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Abstract: This paper introduces the Hopsworks platform to the entire Earth Observation (EO) data
community and the Copernicus programme. Hopsworks is a scalable data-intensive open-source
Artificial Intelligence (AI) platform that was jointly developed by Logical Clocks and the KTH
Royal Institute of Technology for building end-to-end Machine Learning (ML)/Deep Learning (DL)
pipelines for EO data. It provides the full stack of services needed to manage the entire life cycle
of data in ML. In particular, Hopsworks supports the development of horizontally scalable DL
applications in notebooks and the operation of workflows to support those applications, including
parallel data processing, model training, and model deployment at scale. To the best of our knowledge,
this is the first work that demonstrates the services and features of the Hopsworks platform, which
provide users with the means to build scalable end-to-end ML/DL pipelines for EO data, as well
as support for the discovery and search for EO metadata. This paper serves as a demonstration
and walkthrough of the stages of building a production-level model that includes data ingestion,
data preparation, feature extraction, model training, model serving, and monitoring. To this end,
we provide a practical example that demonstrates the aforementioned stages with real-world EO
data and includes source code that implements the functionality of the platform. We also perform
an experimental evaluation of two frameworks built on top of Hopsworks, namely MAGGY and
AUTOABLATION. We show that using MAGGY for hyperparameter tuning results in roughly half the
wall-clock time required to execute the same number of hyperparameter tuning trials using Spark
while providing linear scalability as more workers are added. Furthermore, we demonstrate how
AUTOABLATION facilitates the definition of ablation studies and enables the asynchronous parallel
execution of ablation trials.

Keywords: Hopsworks; Copernicus; Earth Observation; machine learning; deep learning; artificial
intelligence; model serving; big data; ablation studies; MAGGY; ExtremeEarth

1. Introduction

In recent years, huge volumes of big data have been generated in various domains.
Sentinel satellites (https://www.copernicus.eu/en (accessed on 9 April 2022)), for example,
collect more than three petabytes of EO sentinel data for Copernicus yearly; Copernicus
is the European Union’s flagship EO programme for monitoring the planet Earth and
its environment. This enormous amount of data is made readily available to researchers
who want to use it, including those who wish to develop AI algorithms employing DL
approaches that are more appropriate for big data. However, one of the most significant
obstacles that researchers face is a lack of modern and emerging technologies that can
assist them in unlocking the potential of this massive data and developing classification
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and prediction AI models. As part of addressing this challenge, we presented a software
platform architecture in our previous works [1,2]. Furthermore, in [1,2], we demonstrated
how the Hopsworks platform is integrated with various services and components to extract
meaningful knowledge from AI and build AI-based applications using Copernicus and
EO data.

In this work, we introduce the Hopsworks (https://www.hopsworks.ai/ (accessed
on 9 April 2022)) platform, an open-source AI platform jointly developed by Logical
Clocks (https://www.logicalclocks.com/ (accessed on 9 April 2022)) and the KTH Royal
Institute of Technology (https://www.kth.se/en (accessed on 9 April 2022)). We describe
in detail how Hopsworks can be used to enable massive-scale AI for EO data and other
tasks, such as data-parallel and distributed DL by employing features that enhance its
scalability, including a Feature Store [3] and the MAGGY framework [4]. Hopsworks (https:
//github.com/logicalclocks/hopsworks (accessed on 9 April 2022)) is an open-source AI
platform that provides users with an execution environment for designing, distributing
training for, and running end-to-end ML/DL pipelines at scale. This work describes how
the features of the Hopsworks platform are applied to EO data. Hopsworks also has
the most-scalable distributed hierarchical file system—which enables users to reduce the
storage cost of EO data—named HopsFS. HopsFS stores EO data in the native back-end
object-storage infrastructure of Data and Information Access Services (DIAS); the back-
end is accessed via the S3 or Swift protocols (https://creodias.eu/data-access-interfaces
(accessed on 9 April 2022)). These features provide excellent support for implementing
scalable DL models to process enormous volumes of EO data generated by various sources.

To this end, this paper serves as a demonstration and walkthrough of the stages
of building a production-level end-to-end ML/DL pipeline with a main focus on EO
data utilising Hopsworks, including data ingestion, data preparation, feature extraction,
model training, model serving, and monitoring. This demonstration is developed and
presented in the context of the ExtremeEarth project (http://earthanalytics.eu/ (accessed
on 9 April 2022)). Our experience of using Hopsworks in the project is explained below.
Two applications, sea ice classification and crop-type mapping and classification, were
developed using the software platform architecture mentioned above by utilising the
petabytes of Copernicus satellite big data made available through the Copernicus EO
programme and infrastructure [1].

Experience of using Hopsworks in ExtremeEarth Project. One of the primary factors
that differentiates the ExtremeEarth project from other Earth analytics methodologies and
technologies is the use of Hopsworks. Hopsworks has been used for developing DL
models for the use cases considered in the ExtremeEarth project, namely a Polar use case
that uses the Sentinel-1 SAR images for snow parameters and a Food Security use case
that uses Sentinel-2 images. The overall ExtremeEarth infrastructure and its multi-layer
architecture were presented in our previous work [2]. In this paper, we focus only on
the processing layer of the ExtremeEarth software infrastructure. The layer provides the
Hopsworks data-intensive AI platform that presents scalable AI support for EO data.
For more detailed information about the different architecture layers and the integration
of associated components, including Hopsworks and the detailed flow of events of the
ExtremeEarth infrastructure, refer to our previous works [1,2].

The work presented in this paper demonstrates in detail the scalability services and
features of Hopsworks that provide users with the means to build scalable ML/DL pipelines
for EO data as well as support for the discovery and search for EO metadata. Hopsworks is
a horizontally scalable platform for big data and AI applications [5]. It provides first-class
support for both data analytics and data science at scale. In particular, Hopsworks supports
the development of ML and DL applications in notebooks and the operation of workflows
to support those applications, including parallel data processing at scale, model training
at scale, and model deployment. A data science application, especially in the realm of
big data, typically comprises a set of essential stages that form an ML/DL pipeline. This
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data pipeline is responsible for transforming data and serving it as knowledge by using
data-engineering processes and by employing ML and DL techniques.

In the context of the EO data domain, these end-to-end ML/DL pipelines must scale to
the petabyte-sized data and datasets available within the Copernicus programme. A typical
ML/DL pipeline consists of stages: data ingestion, data preparation and validation, feature
extraction, model building and validation (training), and model serving and monitoring.
The first two stages, namely data ingestion and preparation, can also be described as
data pipelines. Figure 1 illustrates the horizontally scalable infrastructure that enables
developers to manage the lifecycle of EO ML applications. The feature extraction stage is
facilitated by the Feature Store service, presented in Section 2.

Figure 1. Horizontally scalable end-to-end ML/DL pipeline stages.

