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Abstract: Net ecosystem productivity (NEP) plays an important role in understanding ecosystem
function and the global carbon cycle. In this paper, the key parameters of the Carnegie Ames
Stanford Approach (CASA) model, maximum light use efficiency (εmax), was optimized by using
vegetation classification data. Then, the NEP was estimated by coupling the optimized CASA model,
geostatistical model of soil respiration (GSMSR) and the soil respiration–soil heterotrophic respiration
(Rs-Rh) relationship model. The ground observations from ChinaFLUX were used to verify the
NEP estimation accuracy. The results showed that the R2 of the optimized CASA model increased
from 0.411 to 0.774, and RMSE decreased from 21.425 gC·m−2·month−1 to 12.045 gC·m−2·month−1,
indicating that optimizing CASA model by vegetation classification data was an effective method to
improve the estimation accuracy of NEP. On this basis, the spatial and temporal distribution of NEP
in China was analyzed. The research indicated that the monthly variation of NEP in China was a
single peak curve with summer as the peak, which generally presented the pattern of southern region
> northern region > Qinghai–Tibet region > northwest region. Furthermore, from 2001 to 2016, most
regions of China showed a non-significant level upward trend, but main cropland (e.g., North China
Plain and Northeast Plain) and some grassland (e.g., Ngari in Qinghai–Tibet Plateau and Xilin Gol
League in Inner Mongolia) showed a non-significant-level downward trend. The study can deepen
the understanding of the distribution of carbon sources/sinks in China, and provide a reference for
regional carbon cycle research.

Keywords: NEP; CASA model; εmax; carbon sink; spatiotemporal pattern

1. Introduction

Net ecosystem productivity (NEP) is an important indicator of the ecosystem carbon
budget, which describes the amount of CO2 in the atmosphere that an ecosystem can fix in
a unit of time and represents the actual carbon capture of an ecosystem [1,2]. As China is
one of the most diverse climates and ecosystems in the world, accurate estimates of NEP
and analysis of spatiotemporal variation in NEP are critical in assessing the carbon balance
of the Chinese terrestrial ecosystem. This information is meaningful to evaluate the carbon
sequestration capacity of the ecosystems and study their carbon cycle mechanism [3–6].

NEP is the difference between net primary productivity (NPP) and soil heterotrophic
respiration (Rh) [7]. A positive NEP means that the ecosystem stores carbon and is a carbon
sink; a negative NEP means that the ecosystem releases carbon and is a carbon source [8].
Therefore, to calculate NEP, it is necessary to estimate NPP and Rh. Traditional NPP
estimation methods include Eddy Covariance (EC) technique, the direct harvest method,
biomass survey method, photosynthesis method, radiation method, chlorophyll estimation
method and raw material consumption measurement method [9,10]. These methods
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have high accuracy, but they are time-consuming and laborious and present difficulties
in determining NPP at a wide range. Therefore, at present, macroscale (such as global
scales and national scales) NPP is mainly obtained by means of remote sensing and model
estimation [11]. Existing models include climate productivity models (e.g., Miami [12]
and Thornthwaite [13]), physiological and ecological process models (e.g., CENTURY [14]
and BIOME-BGC [15]) and light energy utilization models (e.g., C-FIX [16], CASA [17],
and GLO-PEM [18]). Among them, the Carnegie Ames Stanford Approach (CASA) light
energy utilization model is a simple model that can convert the absorbed photosynthetic
active radiation (APAR) by vegetation and the light energy utilization rate (ε (x, t)) into
the calculation of the normalized difference vegetation index (NDVI), precipitation, air
temperature and solar radiation. This approach can make full use of the advantages of
the wide coverage and high temporal frequency obtainable from the global polar orbiting
sensors such as Terra and Aqua MODIS, Spot VEGETATION, and NOAA AVHRR [19,20].
Therefore, the CASA model has become one of the mainstream models for estimating NPP,
and is widely used in global and regional NPP estimation [1].

When using the CASA model to estimate NPP, two parameters should be consid-
ered. First, the maximum light use efficiency (εmax) of global vegetation was defined
as 0.389 gC·MJ−1 in the original CASA model [21–23]. However, the value of εmax has
always been controversial because it varies with different vegetation types [24–27]. In
addition, the soil moisture submodel used to estimate the water stress coefficient (Wε)
involves many physical parameters and it is difficult to obtain the data. The estimation
results are affected by the spatial heterogeneity of soil [28]. To solve the above problems,
the monthly estimated evapotranspiration (EET) and monthly potential evapotranspiration
(PET) were calculated by the regional EET model and Bouchet complementary relationship
in this paper [29,30]. We use the ratio of EET and PET to calculate Wε to reduce the model
parameters and simplify the estimation process [31]. Moreover, based on the study by
Zhu et al. [32] and International Geosphere Biosphere Programme (IGBP) classification
data, we set optimized εmax values for different vegetation types to improve the estimation
accuracy of the CASA model.

After the calculation of NPP, it is crucial to evaluate Rh to calculate NEP and evaluate
its accuracy [33]. Rh can be measured by direct sampling, and a wide range of data can
be obtained by spatial interpolation [34]. However, due to the complexity of the soil
environment and the difficulty of sampling, regions with high spatial heterogeneity will
have too large of an error range for spatial interpolation with a small number of points [35].
Rh can also be estimated by establishing empirical models between environmental factors
(such as temperature and humidity) and measured values [36–39]. However, due to the
differences in the limiting factors affecting Rh in different regions (for example, water is
the main factor in the northwestern arid and semiarid areas, while temperature is the
main factor in the Qinghai–Tibet and northeastern regions), the method of directly using
environmental factors to solve Rh is not yet mature [5,40]. Moreover, Rh is heterogeneous
in different vegetation types, and it is difficult to accurately analyze the changes in Rh
through a single factor due to the comprehensive influence of the climatic environment,
vegetation and soil environment [34,40,41]. Therefore, Rh is usually estimated indirectly
by establishing an empirical statistical model of soil respiration (Rs) [40–42]. Among the
Rs estimation models, the geostatistical model of soil respiration (GSMSR) is widely used
in the large-scale quantitative analysis of Rs because of its simple structure and good
parameterization method [43,44]. Therefore, we can use the GSMSR to estimate the Rs and
Rs–Rh relationship model to calculate Rh in China.

