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Abstract: The management of low-density savannah and woodland forests for carbon storage presents
a mechanism to offset the expense of ecologically informed forest management strategies. However,
existing carbon monitoring systems draw on vast amounts of either field observations or aerial light
detection and ranging (LiDAR) collections, making them financially prohibitive in low productivity
systems where forest management focuses on promoting resilience to disturbance and multiple
uses. This study evaluates how UAS altitude and flight speed influence area-based aboveground
forest biomass model predictions. The imagery was acquired across a range of UAS altitudes and
flight speeds that influence the efficiency of data collection. Data were processed using common
structures from motion photogrammetry algorithms and then modeled using Random Forest. These
results are compared to LiDAR observations collected from fixed-wing manned aircraft and modeled
using the same routine. Results show a strong positive relationship between flight altitude and
plot-based aboveground biomass modeling accuracy. UAS predictions increasingly outperformed
(2–24% increased variance explained) commercial airborne LiDAR strategies as acquisition altitude
increased from 80–120 m. The reduced cost of UAS data collection and processing and improved
biomass modeling accuracy over airborne LiDAR approaches could make carbon monitoring viable
in low productivity forest systems.

Keywords: structure from motion; carbon; monitoring; area-based; random forest; uav; forest; woodland

1. Introduction

Savannah, woodland, and dry forest types with low tree densities occupy vast regions
of every continent [1] and provide a mixture of land uses, including livestock grazing,
wildlife habitat, agriculture, and fuelwood production. Carbon management has been pro-
posed in these regions as an alternative land-use strategy that would promote maintenance
of existing tree cover and prevent or reverse land conversion through deforestation [2].
Existing carbon monitoring system protocols rely on significant field observations or aerial
light detection and ranging (LiDAR) collections [3]. Although such data collection strate-
gies are widely used in productive temperate and tropical forest systems, they can be
financially prohibitive within low productivity systems where forest management focuses
on system resilience to disturbance and promoting multiple uses instead of the limited
timber value [4,5]. The little commercial timber harvesting within these regions has re-
stricted aerial LiDAR availability. Existing datasets are often collected for terrain mapping
at pulse densities (0.5–2 pulses m−2), which are not ideal for characterizing vegetation [6].
Developing alternative, cost-effective aboveground biomass monitoring strategies could
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provide carbon market funding opportunities to prevent the land conversion of these
valuable ecosystems.

Although aerial LiDAR has been widely shown to produce reliable area-based and in-
dividual tree estimates of forest density (i.e., basal area per hectare [7]) and biomass [8–10],
the availability of LiDAR of sufficient point density in these savannahs and woodlands has
limited its usefulness for vegetation applications. Unmanned Aerial Systems (UAS) have
emerged as a localized monitoring alternative providing spatially continuous observations
at high spatial resolution and potentially more frequent temporal intervals. Professional
grade UAS have recently become more accessible to consumers with entry-level equipment
costs under $2000. Despite the low price point, UAS typically has high-accuracy GPS re-
ceivers, automated inertial navigation systems, and sensors capable of very high-resolution
(VHR; <10 cm) optical and active remote sensing [11]. This combination of technologies is
ideal for photogrammetry, which requires high-resolution, spatially accurate images.

The high-cost and temporal resolution limitations of aerial LiDAR are where UAS
can fill data needs for forest management organizations; for monitoring at management
relevant scales, UAS-based approaches can cost orders of magnitude less than aircraft-
based LiDAR acquisitions and can be flown as often as favorable conditions are met. Over
the last decade, numerous studies have utilized UAS to generate VHR two-dimensional
orthomosaic maps [12,13] and three-dimensional point clouds of forest structure and terrain
using various structure from motion (SfM) processing algorithms [14,15]. SfM algorithms
identify common points within overlapping images and, through a geometric process
utilizing the position and rotation of captured images, a three-dimensional point cloud is
generated [15]. Due to the high degree of image overlap, SfM point clouds can have data
densities exceeding 1000 points m−2 compared to LiDAR’s common 4–30 points m−2, and
therefore can provide a more detailed representation of fine-scale forest structure compared
to LiDAR. Linking the spectral data from UAS imagery to SfM point clouds during forest
biomass modeling can improve UAS prediction accuracy by up to 80% over standard point
cloud-only models [16].