The Hopsworks platform is a data-intensive AI platform that presents scalable AI
support for Copernicus big data. It provides data engineers and data scientists with all the
necessary technical tools that can be used to build and manage each stage of the end-to-end
ML/DL pipelines, as shown in Figure 1. Once data goes through all the stages and the
ML/DL pipeline model is served, the stages may be executed again to consider new data
that has arrived in the meantime and to further fine-tune the pipeline stages, leading
to more accurate models and results. Therefore, a data-science lifecycle is formed that
continuously iterates the above ML pipeline. As a result, data scientists are faced with the
highly complex task of developing DL workflows that utilise each stage of the ML/DL
pipeline. The complexities of such pipelines can grow as input data increase in volume,
which, in the case of EO data, means that a robust and flexible architecture needs to be in
place to assist data engineers and scientists in developing these pipelines. Figure 2 depicts
the overall architecture and lifecycle of an end-to-end ML/DL pipeline, along with the
technologies that are used to implement it and are demonstrated in the rest of the paper.

The stages of ingesting data, pre-processing, and managing a service to store curated
feature data and to compute features can be considered part of the data-engineering lifecycle.
The Feature Store is the service used in this ML/DL pipeline to manage curated feature data.
The second step of the pipeline, the actual ML training and model development, starts by
fetching feature data in appropriate file formats to be used as inputs for training, with each
file format depending on the ML framework that is used. This step can be considered the
data-science lifecycle, in which new feature data are fetched and new models are iteratively
developed and pushed to production.
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Figure 2. Hopsworks lifecycle of an end-to-end ML/DL pipeline.

One of the main goals of an end-to-end ML/DL pipeline is to continuously improve
output models by utilising user-defined metrics. To detect when an ML/DL pipeline should
be triggered to update a DL model served in production, there needs to be a mechanism
that logs all inference requests and monitors how the model is performing over time. Model
serving and monitoring in Hopsworks provide these capabilities to developers of pipelines
and are further demonstrated in Section 2. Figure 3 depicts the Hopsworks services stack.
HopsFS [6] and RonDB (NDB/MySQL Cluster) provide horizontally scalable data and
metadata storage. Apache Hadoop YARN and Kubernetes are the resource management
frameworks on the upper layer. The Hopsworks platform utilises the flavour of YARN
that is developed within Hopsworks as a resource management service for deploying
distributed applications on a cluster of servers. In Hopsworks, YARN supports scheduling
applications with resource constraints, such as CPU, main memory, and GPU [7] constraints.
Therefore, Spark is deployed on top of YARN in Hopsworks, and users developing ML/DL
pipelines can easily, from within the Hopsworks UI, request these three resources to be
allocated to their job or notebook. This is particularly important for allocating GPUs when
the Spark program needs access to a GPU’s computing power.

The Hopsworks platform has also been extended with an API that allows clients
to submit Spark applications on a cluster easily. Hopsworks supports Apache Spark as
a Service, which automatically sets up default Spark configuration parameters. It also
provides a flexible way for users to provide additional configurations with their Spark
application via the UI or the RESTful and client APIs for their applications. These services
provide resources to the distributed processing framework in Hopsworks, Apache Spark,
and Hopsworks itself to provide EO data pre-processing with an arbitrary programming
language functionality and to run Python jobs and notebooks. Additional services, such as
providing tools for debugging logs and metrics monitoring, are part of this layer. The next
layer comprises Hopsworks itself, the webapp with the RESTful API that provides client
applications and users connectivity to the entire Hopsworks cluster.

Deploying and running an end-to-end ML/DL pipeline can be a repetitive task as most
(if not all) stages need to run when new input data are ingested into the system. In case of
a failure, orchestrating the order of stage execution, monitoring progress, and putting a
retry mechanism in place are essential for making an EO data pipeline production ready.
To this end, Hopsworks integrates Apache Airflow (https://airflow.apache.org/ (accessed
on 9 April 2022)) as an orchestration engine.

https://airflow.apache.org/
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Figure 3. Hopsworks Services Stack.

Application areas of the Hopsworks platform. In prior work, we showed how the
Hopsworks platform was used to engineer the features of, train, and serve DL models
using many terabytes of Copernicus and EO data [1,2]. While Hopsworks is a horizontal
platform for developing and operating AI applications at scale, it has been customised for
remote sensing and the EO community. Within the context of ExtremeEarth, the platform
has already been used to develop two use cases: sea ice classification for the Polar Thematic
Exploitation Platform (TEPs) and crop-type mapping and classification for the Food Security
TEPs [1]. Hopsworks is currently being used to train and operate machine-learning models
at scale in other domains, such as finance, healthcare, and natural language processing.
Although Hopsworks has not yet been used as a platform for other Copernicus TEPs, such
as the Marine Environment Monitoring Service, we believe the platform can be used in a
manner similar to the Polar and Food Security TEPs, that is, for scalable feature engineering,
scale-out deep learning, and online model serving. In Section 2, we demonstrate how the
end-to-end DL pipeline for the ship–iceberg classification model is developed.

Our work presented in this paper is an early study showing the promise of the
Hopsworks platform and advanced techniques targeting the EO domain. Although there
are many different application areas in EO, we cover only the Polar and Food Security use
cases, but we believe that the techniques discussed in this paper can be generalised to cover
and make contributions to different EO application areas. The results presented in this
paper are compelling enough to make a case for this platform to be applied to a variety of
other application domains.

Scalable AI. Scalable storage, scale-out feature engineering, scale-out training, and
scale-out online model serving are the main components of a scalable AI platform. There
are two main parts to scalable AI. First, the platform has to be able to store increasing
amounts of data by adding resources (storage servers) when needed. Hopsworks provides
HopsFS [6] as a scale-out hierarchical distributed file system that can store data at a low cost
on local disks or on top of the Object Store. Second, the platform must support scale-out
computing (feature engineering with CPUs and training deep-learning models with GPUs).
The results of independently scalable storage and scalable computing are that as the data
volume grows, the platform can store the increasing volumes of data and process the data
into features in a similar time by adding more resources (CPU and memory), and the time
required to train a deep-learning model can be reduced by adding more GPUs in what
is known as data-parallel model training. Similarly, if the inference load on our online
models increases, we should be able to add more resources to handle the increased model-
serving load while keeping response latencies below the level stipulated in a service level
agreement. To summarise, scalable AI means that we can go beyond the capacity of a single
server, and we can use many servers to reduce training and inference times reasonably and
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are able to train larger models. As presented in Section 3, our work introduces a parallel
model training approach with which the model training is partitioned over many servers
where the models do not fit in a single server.

Contributions. In summary, the main contributions of this work are as follows.

• We introduce the Hopsworks platform, which brings scalable AI support to the EO
data community and the Copernicus programme.

• We describe in detail how Hopsworks can be used to enable massive-scale AI for EO
data and other tasks.

• We present EO data pipelines with enhanced and newly developed features to enable
and improve support for data parallelism and distributed DL.

• We demonstrate the scalability services and features of the Hopsworks platform,
which provide users with the means to build scalable end-to-end ML/DL pipelines
for EO data as well as support for the discovery and search for EO metadata.

• We provide a practical example that demonstrates the stages of building a production-
level model with real-world EO data and source code that implements the functionality
of the platform.