In this paper, we will combine remote sensing data, meteorological data and soil
organic carbon density (SOCD) data to estimate and analyze the NEP in China through the
following steps: (1) optimize the parameter of CASA model by vegetation classification
data to improve the estimation accuracy of NPP; (2) on this basis, use meteorological data
and SOCD data to estimate the annual NEP and interannual NEP of Chinese terrestrial
ecosystem by coupling the GSMSR and Rs–Rh relationship model; (3) use the estimated
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results to analyze the spatiotemporal distribution characteristics and change trends of
NEP to provide support for carbon source and sink estimation and carbon cycle research
in China.

2. Materials and Methods
2.1. Study Area and Sites Description

China has continental monsoon climate, alpine climate, arid climate and other cli-
mate types; Chinese terrain from west to east in a three-step distribution. The complex
terrain and climate types form complex terrestrial ecosystems in China, as well as caus-
ing the spatial differences of carbon source and sink distribution in different regions [45].
Therefore, according to the distribution of topography and climate, we divided China
into four geographical regions: the southern region (103–123◦E, 22–34◦N), northern region
(103–135◦E, 33–53◦N), northwestern region (73–123◦E, 37–50◦N) and Qinghai–Tibet region
(73–104◦E, 27–40◦N) (Figure 1) [46,47]. Among them, the Qinling Mountains and the
Huaihe River line is the dividing line between the northern and southern regions. The
Greater Khingan Mountains–Yinshan Mountains–Helan Mountains form the boundary
between the northern and northwestern regions. The dividing line between Qinghai–Tibet
region and northwest region, north region and south region is roughly the dividing line of
the first-class ladder and the second-class ladder.
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geographical regions.

Eddy covariance flux towers directly measure the net ecosystem exchange (NEE) of
carbon dioxide between ecosystems and the atmosphere [48]. NEE is often referred to as
approximate net ecosystem productivity, which is the opposite of NEP (NEP = −NEE) [6].
We used the measurements from the Chinese Terrestrial Ecosystem Flux Research Network
(ChinaFLUX) dataset for the verification of the estimation. In total, eight flux tower
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sites were used in this study, namely, XSBN, DHS, QYZ, CBS, DX, HB, NMG and YC
(Figure 1, Table 1). There are five vegetation types, including evergreen broadleaf forest
(EBF), evergreen needle-leaf forest (ENF), deciduous broadleaf forest (DBF), grassland and
cropland. The XSBN and DHS sites were characterized by the EBF vegetation type, the
QYZ site was ENF, the CBS site was DBF, the DX, HB and NMG sites were grassland, and
the YC site was cropland.

Table 1. Detailed description of sites information.

Site Code Site Name Location Climate Data Period Reference

XSBN Xishuangbanna 101◦16′E
21◦54′N

Temperate continental
monsoon climate January 2010–December 2010 [48]

DHS Dinghushan 112◦30′E
23◦09′N

Monsoon humid climate
of torrid zone January 2010–December 2010 [49]

QYZ Qianyanzhou 115◦03′29′′E
26◦44′29′′N

Typical subtropical
monsoon climate January 2010–December 2010 [50]

CBS Changbaishan 128◦05′45′′E
42◦24′9′′N

Temperate continental
monsoon climate January 2010–December 2010 [48]

DX Dangxiong 91◦03′E
30◦29′N Plateau monsoon climate January 2010–December 2010 [51]

HB Haibei 101◦19′E
37◦37′N

Highland continental
climate January 2010–December 2010 [52]

NMG Neimenggu 116◦40′E
43◦32′N

Temperate semi-arid
continental climate January 2010–December 2010 [53]

YC Yucheng 116◦34′E
36◦50′N

Temperate semi-humid
and monsoon climate January 2010–December 2010 [54]

2.2. Data Sources and Processing
2.2.1. Land Cover Types

In this study, the MODIS land cover type product (MCD12Q1) at 500 m resolution
in 2001, 2004, 2007, 2010, 2013 and 2016 was obtained from the National Aeronautics
and Space Administration (NASA) (http://ladsweb.modaps.eosdis.nasa.gov/, accessed
on 20 September 2021). MCD12Q1 was preprocessed by format conversion, projection
conversion, image mosaic and resampling with the MODIS Reprojection Tool (MRT). We
extracted the classified data from the IGBP. After that, based on the 17 land cover types
classified by the IGBP classification system, we further merged them into 11 different
land use types, including ENF, EBF, deciduous needle-leaf forest (DNF), DBF, mixed
forest (MXF), dense shrub (DS), open shrub (OS), grassland, wetland, cropland and non-
vegetation (Figure 1) [6,19,55].

2.2.2. MODIS NPP Product (MOD17A3H v006)

The MODIS NPP product (MOD17A3H v006) at a spatial resolution of 500 m was
obtained from NASA (http://ladsweb.modaps.eosdis.nasa.gov/, accessed on 25 September
2021), and this product was used to compare with the accuracy of the CASA model. This
product was also preprocessed by format conversion, projection conversion, image mosaic
and resampling in MRT.

2.2.3. NDVI

The monthly NDVI dataset at a spatial resolution of 1 km was downloaded from the
Resource and Environment Science and Data Center (RESDC) (www.resdc.cn, accessed on
15 September 2021). The dataset of Chinese monthly NDVI is based on the continuous time
series of SPOT/VEGETATION NDVI satellite remote sensing data, which had undergone
preprocessing at the RESDC, including atmospheric correction, radiation correction and
geometric correction, and used the maximum value synthesis method to generate the
monthly vegetation index datasets [56]. The dataset is widely used in the monitoring

http://ladsweb.modaps.eosdis.nasa.gov/
http://ladsweb.modaps.eosdis.nasa.gov/
www.resdc.cn
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of vegetation change, rational utilization of vegetation resources and other ecological
environment related fields [57].

