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Abstract: Agriculture is an important regional economic industry in Asian regions. Ensuring food
security and stabilizing the food supply are a priority. In response to the frequent occurrence of
natural disasters caused by global warming in recent years, the Agriculture and Food Agency (AFA)
in Taiwan has conducted agricultural and food surveys to address those issues. To improve the
accuracy of agricultural and food surveys, AFA uses remote sensing technology to conduct surveys
on the planting area of agricultural crops. Unlike optical images that are easily disturbed by rainfall
and cloud cover, synthetic aperture radar (SAR) images will not be affected by climatic factors,
which makes them more suitable for the forecast of crops production. This research proposes a
novel spatial-temporal neural network called a convolutional long short-term memory rice field
classifier (ConvLSTM-RFC) for rice field classification from Sentinel-1A SAR images of Yunlin and
Chiayi counties in Taiwan. The proposed model ConvLSTM-RFC is implemented with multiple
convolutional long short-term memory attentions blocks (ConvLSTM Att Block) and a bi-tempered
logistic loss function (BiTLL). Moreover, a convolutional block attention module (CBAM) was added
to the residual structure of the ConvLSTM Att Block to focus on rice detection in different periods on
SAR images. The experimental results of the proposed model ConvLSTM-RFC have achieved the
highest accuracy of 98.08% and the rice false positive is as low as 15.08%. The results indicate that the
proposed ConvLSTM-RFC produces the highest area under curve (AUC) value of 88% compared
with other related models.

Keywords: convolutional long short-term memory network; rice field classification; Sentinel-1A SAR
images; spatial-temporal neural network

1. Introduction

In Asian regions, rice is a staple food for the general public [1–3]. It provides em-
ployment and also livelihoods for the people. Especially in Taiwan, rice agriculture is also
considered an industry for a number of farmers. Most of the land area of Taiwan is cov-
ered by mountains, only one-third of the land area is used for agriculture, and producing
1.4 million tonnes of grains annually [4]. The number of natural disasters, flash floods,
cyclones, changes in temperature, and rainfall has been reported to continue to increase
due to the impacts of global warming. These impacts are the factors that have been led to
the reduction of rice yield [5–8].
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Taiwan is located in a subtropical region. Typhoons flourish during the summer
season. In winter, cold and low temperatures damage the yield. Strong winds and heavy
rainfall brought by Typhoons are one of the main natural disasters affecting rice yield and
quality. In recent years, the frequency and intensity of natural disasters have become more
frequent due to the impact of global warming. In a pivotal position, ensuring the stability of
the domestic rice supply and sustaining the regional economy is one of the top priorities. To
establish the sustainable development of Taiwan’s agriculture and for accurate assessment
of rice production, The Council of Agriculture of Executive Yuan began to conduct precision
surveys in 1974. Earlier, the surveys were conducted through field investigators, farmer’s
interviews, and reviewers [9] which is a time-consuming and laborious process. The use of
remote sensing technology to conduct agricultural and grain surveys has been in practice
for many years. In the past, it was manually judged whether or not rice was planted in each
area, and then the cultivated land data was superimposed to calculate the rice planting area
and yield. It combines remotely measured multi-time images and GIS data to identify rice
mounds. The applied data includes the boundaries of cultivated land mounds, the spectral
information of the whole growth period of rice, and the remotely measured multi-time
images. The rice fields on this island are small and fragmented. It has become a challenge
to estimate the mapping of the rice fields in Taiwan accurately.

At present, most of Taiwan’s telemetry aerial photos are acquired by optical sensors
that have high imaging resolution and sensitivity, becoming a low-cost tool and an expedi-
tious solution for rice field mapping. Many research studies were conducted for rice field
classification using the optical, microwave, and both images data. The phenological analy-
sis based on optical or radar time series [10] became an essential approach to classifying rice
fields from other crops. In recent years, a number of research studies are carried out to map
the crop classification using SPOT-VEGETATION [11], Proba-V [12], Landsat [13], NOAA
AVHRR [14], MODIS multi-temporal, and coarse resolution data [15–22]. Pan et al. [23]
developed a pixel and phenology-based method to identify planting areas of double-season
paddy rice from high-resolution images. These high-resolution data expose limitations
because rice fields are small and fragmented, which leads to the misidentification of rice
fields. These issues can be addressed by using spatial features of the rice. However, the
biggest challenge with optical sensors is climate conditions, such as clouds and fog. These
factors will produce inaccurate images of rice crops. In addition, using unmanned aerial
vehicles with optical sensors to acquire the images, the range of area that can be taken
is limited.