• We perform an experimental evaluation of two frameworks built on top of Hopsworks:
the MAGGY framework for hyperparameter tuning and parallel ML experiments and
the AUTOABLATION framework for automated ablation studies.

Outline. The remainder of the paper is organised as follows. The scalable AI capabili-
ties of the Hopsworks platform and its features for the scalable end-to-end ML/DL pipeline
stages for EO data are explained in sufficient detail in Section 2. The experimental settings
and evaluation results of the frameworks discussed in this paper are presented in Section 3.
In Section 4, we summarise and discuss the key findings and implications of our work and
highlight directions for future research work. Finally, Section 5 concludes our paper.

2. Materials and Methods

This section presents in detail the end-to-end ML/DL pipeline stages, the scalable AI
capabilities of the Hopsworks frameworks and Hopsworks’ features for scalable ML.

2.1. ML/DL Pipeline Stages
2.1.1. Data Ingestion

Locating and identifying the sources of input data for the AI platform is the first step
in building a scalable end-to-end ML/DL pipeline. The next stage is developing advanced
methods for ingesting data from the input sources into the underlying AI platform, which
runs the ML/DL pipeline. The format in which the input data are stored and the imple-
mented protocols to send data to other systems can vary widely among these input-data
sources. Raw data from Internet of Things (IoT) devices, image data from satellites, fi-
nancial transactions from real-time systems, structured data from data warehouses, social
media, etc. are some examples of such sources. The data in ExtremeEarth is normally stored
in the DIAS, which can be accessed directly from the Hopsworks platform. Some of the
data ingestion sources for an end-to-end ML/DL pipeline, where the external systems
reside, are shown in Figure 4. We show several ways in which the Hopsworks platform has
been enhanced and extended to make satellite-image data for both Polar and Food Security
use cases easily ingested in the platform for subsequent processing in the context of the
ExtremeEarth project.

Accessing EO data from Hopsworks. In the context of the ExtremeEarth project, the
Hopsworks platform is deployed on the CREODIAS, one of the DIASs of the Copernicus
programme environment where EO data needed for this project resides. In the CREODIAS
environment, EO data are made available via the Object Store, where it can be accessed
via the S3 protocols implemented by OpenStack Swift (https://docs.openstack.org/swift/
latest/s3_compat.html (accessed on 9 April 2022)) or via standardised web services, such
as WMS, WMTS, WCS, and WFS (https://creodias.eu/data-access-interfaces (accessed on
9 April 2022)).

https://docs.openstack.org/swift/latest/s3_compat.html
https://docs.openstack.org/swift/latest/s3_compat.html
https://creodias.eu/data-access-interfaces
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Figure 4. Data ingestion sources for an ML/DL pipeline for EO data in the Hopsworks platform [2].

2.1.2. EO Data Pre-Processing

EO data pre-processing with Python. Satellite data often need to be processed before
being provided as inputs into ML/DL algorithms. By utilising the Python support the
Hopsworks platform provides, data scientists in ExtremeEarth can utilise utility programs,
such as GDAL (https://gdal.org/ (accessed on 9 April 2022)), to process EO data.

EO data pre-processing with Docker and Kubernetes. The Hopsworks platform has
been extended in ExtremeEarth to provide efficient and flexible support for working with
arbitrary programming languages and frameworks when processing EO data. This enables
users to utilise the tools and programming languages of their choice to process EO data
by running arbitrary Docker containers on Kubernetes via the Hopsworks jobs service.
The main motivation behind this functionality is that users might need to utilise user-
friendly tools and frameworks that are not necessarily available in the Python Anaconda
environment of the project, such as Java or C++ tools related to remote sensing and EO
data. Figure 3 displays the software stack integrated into Hopsworks that enables users to
run jobs and notebooks, including the Docker job type used for the EO data pre-processing.

2.1.3. Feature Engineering and Data Validation

Feature Store. The process of applying domain knowledge to create features used
during ML/DL pipeline stages is referred to as feature engineering. With the constant
growth in input data, there is a greater need for an efficient framework that allows for
feature engineering and decreases the complexity of managing features. As a result, the
need has also increased the complexity of ML/DL pipelines.

In this work, the Hopsworks platform has been enhanced and extended with a new
framework named Feature Store [3] to allow data scientists and engineers working with
EO to organise their ML assets and curate the EO data features to enhance the management
of curated feature data.

The Feature Store is a data-science and data-engineering interface that acts as an
enterprise’s central data management system across different cloud services and container-
ised applications (https://www.hopsworks.ai/feature-store (accessed on 9 April 2022)).
The generated features that can be utilised to create ML/DL models must be defined,
computed, and persisted before using the validated data to develop them. In the context of
using the ExtremeEarth software architecture on EO data, the underlying service that data
engineers and data scientists utilise for such tasks is the Hopsworks Feature Store. In order
to deal with large amounts of data and complex data types and relationships, the Feature
Store provides comprehensive APIs, scalability, and elasticity. Utilising such services, users
can, for example, create groups of features or compute new features, such as aggregations
of existing ones.

https://gdal.org/
https://www.hopsworks.ai/feature-store
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Models are trained using sets of features. Generating reusable features that can
be distributed across various teams in an organisation that can effectively facilitate the
development of new ML models and pipelines, as shown in Figure 5, is the primary
motivation for feature engineering. Feature discoverability with free-text searches across
an organisation’s feature data, reusing generated features across different pipelines, and
applying software engineering principles to ML features with versioning, documentation,
access control tools, and time-travel by fetching previous feature data used for training a
particular model are just a few of the Feature Store’s main benefits. In addition, it enables
data scientists to collect and manage numerous petabytes of feature datasets with scalability,
allowing them to acquire valuable insights into data distribution and correlation.

Figure 5. The Feature Store interface of Hopsworks and its core components.

The Feature Store [3] is built on fault-tolerant, distributed, and scalable services to
achieve all of the main properties mentioned above. Online data are saved in RonDB
(NDB/MySQL Cluster), while Apache Hive [8] stores large volumes of offline data. Offline
features can be employed for training and are typically utilised in batch-oriented data
processing, with which previous feature data can be evaluated to provide meaningful
statistics. For pipelines that require data at a prediction time, online features must be
available in real time. In addition to storing data, the Feature Store uses a Hopsworks
Spark integration to compute and analyse features. The key components of the Hopsworks
Feature Store are shown in Figure 6.

Feature validation. In this work, the Feature Store is further extended to support the
automated computation of ingested data statistics and a feature validation framework that
enables users to define data quality rules and constraints to be applied to ingested data.
Feature validation is the process of checking and cleansing data to be used as features in
ML models to ensure that their correctness and quality are sufficiently reasonable to be
processed by the subsequent stages of the ML/DL pipeline. The process of performing
feature validation can significantly vary in implementation among ML/DL pipelines or
data engineers and scientists. This is because data validation is not a strict set of rules
that need to be applied to ingested data. Instead, it is a set of best practices and some
common rules derived typically from the domain of statistics. Some of the data validation
processes used when inserting data into the Feature Store are the validation of data types
and structures, statistical properties, and values (such as an accepted range of values).