2.2.4. Meteorological Datasets

The meteorological data including the China monthly precipitation and monthly
average temperature dataset, with a spatial resolution of 1 km in 2001, 2004, 2007, 2010, 2013
and 2016, were downloaded from the National Earth System Science Data Center (www.
geodata.cn, accessed on 15 September 2021). The meteorological dataset was generated by
the Delta spatial downscaling procedure based on the global 0.5◦ climate data released by
the Climatic Research Unit (CRU) and the global high-resolution climate data released by
WorldClim. The dataset was verified by 496 meteorological stations on the ground, which
has a credible verification result [58].

2.2.5. DEM

A digital elevation model (DEM) is used as the input value for solar radiation area in
ArcGIS 10.2 (Environmental Systems Research Institute, Inc. 2013, Redlands, CA, USA) to
calculate the total solar radiation. The DEM data were downloaded from the Resource and
Environment Science and Data Center (www.resdc.cn, accessed on 20 September 2021). The
spatial distribution data are derived from the Shuttle Radar Topography Mission (SRTM)
of the United States, which is based on the resampling of SRTM v4.1 data, and its spatial
resolution is 1 km.

2.2.6. SOCD

Soil organic carbon density (SOCD) data were used as the input value of the GSMSR to
calculate the Rs of the study area. According to the classification of secondary vegetation, we
chose the SOCD of different vegetation types at a depth down to 20 cm [59]. Among them,
the value for coniferous forest is 3.770 kg·m−2, broadleaf forest is 4.700 kg·m−2, the value
for MXF is the average of coniferous forest and broadleaf forest with 4.235 kg·m−2, shrub is
2.560 kg·m−2, grassland is 1.820 kg·m−2, cropland is 2.560 kg·m−2, other vegetation types
are 0 [59].

2.3. Research Methods
2.3.1. Estimation of NPP Based on CASA Model

In 1993, Potter et al. [23] proposed the CASA model, which takes remote sensing
data as input data, combines environmental variables (temperature, moisture, soil) and
vegetation physiological parameters, and uses the product of APAR and light energy
utilization (ε(x, t)) to represent NPP. The expression of NPP is as follows [23]:

NPP(x, t) = APAR(x, t)× ε(x, t), (1)

where APAR(x, t) is the photosynthetically active radiation absorbed by pixel x in month
t (MJ·m−2·month−1) and ε(x, t) is the actual light energy utilization of pixel x in month
t (gC·MJ−1).

• APAR

The spectral range of solar radiation is 115–5000 nm, but the solar radiation in this
range cannot be completely absorbed by plants. Vegetation can actually use solar radiation
in the wavelength range of 380–710 nm for photosynthesis, which is called photosynthetic
active radiation (PAR). APAR absorbed by vegetation can be expressed by the total solar
radiation and the fraction of photosynthetic active radiation (FPAR). These equations of
APAR and FPAR are all taken from the Potter et al. paper. The expression of APAR is as
follows [23]:

APAR(x, t) = 0.5× SOL(x, t)× FPAR(x, t), (2)

www.geodata.cn
www.geodata.cn
www.resdc.cn
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where SOL(x, t) is the total solar radiation of pixel x in month t (MJ ·m−2·month−1); FPAR(x,
t) refers to the absorption ratio of vegetation to incident PAR; and 0.5 refers to the ratio of solar
effective radiation to total solar radiation. In Equation (2), FPAR is expressed as:

FPAR(x, t) = α FPARSR + (1− α) FPARNDVI, (3)

where α = 0.5. The calculation formula for FPARSR and FPARNDVI are as follows:

FPARSR =
SR(x, t)− SR(i, min)

SR(i, max) − SR(i, min)
× (FPARmax − FPARmin) + FPARmin, (4)

SR(x, t) =
1 + NDVI(x, t)
1−NDVI(x, t)

, (5)

FPARNDVI =
NDVI(x, t)−NDVI(i,min)

NDVI(i, max) −NDVI(i, min)
× (FPARmax − FPARmin) + FPARmin, (6)

where SR(i, min), SR(i, max), NDVI(i, min), NDVI(i, max), FPARmin and FPARmax represent the
minimum and maximum values of the “simple ratio” (SR), NDVI and FPAR for the i-th
vegetation type, respectively. Among them, FPARmin and FPARmax are independent of
vegetation type, with 0.001 and 0.950, respectively.

• Light energy utilization efficiency (ε(x, t)) and its optimization

ε(x, t) refers to the efficiency of green vegetation absorbing light energy and convert-
ing it into organic carbon in a certain period of time [59]. This value is another important
parameter for estimating NPP, which is affected by temperature, moisture and εmax in the
real environment. The expression of ε(x, t) is as follows:

ε(x, t) = Tε1(x, t)× Tε2(x, t)×Wε(x, t)× εmax, (7)

where Tε1(x, t) and Tε2(x, t) indicate the stress effect of low temperature and high tem-
perature on the light energy utilization efficiency, respectively. Wε(x, t) is the influence
coefficient of water stress. εmax is the maximum utilization of light energy under ideal
conditions (gC ·MJ−1

)
. The expression of Tε1(x, t) and Tε2(x, t) are as follows:

Tε1(x, t) = 0.8 + 0.02× Topt(x)− 0.0005× [T opt(x)]
2, (8)

Tε2(x, t) = 1.1814 /
{

1 + exp
[
0.2 ×

(
Topt(x)− 10 − T(x, t)

)]}
× 1 /{

1 + exp [0.3× (−T opt(x)− 10 + T(x, t))]
} (9)

where Topt(x) is the optimum temperature for plant growth, which is defined as the average
temperature (◦C) of the month when the NDVI value reaches the highest in a certain area in
a year; when the average temperature T(x, t) in a month is less than or equal to−10 ◦C, the
value of Tε1(x, t) is taken as 0; when the average temperature T(x, t) in a month is 10 ◦C
higher or 13 ◦C lower than the optimum temperature, the value of Tε2(x, t) in a month is
equal to half of the Tε2(x, t) value when the monthly average temperature T(x, t) is the
optimum temperature Topt(x).