In pursuit of operationalizing UAS technology for forest monitoring, several studies
have evaluated the influence of acquisition parameters on data quality and forest structure
characterization accuracy. Dandois et al. [17] demonstrated that increasing the forward and
side overlap levels up to 80% led to improved location and height accuracies in forested
environments. When controlling forward and side overlap separately, Seifert et al. [18]
found that maintaining high (>90%) forward overlap with lower side overlap (~70%)
provided a balance between data accuracy, flight time, area coverage, and data processing
time. These studies suggest that forward overlap should be maximized as it has minimal
impact on flight time, or the area covered in a single acquisition. In contrast, the level of side
overlap should balance being significant enough for image alignment without sacrificing
acquisition extent. However, other acquisition parameters have provided unclear results.
Fraser and Congalton [13] found that flying at 100 m above the tree canopy provided the
best image alignment, while Torres-Sánchez et al. [12] and Swayze et al. [19] found no
significant impact of altitude on object-based canopy parameter extraction. At the same
time, Seifert et al. [18] found that flights within 15 to 20 m of the vegetation canopy (or 2 to
2.33 times maximum tree heights) resulted in significantly more image registration points
with improved precision. While these results indicate a range of optimal parameters for
UAS image alignment within different vegetation types, significant knowledge gaps exist
in how acquisition parameters will impact UAS-based products derived from the entire
point cloud instead of orthophotographs or canopy height models. Clarity is needed on
how acquisition parameters ultimately impact observations of forest structures and derived
estimates such as aboveground biomass.

This study examines how flight altitude and speed impact UAS area-based predictions
of forest biomass compared to standard aerial LiDAR modeling strategies across a range
of forest structures found in ponderosa pine (Pinus ponderosa var. scopulorum Dougl. Ex
Laws.) dominated woodlands and forests. Specifically, variance explained and precision
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of UAS-based models of forest biomass is standardized against a LiDAR-based model to
examine how flight altitude and speed impact model reliability. Additionally, this analysis
will investigate how segmentation of SfM point clouds based on spectral indices impacts
model performance.

2. Materials and Methods
2.1. Study Area and Field Data

The study occurred at two ponderosa pine forests with existing aerial LiDAR and
stem-mapped forest inventories in the central Rocky Mountains (Figure 1). A total of five
60 m × 100 m study units were selected to represent a range of forest densities. The Lookout
Canyon site is in the Kaibab National Forest in Northern Arizona, ~65 km southeast of
Kanab, Utah, at 2400 m elevation with slopes <10%. The forest is dominated by ponderosa
pine and was divided into three 4-hectare stands for thinning, including a control stand
and two stands thinned to 9.2 and 13.8 m2 ha−1 of basal area in 1993 (Table 1), hereafter
KNF1, KNF2, and KNF3. Following thinning, quaking aspen (Populus tremuloides Michx.)
began reestablishing in the understory alongside cycles of ponderosa pine regeneration.
A prescribed fire in an adjacent stand escaped in 1999 and burnt through the understory,
killing more than 600 small-diameter trees (~15% of stem density).
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Figure 1. Five 60 m × 100 m study areas at the Kaibab National Forest in Northern Arizona (KNF1:
(A), KNF2: (B), KNF3: (C)) and Manitou Experimental Forest in Central Colorado (MEF1: (D), MEF2:
(E)), with the location of KNF study area (red) and MEF study area (blue) displayed in panel (F). Each
study area was divided into sixty 10 m × 10 m plots.
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The N1 forest dynamics site is located within the Manitou Experimental Forest on
the Pike-San Isabel National Forest, 40 km northwest of Colorado Springs, Colorado. The
average elevation is 2500 m, with a mild slope (<5%). This site is a multi-aged montane
ponderosa pine forest that was selective logged between 1880 and 1886 [20]. After logging,
the forest was undisturbed with no documented fires since 1846 and only minor mountain
pine beetle disturbance in the late 1970s. In the 140 years following harvest, several
regeneration pulses have led to varying forest densities, with minor components of Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco) and blue spruce (Picea
pungens Engelm.) in the understory. Native grasses and a few low-growing woody shrubs
occur in the understory. Two 60 m × 100 m study units were established at N1 in areas
with different levels of ingrowth, hereafter referred to as MEF1 and MEF2 (Table 1).