In the context of ExtremeEarth, there is one more constraint that must be considered
when establishing a feature validation process: feature validation needs to be applied to
large volumes of data in a distributed storage and processing environment. In addition
to this, feature validation in the ML/DL pipeline context is applied to the feature data
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that resides in the Feature Store. Then, these features are extracted in the form of training
or test datasets to be served as inputs in the training stage. To achieve feature validation
at scale, the Hopsworks Feature Store has been extended to support feature validation
by introducing the concepts of feature expectations and validation rules (https://docs.
hopsworks.ai/latest/generated/feature_validation/ (accessed on 9 April 2022)). This
validation framework is built on Apache Spark and Deequ (https://github.com/awslabs/
deequ (accessed on 9 April 2022)).

Figure 6. The Hopsworks platform’s Feature Store architecture [2].

2.1.4. Model Analysis and Training

Model analysis is an analytical method of examining how a ML model responds to
various assumptions. The analysis is essential for users to efficiently solve real-world AI and
data-mining problems [9]. Here, we evaluate and compare ML models to each other using
slices of data or data points. Building ML models is an iterative process; note that the quality
of training data is as important as the underlying ML model. This is because the underlying
model must be built using either a new training dataset or relying on feedback from a
model validation. Subsequently, distributing training over enormous datasets to develop
and deploy ML models is not easy. It is often necessary to validate the data input into the
training algorithm and the model developed from these data. Hence, Hopsworks has been
extended to include the What-If Tool (https://github.com/pair-code/what-if-tool (accessed
on 9 April 2022)), a simple interactive visual interface for expanding understandings of a
black-box regression or classification ML model.

Model interpretability is concerned with understanding what an ML model does,
including during the pre- and post-processing stages and its behaviours for various inputs.
To facilitate this functionality, the What-If model analysis framework is shipped with
Hopsworks as part of the default Python environments that Hopsworks projects come with.
It makes it easier for data scientists and other users to evaluate the underlying ML model’s
predictions. Therefore, users do not need to install it along with its dependencies, avoiding
any risks of Python library dependency conflicts as well. Listing 1 shows the code snippet
used to perform a model analysis for the ship–iceberg classification model developed to
demonstrate this functionality. Users can set the number of data points to be displayed,
the test dataset location to be used to analyse the model, and the features to be used.

2.1.5. Model Serving and Monitoring

Exporting, serving for inference, and monitoring the models developed in the previous
stages are threefolds of the last stage of the DL workflow. After a model has been generated
and exported from the Hopsworks platform utilising the previous stages in the ML/DL
pipeline, it must be served to be used for inferences by external applications, such as

https://docs.hopsworks.ai/latest/generated/feature_validation/
https://docs.hopsworks.ai/latest/generated/feature_validation/
https://github.com/awslabs/deequ
https://github.com/awslabs/deequ
https://github.com/pair-code/what-if-tool
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iceberg detection or water availability detection for food crops. Hopsworks’ built-in elastic
model-serving infrastructure allows users to submit inference requests for TensorFlow and
scikit-learn. After the model is deployed, its performance must be monitored continuously
in real time so that users can determine when the best time to start the training stage
is. High-performance serving systems and other inference pipelines for ML/DL models
have also been added to the Hopsworks platform as extensions [2]. Moreover, KFServing
(https://hopsworks.readthedocs.io/en/latest/hopsml/kfserving.html (accessed on 9 April
2022)) has been integrated into Hopsworks for model serving. Users can use docker
containers provided by either Hopsworks or KFServing.

Listing 1. Code snippet for model analysis with the What-If Tool.

# Invoke What-If Tool for test data and the trained model {display-mode: "form"}
num_datapoints = 2000 #@param {type: "number"}
tool_height_in_px = 1000 #@param {type: "number"}

from witwidget.notebook.visualization import WitConfigBuilder
from witwidget.notebook.visualization import WitWidget

test_examples = df_to_examples(test_df, features_and_labels)

# Setup the tool with the test examples and the trained classifier
config_builder = WitConfigBuilder(test_examples)

.set_estimator_and_feature_spec(classifier, feature_spec)

.set_label_vocab(['not iceberg', 'is iceberg'])
WitWidget(config_builder, height=tool_height_in_px)

As explained above, the Hopsworks platform also hides the complexity of managing
the lifecycle of docker containers, EO data access, and logs. Furthermore, users can choose
the smallest number of samples required for the underlying model to serve in a runtime,
which gives Hopsworks users the vital property of elasticity. Additionally, the Hopsworks
platform’s model monitoring infrastructure continuously monitors the incoming requests
sent to a model and its responses. Users can then apply their business logic to determine
which actions to take based on how the monitoring metrics output changes over time.
Hopsworks also introduces a novel security model based on TLS certificates that allow
users to save sensitive data on the platform. Hopsworks logs all the inference requests
in Apache Kafka [10]. The model serving and monitoring architecture of the Hopsworks
platform is shown in Figure 7. The code snippets presented in Listings 2–4 show end-to-end
examples of models serving on the Hopsworks platform using the TensorFlow framework.
The helper library in Hopsworks that enables development by hiding the complexities of
running applications and interfacing with the underlying services is hops-util-py.

2.2. Hopsworks Frameworks for Scalable ML

In this section, we will explain and summarise the scalability services and features
that Hopsworks provides for ML and DL. Figure 8 shows the challenges in scaling out ML
and DL. Hopsworks makes use of PySpark as an orchestration layer that is transparent
to the users to scale out both the inner loop and the outer loop of distributed ML and
DL. The inner loop is where model development (training) is done. In the inner loop,
the current best practice for reducing the time required to train models is data-parallel
training using multiple GPUs; hence, scaling out in this context means making use of more
GPUs, which may be distributed across multiple machines, to make data-parallel training
go faster. The outer loop is where we run as many experiments as needed to establish good
hyperparameters of the model we are going to train. We typically run many experiments as
we need to search for good values of the hyperparameters, since hyperparameters, as the
name implies, are not learned during the training phase (i.e., in the inner loop).

Hopsworks supports the execution of hyperparameter tuning experiments in two
ways: synchronous parallel executions through the Experiment API as well as a new frame-
work for the asynchronous parallel execution of trials, called MAGGY [4]. To optimise the
hyperparameters for DL, the out-of-the-box use of state-of-the-art directed search algo-
rithms that work better (e.g., genetic algorithms, Bayesian optimisation [12], Hyperopt [13],
and ASHA [14]) is provided. In the following subsections, we describe the Experiment API,

https://hopsworks.readthedocs.io/en/latest/hopsml/kfserving.html
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distributed training techniques available in Hopsworks, hyperparameter tuning with the
MAGGY framework, and ablation studies with the AUTOABLATION framework.

Figure 7. The architecture for model monitoring and serving in the Hopsworks platform [11].