Wε reflects the effect of available water conditions on ε, which ranges from 0.5 (under
extreme drought conditions) to 1 (under very humid conditions). The calculation of Wε is
as follows:

Wε(x, t) = 0.5 + 0.5× EET PET, (10)

where EET is regional estimated evapotranspiration (mm) and PET is regional potential
evapotranspiration (mm).

Since it is difficult to obtain EET and PET in reality, the EET is calculated by the regional
estimated evapotranspiration model of Zhou and Zhang [31]. The PET is calculated using
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climate indicators used in the Holdridge life zone diagram [60]. The calculation of EET is
as follows:

EET =
P · Rn (P 2 + Rn

2 + P · Rn

)
(P + R n) (P

2 + Rn2
) , (11)

Rn = (PET · P)0.5 · [0.369 + 0.598 (PET / P)0.5
]
, (12)

where P is the precipitation of pixel x in month t and Rn is the net solar radiation of pixel x
in month t. The calculation of PET is as follows [60]:

PET = BT× 58.93, (13)

BT =
1

12 ∑12
1 Ti, (14)

where BT is the biological temperature and Ti is the monthly average temperature of more
than 0 ◦C. The temperature above 30 ◦C is calculated as 30 ◦C, and that below 0 ◦C is
calculated as 0 ◦C.

The εmax refers to the light energy conversion rate of vegetation in the ideal state. In
original CASA model, the εmax of global vegetation was set as 0.389 gC·MJ−1 [26,61,62];
however, studies have shown that the εmax of different vegetation types is different. There-
fore, it is important to reasonably determine the model parameter εmax to estimate NPP
accurately with CASA model. In this paper, referring to the study of Zhu et al. and
Yu et al. [32,63,64], we revalue the parameter εmax as Table 2.

Table 2. Maximum light energy utilization (εmax) of typical vegetation types in China (gC·MJ−1).

Vegetation Types εmax

ENF 0.476
EBF 0.985
DNF 0.485
DBF 0.692
MXF 0.768
DS 0.429
OS 0.429

Grassland 0.542
Cropland 0.542

Other 0.389

2.3.2. Estimation of Soil Respiration

In this paper, combined with meteorological data and SOCD data, we use the GSMSR
to estimate Rs, and then calculate Rh in China according to the Rs–Rh relationship model.

• Geostatistical model of soil respiration (GSMSR)

The total soil respiration will be estimated using the GSMSR. The GSMSR is a global
statistical model for estimating soil respiration, which uses the monthly average tempera-
ture, monthly precipitation and SOCD as input data [43]. First, we input temperature data
to determine Rs [43]:

Rs = R0 × ebt, (15)

where Rs is the instantaneous soil respiration rate
(
umol·m−2·s−1), R0 is the soil respi-

ration rate
(
umol·m−2·s−1) at the reference temperature of 0 ◦C, and t is the actual air

temperature.
The relationship between global soil respiration and temperature and precipitation

can be expressed as follows [43]:

Rs, monthly = R0 × eQT × P / (P + K), (16)
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where R0 = 1.250, Q = 0.055, K = 4.250.
Since the respiration characteristics of different ecosystems in the same site cannot be

fully obtained, there are still many systematic errors in the model. Considering the strong
correlation between residuals and SOCD, SOCD is taken as a parameter of the calculation
model. Therefore, the model can be expressed as follows [43]:

Rs, monthly = (R Ds=0 + M×Ds)× eQT×(P + P 0) / (P + K), (17)

where Ds is the SOCD of soil at a depth of 20 cm; RDs=0 is the monthly average soil
respiration when SOCD is 0, and M is the parameter. Since the assumption of “zero rainfall
and zero exhalation” in the original model is not in line with the actual ecological situation,
the parameter P0 is added to the formula to consider the water capacity retained in the soil.

The relationship between the spatial variation characteristics of the Q10 value and air
humidity in China can be expressed as follows:

Q10 = lnαeβT, (18)

In the formula, α and β are fitted parameters, and the corrected monthly soil respira-
tion can be expressed as follows:

Rs, monthly = (R Ds=0 + M×Ds)× elnαeβTT/10×(P + P 0 ) / (P + K), (19)

where RDs=0 = 0.588 (gC·m−2·month−1), M = 0.118, α = 1.830, β = 0.006, P0 = 2.972,
K = 5.657.

• Rs–Rh relationship mode

According to the Rs calculated by the above GSMSR, Rh is calculated according to the
empirical relationship between Rs and Rh. In this paper, referring to the research of Shi [65],
we use the Rs–Rh relationship model to calculate the Rh of China. The relationship model is
based on the real Rs and Rh data of different time periods and different locations in China,
and its calculation formula is as follows [65]:

Rh = −0.0009Rs
2 + 0.6011Rs + 4.8874, (20)

where Rs is monthly soil respiration (gC·m−2·month−1
)

2.3.3. Verification Method of NEP Estimation Results

The measured net ecosystem exchange (NEE) for verification was downloaded from
National Ecological Science Data Resource Center (www.cnern.org.cn, accessed on 28
September 2021), and the data were subjected to the quality control and data processing
of the ChinaFLUX technical system standardization [49]. The technical system is based
on the technical processes which was widely adopted and accepted in the field of global
flux observation and research. Among them, the standardization of data quality control
including raw data analysis [66], ultrasonic virtual temperature correction [67], coordinate
rotation [68], WPL correction [69], frequency correction loss [70], canopy stored item
correction [71], the steady-state test and closure turbulence integral characteristics [66],
energy evaluation [72], etc. Data processing includes interpolation of missing data by
means of mean diurnal variation method, nonlinear regression method and marginal
distribution sampling method, and separation of CO2 flux data by means of marginal
distribution sampling method, etc. After processing, the monthly measured NEE data of
the site is finally stored in Excel format for users.