Table 1. Location and forest stand structure at the Kaibab National Forest (KNF) and Manitou
Experimental Forest (MEF) study units, reported as a mean (standard deviation) of 0.01 ha sampling
unit. The locations are reported as site centroids using North American Datum 1983 Universal
Transverse Mercator in Zone 12 North for KNF and Zone 13 North for MEF.

Study Area Northing Easting QMD (cm) Max Tree
Height (m)

Basal Area
(m2 ha−1) Trees ha−1 AGB *

(Tons ha−1)

KNF1 4,044,670 380,592 30.3 (14.8) 15.9 (8.0) 26.9 (22.0) 300 (197) 90.6 (51.1)
KNF2 4,044,484 380,496 31.2 (22.0) 14.9 (9.6) 21.2 (22.1) 200 (186) 80.7 (55.6)
KNF3 4,044,305 380,406 32.9 (14.6) 22.2 (6.2) 44.5 (29.2) 626 (446) 128.9 (54.7)
MEF1 4,330,850 490,190 21.7 (11.8) 17.5 (6.6) 24.8 (15.9) 931 (806) 90.2 (34.9)
MEF2 4,330,730 490,040 23.5 (11.3) 17.1 (5.4) 26.9 (17.4) 701 (407) 93.4 (35.1)

* Aboveground biomass calculated using Jenkins et al. [21].

All trees > 1.37 m tall were stem-mapped from a grid of known survey locations at
each study unit. The species, diameter at breast height (1.37 m; DBH), and height were
recorded for each mapped tree. Stem mapping of the 60 m × 100 m study units (0.6 ha)
was completed in May 2018 for KNF1, KNF2, and KNF3, then in July 2018 for MEF1 and
MEF2. The stem maps were divided into 10 m × 10 m (0.01 ha; n = 60) sampling units.
For each sampling unit, the above-ground biomass was estimated using Equation (1) from
Jenkins et al. [21] as implemented in the Central Rockies variant [22] of the Forest Vegetation
Simulator [23].

ABG = e(b0+b1 ln (DBH)) (1)

where AGB is the total above-ground biomass (kg), DBH is in cm, and b0 and b1 are
species-specific coefficients.

2.2. UAS Data Acquisition

UAS image data was collected using a DJI Phantom 4 Pro (Dá-Jiang Innovations
Science and Technology Co. Ltd., Shenzhen, China) equipped with a 20-megapixel
(5472 × 3648 pixels) metal oxide semiconductor (CMOS) red-green-blue (RGB) sensor, with
a fixed 8.8 mm focal length. The aircraft recorded geolocation (x, y, and z) for each captured
photo to a manufacturer-stated vertical accuracy of ±0.5 m and horizontal accuracy of
±1.5 m in World Geodetic System 1984. The camera was set to infinity focus for all image
acquisitions, 5.6 aperture (F-stop), 1/500 s shutter speed, and ISO values of 100 to 200
depending on lighting conditions.

Flight planning and control used Altizure version 4.6.8.193 (Shenzhen, China) for
Apple iOS to pre-program automated UAS flight paths at the desired altitude, forward
and side photo overlap, and flight speed. All UAS surveys were flown between April
and August 2019 within three hours of solar noon to maintain a minimum solar angle of
50◦ from the horizon. This study utilized a nadir camera angle, with 90% forward and
side photo overlap. To evaluate how altitude impacts photogrammetric models of forest
biomass, 40 UAS flights were planned (8 acquisitions per study area) at randomly chosen
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altitudes ranging from 40 to 120 m above ground level. Flight speeds of 2, 3, and 4 m s−1

were systematically assigned to each altitude. Flight boundaries were adaptively increased
to maintain 10 flight lines and photo density (or the number of photos viewing the same
location) at each desired altitude. This design resulted in flight boundaries varying between
80 m × 110 m and 161 m × 110 m at flight altitudes of 40 and 120 m, respectively. At
the Kaibab study units, it was determined that the three lowest altitude (<45 m) UAS
surveys could not be safely completed due to the proximity of the forest canopy, resulting
in 37 total flights.