Synthetic aperture radar (SAR) is an active microwave imaging radar. It has the
characteristics of being immune to weather such as sunlight, clouds, and water. SAR data
allows the construction of continuous time-series data. It has been proved that SAR data is
an effective tool for mapping rice fields [24]. In the past, different studies used SAR time
series data in X-band, C-band, and L-band for rice field classification [25,26]. At differ-
ent locations around the world, research studies have been using Sentinel-1A time-series
images for mapping and monitoring rice crops. Earlier, maximum likelihood [27] and
threshold-based segmentation [28,29] techniques were used for rice crop mapping. Image
recognition technology continues to evolve and innovate with the times. Furthermore, ma-
chine learning (ML) methods such as decision tree (DT) [30,31], random forest (RF) [32,33],
support vector machine (SVM) [34], artificial bee colony (ABC) [35], quadratic discriminant
analysis [36], and artificial neural network (ANN) [37] have been proposed for crop char-
acterization. The accuracy of these methods strongly depends on the number of training
samples, which are difficult to obtain and update on a large scale [38,39]. The traditional
ML techniques have the advantages of good stability, fewer control parameters, simple
calculations, and easy implementation. However, these techniques have poor precision and
convergence prematurely.

Recently, deep learning (DL) techniques have proved to be state-of-the-art in the field
of computer vision. DL techniques outperform the traditional ML algorithms due to their
ability to learn and represent data at various abstraction levels. In remote sensing, DL
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algorithms gained popularity by producing better rice field classification results. Several
DL algorithms have been proposed to classify the rice fields from SAR images based on
phenological and spatial-temporal profile analysis. Such algorithms are unidimensional
convolutional neural networks (1D CNN) [40], gated recurrent unit (GRU) [41], 3D con-
volutional neural networks (3D CNN) [42], recurrent neural network (RNN) [43], long
short-term memory (LSTM), and bi-directional LSTM (Bi-LSTM) [44]. Wu et al. [41] im-
plemented a gated recurrent unit (GRU) to detect and classify rice fields in Taiwan from
SAR images. The GRU is a modified version of LSTM in which forget gate and input gate
were combined as a single update gate and has an additional reset gate. This network can
extract temporal features from time-series SAR images to perform pixel-wise classification.
This model produces satisfactory results in terms of overall accuracy and performance.
Another recent work [42] proposed a 3D convolutional neural network (3D CNN) for rice
crop yield estimation from Sentinel-2 images in Nepal. This model is constructed with a
series of convolutional and pooling layers to classify each pixel of an image by extracting
spatial features from SAR images. Additionally, the authors studied the impact of the
multi-temporal, climate, and soil data on the rice crop classification accuracy. The model
validated the effectiveness of the model with respect to other regression and deep learning
crop yield prediction techniques. Wang et al. [45] proposed a combination of convolutional
neural network and long short-term memory (ConvLSTM) to estimate winter wheat yield
in the major producing regions of China. The LSTM is a main module of the ConvLSTM
network, which can extract short-term or long-term dependencies from time-series SAR
images. The ConvLSTM model first extracts spatial features and then temporal features
afterward for crop classification.

Convolutional neural networks (CNN) are one of the most widely used models in deep
learning, allowing different convolution kernels by sliding the input image and performing
certain calculations to find out the features in the image. The dimension of convolutional
kernels and the number of convolutional layers are the challenging issues to extract features
using CNN. RNN is popularly used for sequential data modeling and feature extraction.
However, RNNs are not suitable to map rice fields from SAR images due to the parameters
being determined by the length of the time series.