The verification of this study was carried out based on the above measured NEE. First,
we converted the directly measured NEE into the measured NEP value by taking a negative
number. Then, according to the global positioning system (GPS) coordinates of each station,
we extracted the estimated NEP value of 1 × 1 km pixels of each station. Finally, coefficient
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of determination (R2) and the root mean square errors (RMSEs) were used as precision
indexes to calculate the linear relationship between the estimated value of NEP and the
measured value. In addition, due to the relatively complete ground observation data in
2010, this paper uses the data of that year for verification.

2.3.4. Anomaly NEP (ANEP)

The anomaly NEP (ANEP) was used to analyze historical changes of the NEP and was
determined using the following equation [47,73]:

ANEP = (NEP i −NEPave)/NEPave, (21)

where ANEP is the anomaly NEP, NEPi is the NEP value during a specific period, and
NEPave is the average NEP value during the studied period. A positive ANEP indicates
that the NEP value of the current year is higher than the average annual value, while a
negative ANEP indicates that the NEP value of the current year lower than that the average
annual value.

2.3.5. NEP Variation Trend Analysis

To understand the overall variation trends of NEP from 2001 to 2016, the following
equation was used to calculate the trend rate [47,73]:

Slope =
n×∑n

i=1 xiti −∑n
i=1 xi ∑n

i=1 ti

n×∑n
i=1 t2

i − (∑n
i=1 ti)

2 , (22)

where ti is the serial number from 2001 to 2016 (with a 3-year interval) (1–6), n is the
total length of the time series (n = 7), and xi is the NEP value in year i. In addition,
slope > 0 indicated that the NEP value showed an upward trend during the research period;
otherwise, it showed a downward trend.

3. Results
3.1. The Analysis of NPP Based on the CASA Model
3.1.1. NPP Estimation Results

Based on the solar radiation data, DEM data, NDVI data, temperature, humidity
and other meteorological data, the NPP values were calculated by using the original and
optimized CASA model respectively. The NPP of China’s terrestrial ecosystems in 2010
estimated by optimized CASA model is shown in Figure 2.

Figure 2 highlights the seasonal characteristics of NPP in China—generally, it is high in
summer and low in winter, but there are differences in various geographical regions. NPP
shows the distribution pattern of southern region > northern region > Qinghai–Tibet region
> northwestern region. The NPP values in the Qinghai–Tibet region, northwestern region
and northern region are low in spring and winter, while NPP in the southern region remains
at high values in late spring and early winter. Due to good hydrothermal conditions, the
vegetation in the southern region grows vigorously and has the highest NPP of 623.907
gC·m−2·a−1. However, the Qinghai–Tibet region and northwestern region are affected by
alpine and arid climates, which are not conducive to vegetation growth, resulting in scarce
vegetation and low NPP. The NPPs of the Qinghai–Tibet region and northwestern region
are 183.165 gC·m−2·a−1 and 102.540 gC·m−2·a−1, respectively.

Further analysis shows that the NPP values of various types of vegetation are dif-
ferent. The values of each typical vegetation type are arranged in the following or-
der: EBF > ENF > DBF > DNF. Among them, the NPP of EBF was the highest, with
a value of 811.981 gC·m−2·a−1 The NPP of grassland was the lowest, with a value of
183.444 gC·m−2·a−1 This result is consistent with the research of Zhu et al. [74] and con-
forms to the range of measured NPP, which shows that the results are reliable in general.
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3.1.2. The Reliability Analysis of Estimated NPP

Since there are no ground acquisition data of NPP, we cannot directly verify the
estimation results of the model. Nevertheless, MOD17A3H data can be used for indirect
verification. MOD17A3H is an NPP data product provided by NASA’s EOS/MODIS. This
product has a wide range of applications in NPP research at different spatial scales, but
it is available only as an annual product [75]. In this study, the monthly NPP estimation
results obtained by the improved CASA model were used to calculate the annual average
NPP and perform a comparative analysis (Figure 3, Table 3). Figure 3 shows that the
same trend occurred between the estimated NPP results of this paper and MOD17A3H in
northern region, northwestern region and Qinghai–Tibet region, but slightly different in
southern region. Specifically, the NPP of Yunnan, Guangxi Zhuang Autonomous Region
and Guangdong Province is slightly lower than that of MOD17A3H, while the NPP of
Fujian, Zhejiang and Jiangxi Province is slightly higher than that of MOD17A3H.
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Table 3. Comparison of NPP mean values of different vegetation types based on MOD17A3H and
optimized CASA model.

Vegetation Types MOD17A3H
(gC·m−2·a−1)

Optimized CASA Model
(gC·m−2·a−1) Percentage Deviation

ENF 705.367 701.637 0.529%
EBF 767.051 811.981 5.857%
DNF 477.025 340.510 28.618%
DBF 565.624 516.450 8.694%
MXF 700.982 525.496 25.034%
DS 332.307 366.007 10.141%
OS 53.462 110.077 105.898%

grassland 191.985 183.444 4.449%
wetland 168.897 119.056 29.510%
cropland 413.199 270.829 34.456%

Table 3 is the NPP of different vegetation types based on MOD17A3H and the op-
timized CASA model, which shown that the percentage deviation is smaller for ENF,
grassland, EBF and DBF, with deviations of 0.529 percent, 4.449 percent, 5.857 percent and
8.694 percent respectively, while the percentage deviation is larger for OS and cropland,
with deviations of 105.898 percent and 34.456 percent, respectively. Among them, there are
two reasons for this difference. On the one hand, the MOD17A3H product is based on the
Biome-BGC model, which lacks the module for estimating crop carbon flux, leading to a
relatively large error in the NPP of cropland. On the other hand, due to the complex growth
process of crops, they are greatly affected by manmade factors (irrigation, fertilization, etc.),
which results in great uncertainty in NPP.