A total of ten Ground control points (GCP) were established at each site using high
visibility ~0.2 m2 markers that were located using a Trimble GeoXT (Trimble Inc., Sunnyvale,
CA, USA) with SBAS real-time correction for each study unit with accuracies of <1 m. GCPs
were placed to maximize visibility from the air with the UAS. Four points were set as
close to each corner as possible, one along each long edge and the remaining four points
distributed throughout the center. The GCPs were differentially corrected using Trimble
Pathfinder Office post-processing software.

2.3. UAS Structure from Motion Point Cloud Generation Data Processing

Agisoft Metashape version 1.5.3 (Agisoft LLC, St. Petersburg, Russia) was used to gen-
erate 3D point clouds from an SfM photogrammetry algorithm. The imagery was processed
following the procedures outlined in Tinkham and Swayze [24] to balance SfM forest crown
reconstruction with data processing efficiency. The full suite of selected Agisoft Metashape
settings for image dataset processing is available in Supplemental Table S1. Following
point cloud generation, CloudCompare version 2.10.1 was used to visually inspect each
point cloud to ensure complete dense cloud reconstruction. Agisoft Metashape processing
reports were generated and checked to ensure similar processing errors across the point
cloud models. Clouds with significant processing errors or incomplete reconstruction were
reprocessed to ensure comparable accuracy and quality across the 37 surveys.

2.4. LiDAR Datasets

At the Manitou Experimental Forest sites, aerial LiDAR data was acquired by an
Optech Pegasus HA500 operating at an altitude of 2000 m in August 2016. The MEF
data was provided in North American Datum 1983 Lambert Conformal Conic with North
American Vertical Datum 1988 at a nominal point density of 5.8 points m−2 and vendor
reported vertical accuracy of ±0.161 m at a 95% confidence level. Aerial LiDAR data for
the Kaibab National Forest sites were acquired by an Optech Galaxy Prime operating at an
altitude of 1800 m above ground level in the winter of 2019. The KNF data was provided in
North American Datum 1983 Universal Transverse Mercator Zone 12 North with North
American Vertical Datum 1988 at a nominal point density of 19.5 points m−2 and a vendor
reported vertical accuracy of ±0.326 m at a 95% confidence level. The time difference
between the LiDAR acquisitions and the field inventory corresponds to average tree height
growths of 0.25 m at MEF and 0.2 m at KNF, derived from prior site inventories. The
LiDAR point clouds were cropped to the five study unit extents and used as a baseline for
comparing the accuracy of the UAS modeled AGB.

2.5. Point Cloud Processing

All 37 SfM UAS and five aerial LiDAR point clouds were processed using the lidR
package (version 3.2.3 [25]) in the R statistical programming language [26]. All datasets
were transformed to North American Vertical Datum 1983 Universal Transverse Mercator
in Zone 12 North for KNF and Zone 13 North for MEF. First, a stock cloth simulation filter
was used to classify ground points, noise points were removed, and the point clouds were
height normalized using the classified ground points with a k-nearest neighbor approach
with inverse-distance weighting. The remaining points were classified as either ground
or non-ground points. After filtering and classification, each point cloud was clipped to a
60 m × 100 m extent. The height normalized UAS point clouds were visually inspected for
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horizontal alignment with their corresponding LiDAR point cloud in CloudCompare and
all datasets were estimated to be within 0.50 m horizontal agreement.