This study combines the characteristics of the RNN and CNN models to perform
rice field classification from SAR time-series images. The major contributions of this
study include:

1. This study proposes an original rice field classifier based on a spatial-temporal
neural network called a convolutional long short-term memory rice field classifier
(ConvLSTM-RFC) to classify rice fields in study areas from Sentinel-1A SAR images.

2. The proposed model ConvLSTM-RFC is designed with multiple convolutional long
short-term memory attentions blocks (ConvLSTM Att Block) to predict spatial-temporal
features from the SAR images.

3. The binary cross entropy loss function has been replaced by the bi-tempered logistic
loss function (BiTLL) to make the proposed model more robust to noise in data during
the training process [46].

4. A convolutional block attention module (CBAM) was embedded in the residual
structure of the ConvLSTM Att Block to extract refined features from the intermediate
feature maps.

The rest of this paper is organized as follows: Section 2 describes the study area and
ground truth, and the architectural details of the proposed method. Section 3 presents
the experimental results. Section 4 discusses the merit of this study. Finally, the article is
concluded with its primary findings in Section 5.

2. Materials and Methods
2.1. Study Area

Yunlin and Chiayi regions are used as a study area in this research, as shown in
Figure 1. The study areas span about 1290.8 km2 and 1903 km2 respectively. The latitude
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and longitude information of Yunlin and Chiayi counties is 23◦42′18′′N 12028′34′′E and
23◦29′46.34′′N 120◦38′30.75′′E respectively. These two counties are ranked as the top two
rice-growing regions in Taiwan. These regions’ climate belongs to the sub-tropical monsoon
with an annual average temperature of 22.6 °C and rainfall of 1028.9 mm. Although rice is
a dominant crop, other crash crops such as maize, peanut, wheat, sweet potato, corn, and
soybeans are cultivated in these regions. Most of the agricultural land is scattered with
non-rice crops among rice fields. According to rice phenology, rice cultivation in a year
can be divided into two seasons. The first season is from February to June and the second
season is from July to December. Rice cultivation greatly depends on weather and water
availability. Therefore the rice cultivation period takes about 130 days for the first season
and is about 110 days for the second season. In the second season, farmers might not be
cultivated in some areas due to the climate and irrigation factors.
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Figure 1. Yunlin and Chiayi counties’ data was received from Sentinel-1A in February 2017, where the
height and width represent the number of pixels. White indicates the distribution of rice fields.

2.2. Ground Truth Data

Agriculture and Food Agency (AFA) and Taiwan Agriculture Research Institute (TARI)
carry out the duties of developing the food industry and addressing the challenges in
the agricultural sector in the Taiwan region. The ground truth data provided by these
organizations are acquired with multiple periods and different spatial resolutions through
aerial photos, Landsat-8, and Rapideye satellites. These organizations have been collecting
agricultural land maps, aerial photos, and satellite images every year on a regular basis.
First, agricultural lands are identified by using field investigators and ground surveys.
Then, aerial photos and satellite images are applied in distinguishing agricultural land and
mapping the ground truth data of crops. In 2017, the study area’s rice distribution areas
were 31,054.26 ha and 18,380.44 ha, respectively. The experimental results of the proposed
ConvLSTM-RFC were compared with the ground truth data provided by AFA and TARI to
assess the accuracy of the rice field classification. The ground truth data of the rice field
distribution of the two study areas in 2017 are shown in Figure 2. The ground truth data
used in this experiment consists of rice fields and non-rice fields. In Figure 2a,b white
indicates the non-rice and black indicates the rice fields.
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Figure 2. (a) The ground truth data of study areas from the Agriculture and Food Agency (AFA).
(b) The ground truth data of study areas from the Taiwan Agriculture Research Institute (TARI).
White indicates the non-rice and black indicates the rice fields, where the height and width represent
the number of pixels.