Listing 2. Querying the model repository for the best MNIST model.

from hops import model
from hops.model import Metric
MODEL_NAME="mnist"
EVALUATION_METRIC="accuracy"

best_model = model.get_best_model(MODEL_NAME, EVALUATION_METRIC, Metric.MAX)

print('Model name: ' + best_model['name'])
print('Model version: ' + str(best_model['version']))
print(best_model['metrics'])

Listing 3. Creating model serving.

from hops import serving

# Create serving. Optionally, add the kfserving flag to deploy the model server
# using this serving tool. If not specified, it is deployed using the serving tool by default
# on the current Hopsworks version (docker or kubernetes)
serving_name = MODEL_NAME
model_path="/Models/" + best_model['name']
response = serving.create_or_update(serving_name, model_path,

model_version=best_model['version'],
model_server="TENSORFLOW_SERVING", kfserving=False)

# List all available servings in the project
for s in serving.get_all():

print(s.name)

Listing 4. Sending prediction requests to the served model using the Hopsworks RESTful API.

import numpy as np
import json

TOPIC_NAME = serving.get_kafka_topic(serving_name)
NUM_FEATURES=784

for i in range(20):
data = {

"signature_name": "serving_default", "instances": [np.random.rand(NUM_FEATURES).tolist()]
}

response = serving.make_inference_request(serving_name, data)
print(response)
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Figure 8. Scaling out distributed training of ML and DL.

2.2.1. The Experiment API

An experiment can be defined as the process of finding the optimal hyperparam-
eters for model training by using training samples and building a model. Data scien-
tists conduct multiple ML experiments on samples of their training datasets and build
several models deployed, evaluated, and enhanced later on. The Hopsworks platform
is shipped with a novel Experiments service (a.k.a., the Experiment API) that has first-
class support for writing programs in Python and integrates popular open-source ML
libraries and frameworks, such as TensorFlow, Keras, scikit-learn, TensorBoard, PyTorch,
and any other framework that provides a Python API. Furthermore, it allows for man-
aging the histories of ML experiments as well as monitoring during training (https:
//hopsworks.readthedocs.io/en/latest/hopsml/hopsML.html#experimentation (accessed
on 9 April 2022)).

It is useful to have a common abstraction that defines the type of training, the configu-
ration parameters, the input dataset, and the infrastructure environment that a ML program
runs in to carry out ML training. In Hopsworks, the abstraction of an experiment is used to
encapsulate the aforementioned properties. To productionise ML models, it is important to
easily run a past experiment in case a software bug is discovered and the models need to be
developed again based on previously seen data. A repeatable experiment is an abstraction
that enables users to rerun a past experiment by managing to reproduce an execution
environment, fetch the exact same data the original experiment runs on, and set the same
configuration properties.

Hyperparameter tuning. Parameters that define and control a model architecture are
called hyperparameters. Hyperparameter tuning is critical to achieving the best accuracy
for ML and DL models. In hyperparameter tuning, a trial is an experiment with a given
set of hyperparameters that returns its result as a metric. In synchronous hyperparameter
tuning (using the Experiment API), the results of trials (metrics) are written to HopsFS [6],
with which the driver reads the results and can then issue new jobs with new trials as Spark
tasks to executors, iterating until hyperparameter optimisation is finished. Executing the
code shown in Listing 5, six trials will be run with all possible combinations of learning
rates and dropouts (using the grid search approach). Executors will run these trials in
parallel, so if we run this grid search code with six executors, it is expected to complete six
times faster than running the trials sequentially. HopsFS [6] is used to store results of the
trials, logs, models trained, code, and any visualisation data for TensorBoard.

2.2.2. Parallel and Distributed Training Techniques

DL can greatly benefit in performance from executing training tasks on GPU-equipped
hardware. In addition to this, model training can be accelerated even more by distributing

https://hopsworks.readthedocs.io/en/latest/hopsml/hopsML.html#experimentation
https://hopsworks.readthedocs.io/en/latest/hopsml/hopsML.html#experimentation
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tasks on multiple GPUs of a cluster. The Hopsworks platform provides GPUs as man-
aged resources as users can request from one to potentially all the GPUs of the cluster
and Hopsworks will allocate the resources to applications. Grid search and random search
are two examples of hyperparameter tuning techniques that are parallelisable by nature,
which means that various executors will perform different hyperparameter combination
evaluations. If a particular executor sits idle, it will be reclaimed by the cluster, which
also means that GPUs will be optimally used in the cluster. This is made possible by
using Dynamic Spark Executors (https://hopsworks.readthedocs.io/en/latest/hopsml/
experiment.html (accessed on 9 April 2022)).

Listing 5. Grid search for hyperparameter values using the Experiment API.

# RUNS ON THE EXECUTORS
def train(lr, dropout):

def input_fn(): # treturn dataset
optimizer = ...
model = ...
model.add(Conv2D(...))
model.compile(...)
model.fit(...)
model.evaluate(...)

# RUNS ON THE DRIVER
Hparams = {'lr':[0.001, 0.0001], 'dropout': [0.25, 0.5, 0.75]}
experiment.grid_search(train, Hparams)

The Hopsworks platform provides parallelised versions of the grid search, random
search, and state-of-the-art evolutionary optimisation algorithms that will automatically
search for hyperparameters to iteratively enhance evaluation metrics for models, such as
model accuracy. The pseudo-code snippet shown in Listing 6 demonstrates how to run a
single experiment abstraction. Listing 7 shows how we can run parallel experiments. Note
that the only difference between the two code snippets is that in Listing 7, we provide a
dictionary of parameters as an argument for the launch function, and the Experiment API
will take care of the parallel execution of each trial.

Listing 6. Single experiment.

def training_function():
import tensorflow as tf
# Import hops helper modules
from hops import hdfs
from hops import tensorboard
dropout = 0.5
learning_rate = 0.001
# define the model...

# Point to tfrecords dataset in your project
dataset = tf.data.TFRecordDataset(hdfs.project_path() + '/Resources/train.tfrecords')
logdir = tensorboard.logdir()
metric = model.train(learning_rate, dropout, logdir)
return metric

from hops import experiment
experiment.launch(training_function)

Listing 7. Parallel experiment.
args_dict = {'learning_rate': [0.001, 0.0005, 0.0001], 'dropout': [0.45, 0.7]}

def training_function(learning_rate, dropout):
# Training code - similar to the previous listing
metric = model.train(learning_rate, dropout)
return metric

from hops import experiment
experiment.launch(training_function, args_dict)

MultiWorkerMirroredStrategy. Once good hyperparameters have been found and a
good model architecture has been designed, a model can be trained on a full dataset. If the
training is slow, it can be sped up by adding more GPUs, potentially across multiple
machines, to train in parallel using the data-parallel training approach. In data-parallel
training, each worker (executor) trains on different shards of the training data. This type

https://hopsworks.readthedocs.io/en/latest/hopsml/experiment.html
https://hopsworks.readthedocs.io/en/latest/hopsml/experiment.html
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of distributed training benefits significantly from having a distributed file system (shown
in Figure 9—HopsFS [6] in Hopsworks) where workers can read the same training data
and write to the same directories containing logs for all the workers, checkpoints for
recovery if training crashes for some reason, TensorBoard logs, and any models that are
produced at the end of the training.

