satellite. Furthermore, the downlink capabilities of
small satellites could be described as other challenges in addition to the amount of power
generated from the solar panels per orbit. For instance, Danielsen et al. [44] indicated how
critical the power limitation is for onboard processing on HYPSO-1, which is another 6U
CubeSat equipped with a hyperspectral imaging payload. In addition, HYPSO-1 utilizes
Self-Organizing Maps (SOMs) on sea scenes with an overall accuracy above 90%. The
SOM algorithm consumed a maximum computational time of 380 s. This accuracy and
computational time could be improved by applying the CNN model, as the results shown
in this paper for wildfire image classification reached 98% accuracy with a runtime of 137 s.
Therefore, the implementation of ML or DL onboard a CubeSat is significantly affected by
the computational costs.

A similar 6U CubeSat, PhiSat-1, demonstrated the Deep Neural Network (DNN)
for cloud detection onboard using hyperspectral images. Giuffrida et al. [33] discussed
that the test set achieved 92% accuracy with 1% FP using dataset images from Sentinel-2.
The CNN-based algorithm showed a considerably impressive result, which consumed
0.16 mWh of energy. The DL runtime could be reduced with the support of the Myriad
2 VPU hardware accelerator integrated onboard PhiSat-1. However, in this paper, the CNN
model of MiniVGGNet implemented onboard KITSUNE demonstrated 98% accuracy, 0%
of FP, and consumed 0.10 Wh of energy without VPU installed. The significant difference
in power consumption could be argued, but the power was calculated by turning on
RPi CM3+, executing the image classification algorithm, and finally turning it off. In the
KITSUNE design, the RPi CM3+ is not continuously on to avoid the anomaly of SEL, which
was observed in TID radiation on the ground test.

On top of that, machine learning was generally executed on the ground. Chen et al. [48]
discussed how and why image processing was conducted after downloading the image
data at the GS. There is always a significant issue in comparing the downlink capability
between a traditional satellite and a CubeSat. However, our study to classify images
onboard is advantageous for the nanosatellite class and complemented the low latency of
downlink communication. Challenges with regard to computational costs, power, and time
were tackled and improved in the mission plan strategy.

The ultimate goal of the DL approach onboard a CubeSat is to have the re-training
model capability. Images captured by the payload can be utilized and classified directly
to update the dataset labels. In this study, the KITSUNE design was tested and showed
promising results for conducting a re-training model onboard, but several issues will be
raised. The main question will be regarding how much confidence there can be that the
images captured are correctly classified and sorted in the respective label for the re-training
process. Humans should be involved in the training process of the DL algorithm. Therefore,
image classification is only implemented in the final software. Meanwhile, a different
approach was studied by Mikuriya et al. [49], where the classifier will be shared between
both onboard and ground learning. The study was interesting, but that will eventually
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become a burden to the communication load between the satellite and GS, where most of
the CubeSat failures involving communication occur.

In summary, although this study tested only three CNN networks, other existing
models have not been initialized yet with the wildfire dataset, such as Inception, Deep-
erGoogLeNet, DenseNet, and U-Net. Buonaiuto et al. [50] presented a study showing
that image processing can have these three tasks: image classification/recognition, object
detection and location, and image segmentation. An extension study is also recommended
to further analyze the classified images from the satellite on the ground by implementing a
CNN network like U-Net for image segmentation.

Remote-sensing technology via satellite has an important role to play in reducing
wildfire impacts. A CNN fusion of onboard image classification and on-the-ground image
segmentation can truly assist the authorities in handling those catastrophes. Szpakowski
and Jensen [51] reviewed that remote sensing techniques in fire ecology are related to
fire-risk mapping, fuel mapping, active fire detection, burned area estimates, burn severity
assessment, and post-fire vegetation recovery monitoring. Consistent with this study,
the CNN image classification was implemented onboard a CubeSat to detect active fires.
Moreover, the mapping and assessment should be conducted on the ground, utilizing CNN
image segmentation. Overall, it can create an artificial intelligence ecosystem to overcome
the natural disaster consequences, particularly in regard to global wildfires.

6. Conclusions

In this study, we discussed the design of the KITSUNE 6U CubeSat 5-m Earth obser-
vation mission. Wildfire detection using a deep-learning (DL) algorithm was also tested
along with the functional test of the satellite system. The test conditions were set as close to
those of the space environment as possible to thoroughly verify the camera payload. The
classification algorithm was executed in the KITSUNE flight model, resulting in 98% overall
accuracy and a 97% F1 score when implementing the MiniVGGNet model. The LeNet and
ShallowNet networks were implemented together onboard the CubeSat to complement
and compare the classification results. Moreover, the TID radiation result also showed that
the radiated environment in space may affect image classification performance onboard
the satellite by a single event latch-up during the test. Extra precautions and observations
should be made before executing the main mission and the image classification. Ultimately,
KITSUNE will be launched in 2022, and the results discussed in this paper will be compared
and verified after mission success.

Several future works and improvements have been identified to improve the DL
wildfire detection accuracy. Instead of utilizing a visible spectral band, researchers could
implement multispectral or hyperspectral bands for the EO CubeSat payload. The latest
COTS sensor technology has evolved and been miniaturized, so it can fit into the nanosatel-
lite class. Other DL models and techniques can be further tested for future CubeSat projects
by considering the limitations of memory and power consumption of the single-board
computer integrated onboard. An intelligent CubeSat constellation operation aims to
improve the valuable downlink of remote sensing big data to users on Earth. Finally,
this also suggests that, instead of utilizing CNN for image classification, a fusion with
image segmentation is a future direction to take to improve remote sensing techniques in
wildfire applications.
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