2.3. Data Preprocessing and Smoothing Processes

The dataset used in this paper is the acquired imagery of the Sentinel-1A satellite.
Sentinel-1A was launched in April 2014 to support operational applications in the areas of
marine monitoring, land monitoring, and emergency management services. This satellite
acquires spatial resolution images once every 12 days. Sentinel-1A operates at C-band,
enabling them to acquire high-resolution images regardless of the light and weather. It
comprises vertical-vertical (VV) and horizontal-vertical (VH) polarizations with a spatial
resolution of 20 m × 22 m in the range and azimuth directions. The Sentinel-1A data
used in this study was acquired with a swath width of 250 km in the interferometric wide
swath (IW) acquisition mode. Level-1 ground range detected (GRD) SAR data with a pixel
spacing of 10 m × 10 m format is utilized. The acquired SAR data are open access and
were available free from the website. This research mainly focused on classifying rice fields
in the first season; therefore, we downloaded the data from February to July in 2017. The
complete details of the SAR data are listed in Table 1.

The SAR data preprocessing steps, including radiation correction, geometric correc-
tion, and speckle noise removal, are performed using sentinel application platform software
(SNAP). However, ConvLSTM neural network layers were stacked to increase the com-
putational complexity of the model to extract more features. The residual architecture is
used in the neural network to avoid features loss by increasing the number of layers. The
ConvLSTM attention block (ConvLSTM Att Block) is created to extract the features of SAR
time-series images. The bi-tempered logic loss function is used in the proposed model to
prevent the deep neural network of the model from false noise data. This loss function also
controls the training of the model. The methodology of this study is shown in Figure 3.
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Table 1. The complete sensing dates of the Sentinel-1A SAR data used in this study.

Time Series Year Month Day

1 2017 February 08

2 2017 February 20

3 2017 March 04

4 2017 March 16

5 2017 March 28

6 2017 April 09

7 2017 April 21

8 2017 May 03

9 2017 May 15

10 2017 May 27

11 2017 June 08

12 2017 July 02

13 2017 July 14

14 2017 July 26

Data 

pre-processing
Split Dataset

Model

Training

Prediction
Model

Evaluation

Model Fine Tuning

Figure 3. Flowchart of this study.

2.4. Architecture and Strategy

In this study, 14 time-series images of the first season rice are combined as the time
axis, extracted the VV and VH polarization images as the two characteristic channels of
the model input, and the size of 7800 × 2800 SAR image is divided into a size of 78 × 28
small images. This research adopts the time series spatial-temporal neural network model
ConvLSTM to perform rice field classification from SAR time-series images. This section
will introduce the network architecture and optimization strategies used in this study. The
overall network architecture of the proposed model convolutional LSTM network for rice
field classification from SAR images (ConvLSTM-RFC) is shown in Figure 4.

The ConvLSTM-RFC is a combination of Conv2D, Conv3D, ConvLSTM, and ConvL-
STM Att Block. A series of SAR images are firstly input to the model. Then, they are passed
through the ConvLSTM-RFC model to generate rice field maps finally. Next, the ConvL-
STM Att Block design, the strategy used to modify the optimizer, and the loss function will
be introduced.
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Rice field classification result

SAR time series images
ConvLSTM Att Block

ConvLSTM, 16

ConvLSTM Att Block, 32
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Figure 4. The architectural framework of the proposed ConvLSTM-RFC.

2.4.1. Convlstm Attention Block

In this study, referring to the architecture of ResNet [47], the network is deepened and
the convLSTM attention block (ConvLSTM Att Block) is designed as shown in Figure 4. In
2018, Woo et al. [48] proposed a new attention-based CNN, named as convolutional block
attention module (CBAM), to protect the attention mechanism and feature-map exploitation
of the network. CBAM is simple in design and uses the spatial location of the object in object
detection. As shown in Figure 4, CBAM first applies channel attention and then spatial
attention sequentially to extract the refined feature maps. This serial learning process
generates the 3D attention map and reduces the parameters as well as computational cost.
The simple design of CBAM can be integrated easily with any CNN architecture.