The SfM points clouds were further processed to investigate how to point segmentation
based on spectral indices impacts forest biomass modeling. To identify pure canopy and
stem points, all filtered and classified point clouds at a study site were merged using
lidR and loaded into CloudCompare. From the merged point cloud, 15 random samples
of canopy and stem (each containing 20,000–60,000 points) were manually extracted to
represent stem and canopy points. These classified stem and canopy point samples were
processed in the lidR package [25], and the Normalized Green-Red Ratio (NGRR) was
calculated for each point from the red and green image bands using Equation (2).

NGRR = (Gband − Rband)/(Gband + Rband), (2)

The stem and canopy point density plots of NGRR values for each study site (Figure 2)
showed segregation of stem NGRR values at the 90th percentile and canopy NGRR values
at the 10th percentile. Across study units, the stem 90th percentile of NGRR varied from
−0.0096 to 0, and the canopy 10th percentile of NGRR varied from 0 to 0.0747. These 90th
and 10th percentile segmentation of NGRR values were used to divide the SfM point clouds
into three categories for each of the 37 acquisitions: Stem, Canopy, and Standard, where
Standard is the non-NGRR classified point cloud.
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Figure 2. Example density plot of Canopy (green) and Stem (red) NGRR values sampled from
SfM point clouds at the MEF1 study area, with overlapping distribution segments are brown. Red
and green vertical lines represent the 90th and 10th percentile of the Stem and Canopy NGRR
values, respectively.

2.6. Forest Biomass Modeling

To develop aboveground biomass models, the three SfM point clouds for each of the
37 UAS acquisitions and the five LiDAR point clouds were processed using the grid metrics
utility in the lidR package. This function generated 35-point cloud distributional metrics
for each 10 m × 10 m sampling units (Figure 1) used to derive biomass estimates from FVS.
Metrics included maximum, average, standard deviation, skewness, kurtosis of heights,
percent of heights above the mean and a 2 m threshold, percentiles (5 through 95 in steps of
5), and cumulative percentage of return in nine canopy layers [27].

The LiDAR point cloud distribution metrics were used to create baseline predictions
of AGB using the Random Forest [28] and rfUtilities [29] packages of the R statistical pro-
gramming language. The full random forest regression model [30] derived from 1000 trees
from each dataset was used to predict AGB, where the 60 sampling units were randomly
divided into training observations (80% or n = 48) and validation observations (20% or
n = 12). To compare important point cloud predictor variables between the Standard and
Standard + NGRR datasets, the Random Forest Model Selection tool [31] was used to iden-
tify each model’s top five predictors. The same process for modeling AGB was repeated for
each UAS data acquisition using the Standard SfM point cloud distribution metrics and
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then again with the point cloud distribution metrics combined for the Standard, Stem, and
Canopy datasets, referred to as Standard + NGRR hereafter.

2.7. Model Evaluation

The 74 SfM random forest models (37 Standard SfM and 37 Standard + NGRR SfM)
were evaluated by relativizing them against their respective LiDAR random forest model by
calculating the percent change in model performance using the Coefficient of Determination
(∆R2; Equation (3)), Root Mean Squared Error (∆RMSE; Equation (4)) and Mean Absolute
Error (∆MAE; Equation (5)).

∆R2 = (SfM R2
ij − LiDAR R2

i)/LiDAR R2
i × 100, (3)

∆RMSE = (SfM RMSEij − LiDAR RMSEi)/LiDAR RMSEi × 100, (4)

∆MAE = (SfM MAEij − LiDAR MAEi)/LiDAR MAEi × 100, (5)

where i denotes an individual study site, and j signifies an individual UAS acquisition at
that site. Positive values of ∆R2 indicate improvement of the UAS model over the LiDAR
model. In contrast, negative values of ∆RMSE and ∆MAE indicate reductions in the UAS
model compared to the LiDAR model. To standardize the effect of altitude on model
performance across the five sites, altitude was evaluated as a ratio (A:LH; Equation (6)) of
altitude (A) compared to Lorey’s Mean Height (LH; Equation (7) [32]).