3.2. The NEP Estimation Results Based on Coupling Model
3.2.1. NEP Estimation Results

The NPP value can be estimated by CASA model. However, NPP value cannot directly
characterize carbon sinks. It is necessary to subtract soil heterotrophic respiration to obtain
NEP value that can characterize carbon sinks [76]. Therefore, the study coupled the CASA
model, GSMSR and Rs–Rh relationship model to estimate the NEP value. Combined
with meteorological data and SOCD data, we used the GSMSR to estimate Rs, and then
calculate Rh in China according to the Rs–Rh relationship model. The spatial and temporal
distribution of Rh is shown in Figure 4.
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As shown in Figure 4, Rh in space presented the characteristics of high in the south
and low in the north, with high values in the east and low values in the west. The
specific pattern was southern region > northern region > Qinghai–Tibet region > north-
western region, and the Rh in each region was 409.887 gC·m−2·a−1, 303.972 gC·m−2·a−1,
252.029 gC·m−2·a−1 and 232.537 gC·m−2·a−1, respectively. Seasonally, the average Rh in
summer was 38.220 gC·m−2·month−1, which was higher than that in winter.

Combined with the NPP and Rh above, NEP was obtained by subtracting Rh from
NPP. Figure 5 presents the spatial distribution of NEP in terrestrial ecosystems in China in
2010. The results revealed that the spatial distribution of NEP was the same as that of NPP,
represented by southern region > northern region > Qinghai–Tibet region > northwestern
region. The NEP values in the southern region and northern region were both positive,
216.680 gC·m−2·a−1 and 19.195 gC·m−2·a−1, respectively, indicating that the southern and
northern regions were overall carbon sinks. However, the NEPs of the Qinghai–Tibet region
and northwestern regions were negative at −39.045 gC·m−2·a−1 and −95.872 gC·m−2·a−1,
respectively, indicating that these areas were basically carbon sources.
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3.2.2. The Accuracy of Estimated NEP

According to GPS longitude and latitude, we matched the ground observed NEP
values and estimated values which included the original CASA model with the εmax of
0.389 gC·MJ−1 (Figure 6a) and the optimized CASA model with εmax of the different
vegetation types (Figure 6b). We then evaluated the accuracy with the R2 and RMSEs.

In general, the estimation accuracy of the CASA model, which adopt the vegetation
classification of the εmax parameter, was higher than that of the original CASA model. The
R2 increased from 0.411 to 0.774, and the RMSE decreased from 21.425 gC·m−2·month−1 to
12.045 gC·m−2·month−1 In addition, the data of the sample point at the lower left corner
in Figure 6a exhibited a large deviation in the original CASA model, but it performed
normally in the optimized model. The impact of removing this point on the results was
further evaluated. After removing this point, the R2 and RMSE of original CASA model
were 0.415 and 21.363 gC·m−2·month−1, and that of the optimized model were 0.773 and
12.034 gC·m−2·month−1, respectively. Thus, the overall result of the accuracy verification
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remained basically unchanged. The results indicated that the classification of vegetation
could effectively improve the accuracy of the CASA model.
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Figure 6. The observed NEP VS the estimated NEP based on the CASA model. (a) εmax using
vegetation classification; (b) εmax of fixed value 0.389 (gC·MJ−1).

Moreover, as shown in Figure 6a, NEP was generally underestimated by the original
CASA model. The reason for this result was that according to the actual research results [32],
the εmax of each vegetation type was higher than 0.389 gC·MJ−1 in most cases (details in
Table 2). Therefore, to accurately estimate the NEP, it was very important to estimate NPP
according to the different vegetation types.

Further analysis showed that using the εmax in Table 2 could better improve the esti-
mation accuracy of the CASA model, but it showed different effects on different ecosystems.
The CASA model exhibited obvious improvements for the ENF, EBF and DBF ecosys-
tems, as the RMSEs for these ecosystems decreased from the values in the original CASA
model from 16.363 gC·m−2·month−1 to 8.282 gC·m−2·month−1, 36.558 gC·m−2·month−1

to 17.698 gC·m−2·month−1, and 25.810 gC·m−2·month−1to 15.835 gC·m−2·month−1, re-
spectively. However, the CASA model exhibited a relatively weak improvement effect on
grassland ecosystems, showing that the RMSE of grassland decreased from the original
value of 8.519 gC·m−2·month−1 to 8.185 gC·m−2·month−1, which indicated that grassland
ecosystems were less sensitive than others to εmax.

3.3. Analysis of Spatiotemporal Variation of NEP in China
3.3.1. The Monthly Variation of NEP in China

The NEP monthly variation in each region and each vegetation was analyzed (Figure 7).
The monthly variation of NEP in China showed a single peak curve (Figure 7a). NEP
increased sharply from May to July, reaching a peak of 17.703 gC·m−2·month−1 in July
and then decreased gradually, reaching the lowest values of −6.290 gC·m−2·month−1

in October. The average NEP in summer was 13.943 gC·m−2·month−1 in summer and
−3.526 gC·m−2·month−1 in winter, indicating that it was a carbon source in winter and a
carbon sink in summer (Figure 7a).

There were regional differences in the monthly variation of NEP. The NEP was positive
in each month in the southern region (i.e., it was a carbon sink throughout the year), while
that in the northern region was positive only from June to September (Figure 7b). NEP in
the northern region, northwestern region and Qinghai–Tibet region maintained the same
trend in early spring, late autumn and the whole winter, which were all carbon sources. In
addition, the NEP in the southern region and northern region reached a peak in July, while
that in the northwestern region and Qinghai–Tibet region reached a peak in June.
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Figure 7. Annual analysis results of NEP in China. (a) The monthly average NEP of the whole
country; (b) The monthly average NEP of different regions; (c) The monthly average NEP of each
vegetation type; (d) Annual average NEP of each vegetation type.