ConvLSTM Att Block consists of two ConvLSTM neural network layers, two batch
normalization, and one CBAM block, as shown in Figure 4. To improve the performance of
the CNN model, the depth, width, and cardinality of the model occupy an important part.
While deepening the network, the residual structure is used to avoid the divergence of the
gradient in the forward pass. In Figure 4, x1 is the input feature data, x(l+1) is the enhanced
feature generated after this structure, which can be described by the following formula:

x(l+1) = CBAM(F(xl , {Wl})) + H(xl) (1)

where CBAM(F(xl , {Wl})) is the convolutional attention module function and H(xl) is a
potential mapping function.

F(xl , {Wl}) = BN(ol ◦ tanh(cl)) (2)

The function F(xl , {Wl}) represents the mapping function corresponding to each Con-
vLSTM Att Block. Where ol and Cl are the output gates and cell units passing through the
ConvLSTM network layer, and BN(ol ◦ tanh(cl)) represents the optimized neural network
method for batch normalization operations. In this study, to make the feature fusion, H(xl)
is designed as follows:

H(xl) = Ws ∗ xl (3)



Remote Sens. 2022, 14, 1929 8 of 15

where ∗ represents convolution which is used for dimension matching operation. For
any depth L and each ConvLSTM Att Block l, the combined ConvLSTM Att Block neural
network can be taken as the following:

xL = H(xl) +
L−1

∑
i=l

CBAM(F(xi, {Wi})) + H(xi) (4)

2.4.2. Incorrect Labeled Data

The ground truth data provided by Agriculture and Food Agency (AFA) and Taiwan
Agriculture Research Institute (TARI) is shown in Figure 2. After comparing the real data
of the rice fields of AFA and TARI, it was found that the real data presented by the two
parties are mismatched. Hence, this study selected the ground truth data from AFA with
more rice fields in the same area for training and testing labels.

In addition, in a binary classification problem, particularly the traditional logic loss
function is sensitive to abnormal values. These incorrectly labeled data are often far away
from the decision boundary, which will cause the model decision boundary to be pulled
and may sacrifice other correct values. To avoid the adverse effects of noise data on model
training, this research replaced the traditional logistic loss function with the bi-tempered
logistic loss function. Bi-tempered logistic loss function uses its temperature and tail weight
parameters to constrain the outliers.

2.4.3. Bi-Tempered Logistic Loss

Amid et al. [46] introduced the bi-tempered logistic loss function to address the
issue of noise presented in the dataset. This noise can affect the quality of a segmentation
output disproportionately. The authors propose two modifications to overcome this issue.
First, the softmax output is replaced with a heavy tailed softmax function is given by the
following equation:

ŷi = expt2(âi − λt2(â)), whereλt2(â) ∈ R (5)

such that ∑C
j expt2(âi − λt2(â)) = 1. Second, the entropy function is replaced with a

tempered version, given by the following equation:

loss =
C

∑
i
(yi(logt1 yi − logt1 ŷi)−

1
2− t1

(y2−t1
i − ŷi

2−t1)) (6)

The two parameters are temperature t1 and tail-heaviness t2 determine how heavy-
tailed the functions become. When both t1 and t2 are 1, the bi-stable logic loss function is
an ordinary logic loss function. The temperature parameter t1 is a parameter between 0
and 1, and the smaller its value, the more restrictive it is to the bounds of the logistic loss
function. The tail weight t2 is defined as a parameter greater than or equal to 1. The larger
the value, the thicker the tail will be, and the slower the decay will be compared to the
exponential function.

2.5. Training and Testing Process

This experiment used Sentinel-1A SAR time-series images for the training and testing
of all the models. Initially, the data was preprocessed and smoothened, then a total number
of 10,000 images with a height × width of 78 × 58 pixels were generated. The total data is
split into training and testing. Therefore, in the experiment, 8000 images are allocated for
training (80%) and 2000 images for testing (20%). The data has been randomly scrambled to
avoid the uneven distributions happening during the training and testing, and the random
number seed is set to 42.