Synchronous Stochastic Gradient Descent (SGD) is the state-of-the-art algorithm for the
updating of weights in DL models, and it maps well to Spark’s stage-based execution model.
MultiWorkerMirroredStrategy is the state-of-the-art implementation of synchronous SGD
as it is bandwidth optimal (using both upload and download bandwidths for all workers)
compared to the parameter server model, which can be I/O bound at the parameter
server(s). In the MultiWorkerMirroredStrategy, within a stage, each worker will read its
share of a mini-batch, then send its gradients (changes to its weights as a result of the
learning algorithm) to its successor on a ring while receiving gradients from its predecessor
on the ring in parallel. Assuming all workers train on similar batch sizes per iteration and
there are no stragglers, this approach can result in the near-optimal utilisation of GPUs.
The MultiWorkerMirroredStrategy shown in Listing 8 demonstrates how the Experiment
API is used for distributed training.

Figure 9. Distributed file system.

ParameterServerStrategy. Distributed training with parameter servers is another
strategy supported by the Hopsworks platform. It is a common data-parallel approach
in which, in addition to the workers, one or more parameter servers receive gradient or
model parameter updates from the workers at each iteration, aggregate them, and send
a new model replica or gradients to all the workers. The Experiment API also supports
the ParameterServerStrategy as a distributed training approach. Listing 9 shows the code
needed to use this strategy through the Experiment API.

2.2.3. Hyperparameter Tuning with MAGGY

MAGGY (source code: https://github.com/logicalclocks/maggy (accessed on 9 April 2022))
is a unified programming framework developed for the efficient asynchronous parallel
execution of ML and DL experiments that supports the early stopping of under-performing
trials by exploiting global knowledge, guided by an optimiser [4]. The programming model
of MAGGY is based on distribution-oblivious training functions [15] with which users have
to divide dataset creation and model creation code into their distinct functions and pass
them as parameters to the training function. This enables the resulting parameterised code
to be utilised and launched for a variety of experiment types and distribution settings (e.g.,
single-host or several workers) without requiring further code changes. For hyperparam-
eter tuning tasks, the MAGGY framework currently includes algorithms for the existing
implementations of random searches and Bayesian optimisations (with tree Parzen esti-
mators [16] and Gaussian processes [17]), as well as Hyperband [18] and ASHA [14] as
optimisers and a median early stopping rule for the early stopping of under-performing
trials [19]. In addition, MAGGY provides a developer API that includes base classes for both
the optimisers and the early stopping rule, allowing users and developers to implement
and utilise their own optimisers or early stopping rules.

https://github.com/logicalclocks/maggy
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Listing 8. Using the MultiWorkerMirroredStrategy for distributed training in Hopsworks.

def multi_worker_mirrored_training():
import sys
import numpy as np
import tensorflow as tf
from hops import tensorboard
from hops import devices
from hops import hdfs
import pydoop.hdfs as pydoop
log_dir = tensorboard.logdir()
# Define distribution strategy
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
batch_size_per_replica = 8
# Define global batch size
batch_size = batch_size_per_replica * strategy.num_replicas_in_sync
# Define model hyper parameters here

# Input image dimensions
img_rows, img_cols = 28, 28
input_shape = (28, 28, 1)
train_filenames = [hdfs.project_path() + "TourData/mnist/train/train.tfrecords"]
validation_filenames = [hdfs.project_path() + "TourData/mnist/validation/validation.tfrecords"]

# Construct model under distribution strategy scope
with strategy.scope():

model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(...))
model.add(tf.keras.layers.Conv2D(...))
model.add(tf.keras.layers.MaxPooling2D(...))
model.add(tf.keras.layers.Dropout(...))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(...))
model.add(tf.keras.layers.Dropout(...))
model.add(tf.keras.layers.Dense(...))
opt = tf.keras.optimizers.Adadelta(...)
model.compile(...)

# To finish the experiment
from hops import experiment
experiment.mirrored(multi_worker_mirrored_training, name='mnist model', metric_key='accuracy')

To optimise and tune hyperparameters, users must specify the hyperparameter tuning
algorithm and the early-stopping rule (a no-stop rule, which does not early stop trials,
is also implemented), as well as the search spaces of the hyperparameters (an example
definition is shown in Listing 10). In the MAGGY framework, the Spark driver and executors
communicate with each other via Remote Procedure Calls (RPCs). The flow of data for the
underlying communication protocol, as well as the associated runtime behavior, is shown
in Figure 10. The optimiser that guides effective hyperparameter searches is located on the
Spark driver, and it assigns trials to the Spark executors. The Spark executors run a single
long-running task and receive commands from the driver (optimiser) for trials to execute.
Executors also periodically send metrics to the driver to enable the optimiser to make global
early stopping decisions. Because of the impedance mismatch between trials and the stage-
or task-based execution model of Spark, we block the executors with long-running tasks to
run multiple trials per task. In this way, the Spark executors are always kept busy running
trials (see Figure 11), and the global information needed for an efficient early stopping is
aggregated in the optimiser. This results in improving the overall resource utilisation and
the execution speeds of the experiments.

Spark Driver

RPC Server RPC Client

Spark Task (Executor)Get Trial

Heartbeat 
(logs/metric)

Shared data

lookups Trial/Stop
Controller

Ablator/Optimizer

Message
Queue

Modify

N

RPC Client

Spark Task (Executor)

Figure 10. The MAGGY framework’s runtime behaviour and data flow for the RPC protocol [4].
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Listing 9. Using the ParameterServerStrategy for distributed training in Hopsworks.

def parameter_server_training():
import sys
import numpy as np
import tensorflow as tf
from hops import tensorboard
from hops import devices
from hops import hdfs
import pydoop.hdfs as pydoop
log_dir = tensorboard.logdir()
# Define distribution strategy
strategy = tf.distribute.experimental.ParameterServerStrategy(

num_gpus_per_worker=devices.get_num_gpus()
)

batch_size_per_replica = 8
# Define global batch size
batch_size = batch_size_per_replica * strategy.num_replicas_in_sync
# Define model hyper parameters here

# Input image dimensions
img_rows, img_cols = 28, 28
input_shape = (28, 28, 1)
train_filenames = [hdfs.project_path() + "TourData/mnist/train/train.tfrecords"]
validation_filenames = [hdfs.project_path() + "TourData/mnist/validation/validation.tfrecords"]

# Construct model under distribution strategy scope
with strategy.scope():

model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(...))
model.add(tf.keras.layers.Conv2D(...))
model.add(tf.keras.layers.MaxPooling2D(...))
model.add(tf.keras.layers.Dropout(...))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(...))
model.add(tf.keras.layers.Dropout(...))
model.add(tf.keras.layers.Dense(...))
opt = tf.keras.optimizers.Adadelta(...)
model.compile(...)

# To finish the experiment
from hops import experiment
experiment.parameter_server(parameter_server_training, name='mnist model', metric_key='accuracy')

Metrics New Trial

Figure 11. Asynchronous search using the MAGGY framework.