The monthly variation of NEP of various vegetation was also different. The NEP
values of ENF and EBF were positive in each month, which showed a carbon sink in
general. However, the DNF, DBF, MXF, shrub, grassland and cropland ecosystems featured
carbon sinks in summer and carbon sources in spring and winter (Figure 7c). Further
analysis showed that from the annual average, the NEP of forest was greater than that of
shrub, followed by grassland and cropland. As for forest, the NEP of evergreen forest was
greater than deciduous forest and mixed forest (Figure 7d). The NEP of ENF, EBF, DNF,
DBF, MXF and shrub were greater than 0, indicating that their annual values corresponded
to carbon sink on the whole; the NEP of grassland and cropland were −48.568 gC·m−2·a−1

and −48.147 gC·m−2·a−1, respectively, indicating that their annual values corresponded
to carbon sources on the whole (although the NPP values of grassland and cropland were
positive, the NEP was less than 0 after considering the effect of Rh).

3.3.2. The Interannual Variation of NEP in China

• The spatiotemporal variation characteristics of NEP from 2001 to 2016

Due to the vigorous growth of vegetation in summer, the accumulated productivity in
summer is relatively large, which can better represent the NEP level of the year. Therefore,
this paper analyzes the average summer NEP from 2001 to 2016 (with a three-year interval).
The spatial distribution was shown in Figures 8 and 9.

As shown in the figures, the NEP had obvious spatial heterogeneity. The summer NEP
in most parts of China was greater than 0, indicating that the vast majority of places were
carbon sinks. Among them, the high NEP values were in the forest areas of the Greater
Khingan Mountains and Taihang Mountains in Northeast China and in the south of China.
The vegetation in Northeast China is mostly coniferous forest, while the vegetation in South
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China is mostly evergreen broad-leaved forest. Therefore, the vegetation has more carbon
sinks and higher NEP.
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Figure 9. Inter-annual changes NEP in different geographic areas.

To analyze the temporal characteristics of NEP in different parts of China, the ANEP
in different regions from 2001 to 2016 was analyzed (Figure 9). As can be seen from the
figure, the ANEP in the four geographical regions from 2001 to 2016 can be divided into
three stages. Specifically, before 2010, the NEP of each region was lower than the average
level, indicating that Chinese carbon sink capacity was low at that stage. From 2010 to 2013,
due to the progress of returning farmland to forest and greening in China, the NEP of each
region was higher than the average level, showing an overall upward trend, indicating that
Chinese carbon sink capacity was increasing. Then, from 2013 to 2016, the downward trend
of Northwest China and Northern China was obvious.

In addition, it can be seen that the NEP of different geographical regions features
spatial differences with time series. Southern China is a humid and rainy region, and
vegetation grows well each summer. Therefore, the seasonal mean NEP values in this
region are high and relatively stable in time series. Compared with the southern region,
the NEP values in the northern region are relatively low, and fluctuations are relatively
large in time series due to the influence of monsoon. Northwest China is an arid area with
relatively sparse vegetation, so the absolute values of NEP are small. However, this region
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is vulnerable to climate change, so the interannual variation of NEP is large. In the Qinghai
Tibet Plateau, the main vegetation types are grassland and meadow, and the values of NEP
in this region are relatively low and the interannual variation is also small.

• The trends of NEP from 2001 to 2016

To further explore the temporal and spatial change patterns of terrestrial ecosystem in
China, according to Equation (22), the various trends of NEP in summer from 2001 to 2016
were calculated. Furthermore, the F test was used to determine the significance of changes.
The data follow the F distribution, and the degrees of freedom are (1, n−2), where n rep-
resents 6 years. According to the F distribution table, F0.05(1,4) = 7.709, F0.01(1,4) = 21.198
According to these thresholds, the trend of the NPP and NEP can be divided into the
following three levels: nonsignificant (F < 7.709), significant (F ≥ 7.709) and extremely
significant (F ≥ 21.198). Moreover, as the slope values can be either positive (slope > 0) or
negative (slope < 0), the trend of the NPP and NEP can be grouped into 6 levels: significant
increase, significant decrease, slight increase, slight decrease, no significant increase and no
significant decrease. The spatial variation trend was shown in Figure 10.
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Figure 10. Trend rate of NEP in China during the summer from 2001 to 2016.

Figure 10 showed that the spatial variation trend of NPP and NEP during the summer
of 2001 to 2016 was consistent, and except for the North China Plain, Northeast Plain,
southwest Tibet, Northeast Inner Mongolia and some sporadic regions, the NPP and NEP
in most regions of China showed an upward trend (albeit not reaching a significant level).
Combining the figure of trend rate (Figure 10) and land cover types (Figure 1), it can be
seen that the regions with a downward trend correspond to the main cropland of China,
the grassland of Ngari in the Qinghai–Tibet Plateau, and the grassland of Xilin Gol League
in Inner Mongolia. This suggests that the summer sink capacity of most cropland and some
grassland in China is weakening.

There may be two reasons for the weakening of cropland carbon sink capacity. One is
the change of soil respiration caused by agricultural fertilization and irrigation. Second,
the non-agricultural process of cropland leads to the destruction of vegetation and release
of carbon stored in soil (e.g., when the cropland is transformed into construction land,
the plot becomes a carbon source). In addition, the decrease of NEP in the Ngari area of
Qinghai–Tibet Plateau is caused by the overgrazing of grassland in this area [77]. As for
the Xilin Gol League in Inner Mongolia, the main reason for the decrease of NEP is that the
land desertification weakens the carbon sink capacity of vegetation [78].
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4. Discussion
4.1. The NPP Estimation Results of Optimized CASA Model

The optimization of model parameters is very important to improve the NPP estima-
tion accuracy of the CASA model. In the original CASA model, the parameter εmax of global
vegetation was defined as 0.389 gC·MJ−1 However, further research shows that it is difficult
to obtain ideal results by using this value in different vegetation types [26,62,79,80]. This is
because different types of vegetation have different εmax due to different photosynthetic
capacity, leaf shape and canopy structure. Therefore, it is necessary to determine the value
of εmax according to the vegetation type for model optimization. Based on the study of
Zhu et al. [32,63,64], this study set εmax for CASA model according to vegetation cover data
to estimate the NPP of terrestrial ecosystems in China. Meanwhile, the ratio of EET and
PET was used to calculate Wε to reduce the model parameters and simplify the estimation
process [31]. Compared with the original CASA model, the results have a higher accuracy,
indicating that the optimized CASA model can be well applied to large-scale carbon source
or sink estimation. In addition, referring to the measured NPP values [74], the estimated
NPP of optimized CASA model basically falls within the range of the measured value,
which indicates that the estimated result of the model also has a good reliability.