The training and testing process of the study is shown in Figure 5. The training and
testing datasets were randomly divided. When the training process was completed, the
models were tested using the testing data. The goal of the proposed model is to generate a
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rice distribution map in the selected area by classifying whether each pixel belongs to rice
or non-rice.

Model Training

Prediction

Training

Batch 1 Batch N

Testing

Testing Data

Trained Model

Training Data

Figure 5. A flowchart of the training and testing process.

2.6. Model Evaluation

The most common performance evaluation metrics in computer vision and image
processing were used to evaluate the performance of the proposed model. The metrics are
confusion matrix, precision, recall, F1-score, accuracy, and receiver operating characteristic
curve (ROC). The values of precision, recall, F1-score, and accuracy are formally given by
the following equations:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score =
2× Precision× Recall

Precision + Recall
(9)

Accuracy =
TN + TP

TN + TP + FP + FN
(10)

where TP , TN, FP, and FN are the number of true positive, true negative, false positive,
and false-negative observations, respectively, in a classification with a probability threshold
of 0.5.

2.7. Execution Environment

All the experiments were performed using a PC with Intel(R) Xeon(R), CPU E5-2630
v4@ 2.20 GHz, and 64 GB of RAM. Two NVIDIA RTX2080Ti GPU with 11 GB of memory.
Python 3.7 with CUDA 10.1 and cuDNN 7.6. The operating system is 64-bit Ubuntu 20.04.

3. Results

In this study, experiments were carried out to assess the rice field classification ef-
ficiency of the ConvLSTM-RFC model. The efficiency of the ConvLSTM-RFC model is
compared with three different neural network models. These three models are GRU rep-
resenting the temporal model, 3D CNN representing the spatial model, and ConvLSTM
representing the spatial-temporal model, respectively. All the models used in this study
were trained and tested using the time series data obtained from the Sentinel-1A satellite.
After data preprocessing and smoothing processes, a total number of 10,000 images with a
height × width of 78 × 58 pixels are generated. The train/test had 8000 images for training
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(80%), and 2000 images for testing (20%). Table 2 listed the respective training parameter
settings of all the deep learning models.

Table 2. Hyperparameter settings of all the models used in the experiment.

Hyperparameter GRU Configuration 3D CNN Configuration ConLSTM Configuration ConvLSTM-RFC
Configuration

Optimizer Adam Adam Adam Ranger
Batch size 4096 16 16 16

Epoch 35 60 60 60
Learning rate 0.001 0.001 0.001 0.002
Loss function Binary cross entropy Binary cross entropy Binary cross entropy BiTLL 1

1 BiTLL: Bi-tempered logistic loss (t1 = 0.8, t2 = 1.4, label smooth = 0.1, number of iteration = 5).

The experimental results are compared with the model evaluation indicators and the
hyperparameters in the model. Yunlin and Chiayi regions are used as the study area. The
rice field classification results of all models were compared with the ground truth data
from Agriculture and Food Agency (AFA), as shown in Figure 6.

Sentinel-1A Data (a) GRU (b) 3D CNN (c) ConvLSTM (d) ConvLSTM-RFC (e) Ground Truth

Figure 6. Sentinel-1A image and the rice field classification results of all the models. (a) Predicted
result of GRU. (b) Predicted result of 3D CNN. (c) Predicted result of ConvLSTM. (d) Predicted result
of ConvLSTM-RFC model. (e) Ground truth data from Agriculture and Food Agency (AFA).

3.1. Influence of Spatial-Temporal Model

The identification results of all models are listed in Table 3. From Table 3, it is observed
that the proportion of rice that is actually not rice but was incorrectly identified as rice
(false positive) in GRU is 74.24%, 3D CNN is 51.80%, and ConvLSTM is 51.16%.

From Table 4, it can be seen that the overall model constructed by the ConvLSTM
spatial-temporal neural network has the highest F1 score of 96.48% and an accuracy of
95.70%. From the current results, it can be seen that although the overall accuracy is
satisfactory, the ConvLSTM is more effective in recognizing non-rice. In the next section,
the model will be optimized and adjusted for this problem.