A:LH = Altitude (m)/LH (m), (6)

LH = ∑ (g × h)/∑ g, (7)

where g is a tree’s basal area (m2), and h is a tree’s height (m), meaning LH can be interpreted
as the weighted height of the forest where stands with more regeneration will have a value
less than the mean.

Linear mixed-effects regression evaluated the relationship between Standard UAS
random forest model performance metrics with UAS data acquisition flight altitude and
speed. In this analysis, ∆R2, ∆RMSE, and ∆MAE were predicted from the 37 combinations
of UAS acquisition altitude and speed were treated as fixed effects, while the five study
sites were treated as a random effect. Additional covariates of stand-level forest structure
(see Table 1) and AGB were also evaluated for their influence on model performance.
While testing for interactions, a stepwise procedure was used to identify the best subset of
explanatory factors that minimized the Akaike Information Criterion (AIC). All regressions
were performed using the lme4 package [33] of the R statistical programming language. A
second set of models was fit using A:LH in place of altitude above ground. The distributions
of ∆R2, ∆RMSE, and ∆MAE were compared between the Standard and Standard + NGRR
models using paired Wilcoxon signed-rank tests to evaluate if the two sets of model
predictors resulted in differences in model performance.

Finally, those point cloud distribution metrics listed above that were important in each
random forest model were pooled and evaluated for their frequency across models. This
analysis was extended to contrast how important distribution metrics from the Standard
SfM models differed in the Standard + NGRR SfM models.

3. Results
3.1. LiDAR AGB Model Performance

The five-baseline aerial LiDAR random forest model results of AGB varied across the
study sites, with R2 averaging 0.502 (range 0.371–0.569). The mean LiDAR R2 values for the
two MEF study sites were, on average, marginally higher (0.068) than those for the three
KNF study sites. Compared to the MEF sites, the KNF study sites had nearly twice as much
variation in the 0.01 ha sampling units for AGB, basal area ha−1, and maximum tree heights
(Table 1). Similar contrasts in model performance were found in RMSE, which ranged from
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27.2 to 58.0 tons ha−1, and MAE, which ranged from 20.5 to 44.2 tons per ha−1. Variation
in these metrics across the five study sites followed the same trend as the R2 values.

3.2. UAS AGB Model Performance

Differences in AGB model performance between the baseline LiDAR and Standard
UAS SfM varied across flight altitudes (Figure 3). The low altitude UAS acquisitions
failed to adequately reconstruct the vegetation’s vertical profile, resulting in worse results
(average ∆R2 = −36.9%). For acquisitions at higher altitudes, the average ∆R2 was 7.7%.
Generally speaking, we found that model performance improved with increased altitude
(Table 2 and Figure 4), where average ∆R2 ranging from a 25% reduction in prediction
performance at the lowest altitudes to nearly a 20% improvement over the LiDAR models
at the highest altitudes (Table 2 and Figure 4). Similar improvements with increased
altitude were seen for Standard UAS SfM models of AGB for ∆RMSE and ∆MAE (Figure 3).
However, no effect of flight speed on ∆R2 was identified.
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Figure 3. Comparison of Standard (panels (A,C,E)) and Standard + NGRR (panels (B,D,F)) AGB
model performance metrics relativized to LiDAR, including percent ∆R2 (panels (A,B)), ∆RMSE
(C,D), and ∆MAE (E,F). The panel is split to show the influence of altitude above ground (left) and
the ratio A:LH (right). Points in black circles represent acquisitions that failed to reconstruct the forest
canopy fully and were therefore excluded from the best it lines.
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Table 2. Linear mixed-effects model of flight altitude and speed influence the change in aboveground
biomass model R2 (∆R2). A total of four models were created for combinations of the 37 Standard or
37 Standard + NGRR predictions with altitude or relative altitude as predictors; the five study sites
were treated as a random effect.