2.2.4. Ablation Studies

Ablation studies provide insights into the relative contributions of various architectural
and regularisation components to the performance of ML models. These components
include dataset features and model layers, although an ablation study might also include
anything from a design choice to a system module. By removing each building block (e.g.,
a particular layer of the network architecture or a set of features of a training dataset),
retraining, and observing the resulting performance, we can gain insights into the relative
contributions of each of these building blocks. For ablation studies, the Hopsworks platform
has been extended with AUTOABLATION, a framework for automated parallel ablation
studies [20]. AUTOABLATION runs on top of the MAGGY framework and includes a Leave
One Component Out (LOCO) ablator that removes a certain component from the training
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process at a time (i.e., in each trial). A component can be considered one or a group of
network architecture layers, one or a group of dataset features, and modules of network
architecture, such as Inception v3 inception modules [21].

An ablation study, similar to the concept of search spaces in hyperparameter optimisa-
tion experiments, is defined by a list of components that are to be ablated (i.e., excluded) and
an ablation policy (e.g., LOCO) that dictates how the given components should be removed
for each trial. Once the study is defined, AUTOABLATION will automatically create the
corresponding relevant trials for the ablation study and run them in parallel. An ablation
study can be thought of as an experiment consisting of a series of trials. As shown in
Figure 12, each model ablation trial, for example, involves training a model with one or
more of its layers (e.g., a component) removed. However, a feature ablation trial involves
training a model with various dataset features and observing the corresponding results.
In Section 3 we provide code snippets as examples for defining and running typical ablation
experiments.

Max-Pool Convolution DenseMax-Pool Convolution Max-Pool Dense

Figure 12. Example of a model (layer) ablation trial. The layer highlighted in yellow is removed from
the base model. The subsequent model is trained on the same training data to determine the relative
contribution of the ablated (removed) layer to the model’s performance.

3. Results

In this section, we present the experimental evaluation results of the frameworks
presented in Section 2, and in particular, the MAGGY and AUTOABLATION frameworks.
We first present results for the task of hyperparameter tuning using the Experiment API as
well as MAGGY and compare the two frameworks in terms of scalability and performance.
Then, using AUTOABLATION, we demonstrate Hopsworks’ support for automated ablation
studies for DL training workloads.

3.1. Hyperparameter Tuning

For the task of hyperparameter tuning, we trained a three-layer Convolutional Neural
Network (CNN) with a fully connected layer using the Fashion-MNIST dataset [22]. We
compare the performance of a random search [23] using the MAGGY (asynchronous parallel
execution of trials over Spark) framework to the Experiment API (synchronous parallel
execution of trials over Spark). We run a fixed number of trials (N = 100) over 4, 8, 16, and
32 workers. The hyperparameter search space for this experiment is shown in Listing 10.

Listing 10. Defining hyperparameter search space for the Fashion-MNIST dataset.

sp = Searchspace(kernel=('INTEGER', [2, 8]),
pool=('INTEGER', [2, 8]),
dropout=('DOUBLE', [0.01, 0.99]),
learning_rate=('DOUBLE', [0.000001, 0.99]))

As shown in Figures 13 and 14, the asynchronous execution of trials in MAGGY

combined with the early stopping of under-performing trials using the median early
stopping rule [19] reduced the wall-clock time by roughly half compared to using Spark or
the Experiment API without compromising the final accuracies of the best trials. We can
also see that increasing the number of workers linearly decreased the total execution time
of the experiment for both MAGGY and Spark. The final best accuracies, after 100 trials, for
both MAGGY and Spark are presented in both Table 1 as well as Figure 13. We can also see
that both MAGGY and Spark converge to a comparable level of accuracy.

The effect of the early stopping of under-performing trials can be further emphasised
by looking at Table 2, which consists of the total experiment running time in seconds
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(wall-clock time) for MAGGY and Spark with a various number of workers as well as the
number of early trials stopped by MAGGY. The median early stopping rule used for this
experiment comes into effect after the first four trials are completed and stops trials that
perform worse than the median at the same point in time (the stochastic-gradient descent
optimisation step) during training. We can observe that when MAGGY uses the median
early stopping rule, half of the trials are stopped on average, resulting in the reduction of
the total wall-clock time by approximately half.

Table 1. The final accuracies of the MAGGY framework and Spark after 100 trials [4].

Number of Workers MAGGY Accuracy Spark Accuracy

4 0.915 0.905
8 0.909 0.912

16 0.909 0.913
32 0.913 0.909

Table 2. Relative speedup of MAGGY over the general Spark implementation (the Experiment API),
total experiment runtime in seconds, and number of early trials stopped by MAGGY [4].

Number of Workers MAGGY/Spark MAGGY (s) Spark (s) Number of Early Stopped Trials

4 0.41 16,284 40,051 54
8 0.33 9828 29,511 52
16 0.47 6486 13,745 47
32 0.58 3804 6474 44
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Figure 13. When compared to Spark (the Experiment API), the asynchronous execution of trials
and the median stopping rule in MAGGY allow 100 hyperparameter trials to be executed in a lower
wall-clock time (lower is better) without any loss in accuracy (denoted on top of the bars). We can
also see that both MAGGY and Spark exhibit linear scalabilities (linear reductions in the experiment’s
wall-clock time) when more workers are added [4].

3.2. Ablation Studies

We now demonstrate how AUTOABLATION facilitates ablation experiments for DL
through three common settings in which ablation studies are performed. The first two
experiments focus on results from feature ablation and layer ablation experiments. The third
experiment demonstrates the near-linear scalability of AUTOABLATION as more workers
are added to the execution environment.

Experiment 1: Feature ablation of the Titanic dataset. Here we perform a feature
ablation experiment on a modified version of the famous Titanic dataset (https://www.
kaggle.com/c/titanic/data (accessed on 9 April 2022). The training dataset contains six
features apart from the label, so we will have six trials where we exclude one training
feature and one base trial containing all the features (i.e., seven trials in total). For this
experiment, we use a simple Keras sequential model with two hidden Dense layers. To train

https://www.kaggle.com/c/titanic/data
https://www.kaggle.com/c/titanic/data
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the model for 10 epochs, we divide the input dataset into training and testing sets with 80%
and 20% of the data, respectively. As can be seen in Listing 11, defining this experiment in
AUTOABLATION requires only a few lines of Python code.
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Figure 14. MAGGY finds better configurations faster through the asynchronous parallel execution
and early stopping of under-performing trials. Due to shorter trials, MAGGY concludes experiments
with the same number of trials in a shorter wall-clock time. Each trial in Spark, the Experiment API,
is run to completion with no early stopping, producing a similar accuracy as expected and resulting
in a higher wall-clock time needed to execute 100 trials than MAGGY [4].

Listing 11. Code snippet of defining feature ablation experiment in AUTOABLATION.

from maggy.ablation import AblationStudy
study = AblationStudy('titanic_train_dataset', label_name='survived')
list_of_features = ['pclass', 'fare', 'sibsp', 'sex', 'parch', 'age']
study.features.include(list_of_features)

This experiment is repeated five times, after which the training features are ranked
according to their average effect on test accuracy achieved, as shown in Table 3. We can
see from the results that training the model with all the dataset’s features (none ablated)
resulted in the worst test accuracy. The model trained on the dataset obtained by removing
the fare feature, however, has the highest test accuracy.