Remote Sens. 2022, 14, 1929 11 of 15

Table 3. Confusion matrices results of all models.

GRU

Ground truth
Rice field Nonrice field

Prediction Rice field 25.75% 74.24%
Nonrice field 1.72% 98.27%

3D CNN

Ground truth
Rice field Nonrice field

Prediction Rice field 48.29% 51.80%
Nonrice field 2.81% 97.18%

ConvLSTM

Ground truth
Rice field Nonrice field

Prediction Rice field 48.83% 51.16%
Nonrice field 2.83% 97.16%

ConvLSTM+Bi-tempered logistic loss (ConvLSTM-BiTLL)

Ground truth
Rice field Nonrice field

Prediction Rice field 74.19% 25.80%
Nonrice field 10.41% 89.58%

ConvLSTM+Bi-tempered logistic loss+CBAM (ConvLSTM-RFC)

Ground truth
Rice field Nonrice field

Prediction Rice field 84.91% 15.08%
Nonrice field 8.79% 91.20%

Table 4. Performance metrics results for all the models.

Neural Network Accuracy Precision Recall F1-Score

GRU [41] 94.03% 93.26% 97.21% 95.19%
3D CNN [42] 95.32% 95.39% 97.51% 96.44%
ConvLSTM [45] 95.70% 95.80% 97.16% 96.48%
ConvLSTM-BiTLL 97.10% 98.03% 92.51% 95.19%
ConvLSTM-RFC 98.08% 98.64% 91.20% 94.77%

3.2. Influence of Different Optimized Strategy

In this paper, three methods were used to improve the ConvLSTM-RFC efficiency.
The first method is modifying the loss function from binary cross-entropy to bi-tempered
logistic loss, which is less sensitive to noisy labels. The second method is to deepen the
network architecture and ConvLSTM is used as the residual architecture. The last method
combines the above two methods and uses the attention mechanism for the features in the
residual architecture to output more important features in space and timing. Table 2 lists
the hyperparameter setting of this optimization method.

As shown in the Tables 3 and 4, after modifying the loss function to bi-tempered
logistic loss, each evaluation index has risen substantially. In the case of non-rice but
incorrectly identified as rice (false positive), among the proportions classified as rice, nearly
half of the non-rice. In the original model, architecture without modification of the loss
function was incorrectly marked as rice. In the second method, ConvLSTM was deepened
as a residual error. The structure can still make the evaluation indicators of the model have
a slight increase. Finally, the CBAM attention mechanism strengthens the features in each
time sequence and space. The overall final optimization result has an accuracy of 98.08%
and an F1 score of 94.77%. However, the proportion of rice that is actually non-rice but was
incorrectly identified as rice (false positive) is as low as 15.08%.

Finally, the ROC curve is used to evaluate the performance of all the models used in
the experiment and present the area under the curve (AUC) by applying threshold values
across the interval [0, 1]. For each threshold, two values are calculated, the true positive
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rate ratio and the false positive rate ratio. Figure 7 shows the ROC curve, which plots the
true positive rate ratio versus false-positive rate ratio with the threshold as a parameter for
GRU, Conv3D, ConvLSTM, ConvLSTM-BiTLL, and ConvLSTM-RFC models.
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ConvLSTM-BiTLL (AUC = 0.8275)
ConvLSTM-RFC (AUC = 0.8797)

Figure 7. ROC curve of all the models.

4. Discussion

There are few DL models that have been developed and applied for classification over
large-scale rice fields. The traditional ML methods such as DT, RF, and SVM extract features
of rice from SAR images either manually or through data mining techniques before the rice
classification is performed. Moreover, the RF algorithm with an oversampling technique
has been used to classify rice phenology from Landsat-8 satellite images [49]. Furthermore,
weighted nearest neighbors (WNN) and quadratic support vector machines (QSVM) were
used to detect rice false smut in a complex planting environment [50]. The performance
results of these classifiers are better than the actual investigation results.