Parameter Coefficient SE p-Value Coefficient SE p-Value

Standard Parameters Standard + NGRR Parameters
Intercept −56.358 21.812 0.0143 −28.447 17.689 0.1175
Altitude (m) 0.596 0.180 0.0024 0.2843 0.143 0.0556
Speed (m s−1) 3.081 5.076 0.5483 3.184 4.037 0.4364

Standard Parameters Standard + NGRR Parameters
Intercept −56.862 21.390 0.0120 −29.996 17.328 0.0930
Relative Altitude (A:LH) 11.933 3.471 0.0017 6.013 2.760 0.0372
Speed (m s−1) 2.988 5.046 0.5581 3.144 4.012 0.4393
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Figure 4. Linear mixed-effects model results for the 37 Standard SfM AGB models (panels (A,B)) and
the 37 Standard + NGRR AGB models (panels (C,D)).

The altitude at which Standard UAS SfM models began outperforming LiDAR models
varied from ~80 to 100 m (Figure 3). Standardizing flight altitude as a ratio of altitude
divided by Lorey’s Height narrows the range of altitudes at which standard UAS SfM
models outperform the LiDAR models to 4–4.5 times the site’s Lorey’s Height. Just as
flight altitude, using Lorey’s Height to relativize altitude significantly explains the variation
in ∆R2 (Table 2). The linear mixed-effects model indicates that for every Lorey’s Height
acquisition altitude increases, there is an ~12% improvement in ∆R2, meaning that at four
times Lorey’s Height, UAS SfM modeling of AGB typically exceeds the performance of
aerial LiDAR models in ponderosa pine-dominated systems (Figure 4).

Using the Standard + NGRR datasets for AGB modeling provided a 3.7% average
increase in ∆R2 across all flights compared to the Standard dataset modeling (Figure 3).
When tested with a paired Wilcoxon signed-rank test, this increase was not significant
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(p-value = 0.0750). However, there was a slight improvement in ∆RMSE (p-value = 0.0567)
by 2.2% for the Standard + NGRR models and a significant (p-value = 0.0092) decrease in
∆MAE by 2.8% compared to models only using the Standard SfM parameters. The linear
mixed-effects model of ∆R2 for the Standard + NGRR predictions followed similar trends
to the Standard predictions (Figure 4) but with a slightly shallower slope. However, the
Standard + NGRR predictions had an intercept much closer to zero (only marginally de-
parting from zero when predicting based on relative altitude) than the Standard predictions
(Table 2).

3.3. Comparison of Point Cloud Structure

Clear trends in the impact of altitude on UAS SfM modeling of AGB are present in the
results. Comparisons of point cloud distributions from UAS SfM from the lowest altitudes
flown differ in reconstructing the upper canopy within each stand (Figure 5). Conversely,
UAS SfM point cloud distributions from higher altitude flights exhibited trends similar to
the LiDAR datasets or provided slightly greater point density in the mid- and lower-canopy
(Figure 5).
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Figure 5. Relative density as a function of height above ground for the models providing the best and
worst model ∆R2 from the Standard SfM AGB datasets compared to the LiDAR at each site (from left
to right (A) KNF1, (B) KNF2, (C) KNF3, (D) MEF1, and (E) MEF2).

For the Standard SfM models of AGB, the five most important variables fluctuated
across models, but five variables stood out from the rest and showed up in at least 34%
of these models (Figure 6A). Across all flight altitudes and sites, the percentage of points
above 2 m height and the average height of points above ground showed up in 71.4 and
65.7% of all models, respectively. The remaining three frequently selected variables were in
34 to 40% of models, with their importance metric levels fluctuating. These five metrics
accounted for 46.5% of the top five most important metrics selected in all the Standard
SfM models.