Table 3. A ranking of the average accuracies in the test set in ascending order after ablating each
feature from the training set [20].

Ablated Features Test Accuracy

None (base trial) 0.583

pclass 0.596

sex 0.609

sibsp 0.616

age 0.667

parch 0.672

fare 0.695

Experiment 2: Model ablation of a Keras sequential CNN model. Here, we perform
a layer ablation study on a CNN classifier model for the MNIST dataset [24]. The underlying
CNN model consists of two Conv2D layers followed by a MaxPooling2D layer, one Dropout
layer, a Flatten layer, one Dense layer, and another Dropout layer before the output layer
of the network. In our evaluation, we are mainly interested in the relative contributions of
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the second Conv2D layer, the Dense layer, and the two Dropout layers to the performance of
the model. Listing 12 shows the AUTOABLATION code for defining the layer ablation study.
To effectively evaluate the model, we repeat the experiment five times and then rank the
selected layers according to their average effects on the test accuracy, as shown in Table 4.
The results show that for this network dataset pair, removing the second Conv2D layer has
the lowest effect on the test accuracy. However, the model produced from removing the
Dropout layers performs better than the base model.

Listing 12. Code for the ablation experiment of the CNN classifier model.

from maggy.ablation import AblationStudy
study = AblationStudy("mnist", 1, "number",)
study.model.layers.include('second_conv', 'first_dropout', 'dense_layer', 'second_dropout')

Table 4. A ranking of the average accuracies of the test set in ascending order resulting from excluding
layers of interest from the base model [20].

Ablated Layer Test Accuracy

second_conv 0.913

dense_layer 0.954

None (base trial) 0.969

second_dropout 0.982

first_dropout 0.988

Experiment 3: Model ablation of Inception v3. This experiment demonstrates how
the parallel execution of ablation trials using AUTOABLATION can provide a near-linear
scalability. We perform an ablation study on seven modules of the Inception v3 network [21]
on a subset of the TenGeoPSAR dataset [25] split into training, validation, and testing sets
with 3200, 800, and 1000 images, respectively. Each image is labeled with one out of ten
classes that correspond to different geophysical phenomena.

In this experiment, we use an Inception v3 network that has been pre-trained on
ImageNet [26] and then change the output layer to suit our 10-class classification task. We
perform a module ablation study on the first seven blocks of this network, which consists of
11 blocks known as inception modules. Here, note that the inception network is pre-defined,
and we load it from the DL framework (TensorFlow in this case); thus, we do not explicitly
define how the layers and modules are structured. Hence, we first compile the network to
learn about the names of different layers and identify the entrance and endpoints of each
module. This can be done using the Keras library by plotting the architecture or simply
observing the output of model.summary(). We define the ablation study using the code
snippet shown in Listing 13 after we have identified the layers.

Listing 13. Module ablation experiment of the Inception v3 network.

from maggy.ablation import AblationStudy
study = AblationStudy("TenGeoPSARwv", 1, "type",)
study.model.add_module('max_pooling2d_1', 'mixed0')
study.model.add_module('mixed0', 'mixed1')
study.model.add_module('mixed1', 'mixed2')
...
study.model.add_module('mixed5', 'mixed6')

Each ablation trial consists of fine-tuning the network for 40 epochs on the TenGeoP-
SAR dataset. To demonstrate the scalability of our approach, we perform this experiment
in three different settings: (i) a single executor without parallelisation, (ii) two executors,
and (iii) four executors. Figure 15 shows the wall-clock time for each setting. To approxi-
mate the linear scalability, we take the wall-clock time of the sequential run as the baseline;
however, keep in mind that since each trial trains a different model, the trials differ in terms
of their wall-clock times. Figure 15 shows how AUTOABLATION achieves a near-linear
scalability by running ablation trials in an asynchronous parallel fashion.
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Figure 15. AUTOABLATION’s near-linear scalability [20].

4. Discussion

The work we present in this paper is an early study showing the promise of the
Hopsworks platform and advanced techniques targeting the EO and remote-sensing do-
mains. Although there are many different application areas in EO, we covered only the
Polar and Food Security use cases—but we believe that the techniques discussed in this
paper can be generalised to cover and make contributions to different EO application areas.
The results presented in this paper are compelling enough to make a case for this platform
to be applied to various other application domains. This study explains the different com-
ponents and features available in Hopsworks that the remote sensing and EO community
can use. In addition to this, through experimental evaluations, we showed that using the
MAGGY framework for hyperparameter tuning results in roughly half the wall-clock time
required to execute the same number of hyperparameter tuning trials using Spark while
providing a linear scalability as more workers are added. The work presented in this paper
also demonstrated how AUTOABLATION facilitates the definition of ablation studies and
enables the asynchronous parallel execution of ablation trials.

To the best of our knowledge, this is the first work that demonstrates the services
and features of the Hopsworks platform, which provides users with the means to build
scalable ML/DL pipelines for EO data as well as support for the discovery and search for
EO metadata. While Hopsworks is a horizontal platform for developing and operating
AI applications at scale, it has been customised for remote sensing and the EO commu-
nity. Hopsworks is currently being used to train and operate machine-learning models
at scale in other domains, such as finance, healthcare, and natural language processing.
Although Hopsworks has not yet been used as a platform for other Copernicus TEPs, such
as the Marine Environment Monitoring Service, we believe the platform can be used in a
manner similar to the Polar and Food Security TEPs, that is, for scalable feature engineering,
scale-out deep learning, and online model serving.

As future work, we will keep developing the Hopsworks platform to make it even
more compatible with the advanced tools and methods used by researchers across the
entire remote-sensing and EO communities. We will also continue the development of our
use cases with more sophisticated DL models using even more advanced distributed DL
training techniques. Note that this paper focuses the work of distributed learning on data
parallelism. However, we believe our approach presented in this paper is applicable to
broader tasks. Hence, as a natural extension of this work, it would be interesting to explore
how other parallelisation methods (e.g., model parallelism and pipeline parallelism), could
further improve distributed training speeds and resource utilisations.

5. Conclusions

In this paper, we introduce the Hopsworks platform and describe in detail how it can
be used to enable massive-scale AI for EO data and other tasks, such as data-parallel and
distributed DL by employing features that enhance its scalability, including the MAGGY
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framework and the Feature Store. This work describes how the features of the Hopsworks
platform are applied to EO data. To this end, this paper serves as a demonstration and
walkthrough of the stages of building a production-level end-to-end ML/DL pipeline
with a main focus on EO data utilising Hopsworks, which includes data ingestion, data
preparation, feature extraction, model training, model serving, and monitoring. This
demonstration is developed and presented in the context of the ExtremeEarth project.
Within the context of ExtremeEarth, the Hopsworks platform has already been used to
develop two use cases: sea ice classification for Polar TEPs and crop-type mapping and
classification for Food Security TEPs.
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