Based on the optimized CASA model, the average NPP of Chinese terrestrial ecosys-
tem in 2010 was estimated to be 296.774 gC·m−2·a−1, which was consistent with the
273.500 gC·m−2·a−1 estimated by Li et al. [75]. In terms of vegetation types, Zhu et al. [74]
and Sun et al. [81] showed that the NPP of EBF was the largest among all vegetation
types, and their estimated NPP values for EBF were 1017 gC·m−2·a−1 and 972 gC·m−2·a−1,
respectively. The NPP of EBF estimated in this study was 811.981 gC·m−2·a−1, which was
also the highest of all vegetation types in this paper. In addition, the average NPP value
of grassland calculated in this paper was 183.444 gC·m−2·a−1, which is consistent with
the value of 194.260 gC·m−2·a−1 calculated by Liu et al. [82]. However, the NPP of ENF
estimated in this study was slightly higher, which is different from the results of previous
research. We think that the land use types of each study are different, which may lead to
differences in NPP.

4.2. The NEP Estimation Results of Coupling Model

The current research mainly focuses on the estimation of NPP [81–84]. In fact, due to
the existence of soil respiration, vegetation carbon sink needs to be characterized by m. The
light energy utilization model including CASA model can only estimate NPP. Therefore,
in order to obtain NEP, it is necessary to estimate soil heterotrophic respiration Rh. In
this paper, the Rh was estimated by GSMSR and Rs–Rh relationship model. The analysis
showed that when the NPP value was accurate, using Rh obtained by the GSMSR and
Rs–Rh model could obtain NEP accurately (R2 is up to 0.774). This result showed that it was
feasible to couple the optimized CASA model with GSMSR and Rs–Rh to realize large-scale
vegetation carbon sink estimation.

The above coupling model was used to analyze the temporal and spatial changes of
NEP in China. The results show that due to abundant precipitation and high temperature
in the south, the NEP of terrestrial ecosystems in China is higher in the South and lower in
the northwest and Qinghai Tibet. In addition, due to the difference in precipitation and
temperature between winter and summer, the national NEP reached peaks in July and
lowest value in January. The above results show that geographical and climatic conditions
have an important impact on the spatial and temporal distribution of natural vegetation pro-
ductivity, and the variation in climatic conditions (e.g., temperature and precipitation) may
be the main reason for the change in vegetation productivity in most areas of China [85,86].
Further research will explore the correlation and influence mechanism between the climate
conditions and NEP.
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4.3. The Prospects of the Study

The results of this study show that the optimized CASA model can provide an effective
way for NEP estimation. Nonetheless, the accurate estimation of NEP is also affected by the
accuracy of Rh. The estimation of Rh in this paper is based on geospatial statistical model
and Rs–Rh empirical model, which has certain uncertainties. Therefore, in order to obtain a
more accurate NEP, it is necessary to optimize the measurement method of Rh and further
analyze the interaction between Rh and NEP.

In addition, the summer NPP and NEP of terrestrial ecosystems in China from 2001
to 2016 are also studied. The results can enrich the study of carbon source/sink in China
and provide a reference for China to create a policy on carbon balance. Nonetheless, due to
the problems of data consistency and lack of spatial and temporal resolution, the spatial
and temporal variation characteristics of Chinese NEP are further affected. Therefore, the
production of remote sensing data products with higher spatial and temporal resolution is
the key to achieve a more accurate spatial and temporal analysis of NEP.

5. Conclusions

NEP plays an important role in understanding ecosystem function and the global
carbon cycle. In this paper, the NPP was estimated by using the optimized CASA model,
and then the NEP was calculated by using GSMSR and the Rs–Rh relationship model.
On this basis, the temporal and spatial variation patterns of NPP and NEP in China were
analyzed, and the following conclusions were drawn:

(1) It is feasible to couple the CASA model with GSMSR and Rs–Rh relationship model to
estimate vegetation carbon sink, and model parameters optimization is an effective
method to improve the estimation accuracy. Compared with the original CASA model,
the R2 of the optimized CASA model increased from 0.411 to 0.774, and the RMSE
decreased from 21.425 gC·m−2·month−1 to 12.045 gC·m−2·month−1, indicating that
it could improve the estimation accuracy by using vegetation classification to optimize
the parameter εmax of the CASA model;

(2) Chinese NEP values are different in each region, presenting the pattern of southern
region > northern region > Qinghai–Tibet region > northwestern region. From the
annual average value of NEP, the southern and northern regions are carbon sinks as a
whole, while the northwest and Qinghai Tibet regions are carbon sources. Neverthe-
less, the monthly variation patterns of NEP in different regions are generally similar,
showing a single peak curve with summer as the peak;

(3) The NEP values of various vegetation types are also different. The annual average
NEP values of vegetation types such as ENF, EBF, DBF and MXF are higher, and are
presented as carbon sink; however, the NPP values of grassland and cropland are
relatively lower and the Rh values are relatively higher, so the mean NEP values are
below zero, which shows that they are carbon sources. In addition, similar to different
regions, the seasonal variation patterns of different vegetation also show a single peak
curve with a peak in summer;

(4) The NEP in most regions of China show a non-significant level upward trend in the
summer of 2001–2016, but main cropland and some grassland show a non-significant
level downward trend. In addition, the NEP of different geographical regions have
spatial differences with time series. The NEP in the south is much higher than that in
the Qinghai–Tibet Plateau, but the fluctuations in the time series of both are relatively
small; and that in Northern and Northwestern China are low, but their interannual
changes are relatively large.
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