In recent years, a series of state-of-the-art DL models have been developed and applied
for crop mapping. These DL models have achieved higher rice field classification results
than the traditional ML models. The CNNs have demonstrated better crop classification
performance than the traditional classification methods by learning spatial features from
time-series satellite images. In addition, RNNs have shown their potential to perform rice
classification by learning temporal features automatically from time-series satellite images.

In this research, the main goal of the proposed ConvLSTM-RFC model is to achieve
high classification efficiency. Hence, the characteristics of RNN and CNN models are
combined to construct the proposed ConvLSTM-RFC model. The proposed model first
extracts spatial features and then temporal features afterward for rice field classification.
To achieve the goal, different optimization techniques have been implemented in the
proposed model. These techniques include modifying the loss function from binary cross-
entropy to a bi-tempered logistic loss function (BiTLL), deepening the architecture with
several convolutional long short-term memory attentions blocks (ConvLSTM Att Block),
and integrating a convolutional block attention module (CBAM). Figure 6 illustrates the
classification results of GRU, 3D CNN, ConvLSTM, and the proposed model ConvLSTM-
RFC in the selected study areas. The classification results of the ConvLSTM-RFC model are
closer to the ground truth data than those of the GRU, 3D CNN, and ConvLSTM models.

Three reasons led to the best performance of the proposed model over the other
models. First, the ConvLSTM-RFC model contains ConvLSTM Att Block to obtain spatial
information and temporal features of rice from SAR images. Second, the BiTLL loss
function led to the ConvLSTM-RFC model being more robust to noise. Third, ConvLSTM
Att Block employs a CBAM block that is capable of recognizing rice pixels using spatial
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information of rice, which could produce complete rice fields in the classification result. The
most noticeable improvement is shown in Table 3, where the ConvLSTM-RFC model has
reduced the false positive rate of rice to 15.08%. The ConvLSTM-RFC model has produced
the highest accuracy of 98.08%, as shown in Table 4. Meanwhile, the ConvLSTM-BiTLL
model has achieved the second-highest accuracy, slightly higher than the 3D CNN model
and much higher than that of the GRU model. This indicates that the combined use of
spatial and temporal features of rice can improve the accuracy of rice detection. Moreover,
Figure 7 shows that the ConvLSTM-RFC model outperformed GRU, 3D CNN, ConvLSTM,
and ConvLSTM-BiTLL models in terms of AUC value. The ConvLSTM-RFC model has
produced the highest AUC value of 88%. It implies that there has been a significant
increase in the AUC value of the ConvLSTM-RFC model after the optimization strategies
have been applied. The results show that the proposed model ConvLSTM-RFC has the
best performance in classification accuracy, which is more suitable for large-scale rice
field mapping.

5. Conclusions

This research proposed a spatial-temporal neural network called a convolutional
long short-term memory rice field classifier (ConvLSTM-RFC) for rice field classification
from Sentinel-1A SAR images. Unlike the traditional deep learning methods that only
use a temporal or spatial neural network for crops classification from SAR images, this
research combines both spatial and temporal neural networks in one main network of
the proposed model ConvLSTM-RFC. Additionally, ConvLSTM-RFC is constructed with
several convolutional long short-term memory attentions blocks (ConvLSTM Att Block)
and a bi-tempered logistic loss function (BiTLL). In the ConvLSTM Att Block design, a
convolutional block attention module (CBAM) was integrated into the ConvLSTM Att
Block to enhance the representation of rice fields in different periods on SAR images. The
binary cross-entropy loss function has been replaced by the BiTLL function to make the
proposed model more robust to the incorrectly labeled data. The experimental results
demonstrated that the ConvLSTM-RFC model had reached the highest accuracy of 98.08%
and the false-positive rate of rice is as low as 15.08%. On the other hand, the ConvLSTM-
RFC produced the highest AUC value of 88%. Compared with temporal and spatial deep
learning models, ConvLSTM-RFC greatly reduced the proportion of model false positives
and achieved higher accuracy. While vegetation indices could have an impact on the
classification result of rice fields. Future work will study the rice fields classification using
the combination of vegetation indices and spatial-temporal features.
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