Of the top five variables from the Standard SfM metrics, the top three remained
unchanged even after including the NGRR segmented point cloud metrics (Figure 6B). The
other higher tier metrics also came from the list of Standard metrics. However, the five
most important metrics now only accounted for 37.8% of all selected metrics when the
Standard and NGRR metrics were considered. This reduction was due to 16.8 and 10.2%
of all selected variables being chosen from the Stem and Canopy distributional metrics,
respectively. Of these NGRR metrics, only the maximum height and average height of Stem
points and maximum height of Canopy points were important in more than 15% of models
(Figure 6B).
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4. Discussion
4.1. AGB Model Performance

This study evaluated the impact of flight altitude and speed on UAS SfM plot-based
modeling of aboveground biomass, with UAS modeling at higher acquisition altitudes
outperforming LiDAR. Across all sites, UAS acquisitions above 80 m led to ∆R2 of 9.6%
and reduced RMSE and MAE by 5.7 and 7.1%, respectively (Figure 3). While the authors
could not identify other studies with this relationship for UAS biomass modeling, inference
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might be drawn from studies looking at relationships between UAS SfM reconstruction
quality and flight altitude. Fraser and Congalton [13] tested the effect of flight altitude
on image alignment and found that flying at their highest tested altitude provided the
best results. Other studies have not directly seen an influence of altitude on SfM vegeta-
tion reconstruction but still concluded that flying higher provided the benefit of greater
acquisition extents [12]. This literature connects the slight decrease in image resolution at
higher altitudes with improved image matching by reducing the influence of vegetation
movement in the wind [34]. There is reason to believe this improved image matching
represents vertical vegetation distributions better and improves AGB modeling at the plot
level. Our results point to UAS plot-based modeling of AGB being a viable alternative in
forest systems where the cost of aerial LiDAR might be prohibitive. However, the time lag
between the LiDAR and stem map data for the two MEF sites may have confounded the
exact magnitude of UAS model improvement.

Part of the improved UAS SfM model performance with increased altitude can be
attributed to differences in the photogrammetric reconstruction of the upper canopy for
the lowest altitudes tested at each site. The dependence of UAS SfM reconstruction on
altitude is attributed to the proximity of treetops to the sensor. When the vegetation is too
close to the sensor, there is insufficient photo overlap at the top of the tree compared to
the programmed 90% forward and 90% side overlaps at the ground surface. Although
lower altitude UAS acquisitions can provide greater resolution, studies that require close
proximity acquisition of forest canopies should consider increasing the photo overlap to
compensate for the depth of vegetation. Additionally, atmospheric stability will decrease
the closer to forest canopy a UAS operates, potentially leading to image blurring and
impacting image alignment [35]. Our results indicate that consistent point cloud generation
is achieved for flights above four times Lorey’s Height. Therefore, as the height of vegetation
increases, the flight altitude needed to reconstruct forest canopies should also increase.
However, it is likely that improvements in UAS model performance with increased altitude
will plateau. At some point, increases in flight altitude beyond this point will decrease
image resolution resulting in reduced performance in modeling forest attributes such as
AGB. Further research is needed to understand the transference of our four times Lorey’s
Height threshold for AGB modeling in shorter and tall forest systems.

Relativizing altitude as a ratio of Lorey’s Height (A:LH) for each flight provided better
consistency for interpreting the relationship between UAS flight altitude and vegetation
height. All flights above four times a site’s Lorey’s Height improved model performance,
with an average increase of 9.6% for R2 and decreases of 5.7 and 7.1% for RMSE and MAE,
respectively (Figure 3). Currently, it is difficult to evaluate the effects of altitude in different
vegetation types, as most studies do not report vegetation height or its relationship to
flight altitude. Standardizing the reporting of UAS acquisition and vegetation structure
parameters is necessary within the UAS literature to improve the cross-study synthesis
of results.

Our results did not find a statistically significant effect of flight speed on resultant
AGB models (Table 2), which could be attributed to the narrow range of relatively slow
flight speeds (2–4 m s−1) evaluated. These findings differ from O’Connor et al. [36], which
found that increased flight speed causes image blurring and location errors, resulting in
image alignment errors. While there is reason to believe this should propagate through the
modeling of forest attributes such as AGB, it did not manifest in the flight speeds tested in
this study. Although not significant in this study, flight speed should remain an important
consideration in planning UAS-based forest remote sensing. The effects of flight speed
on modeling forest attributes such as AGB need to be evaluated across a broader range of
speeds and cross-compared between sensors (rolling vs. global shutter) and UAS platform
types (multi-rotor vs. fixed-wing [37]).

The inclusion of the NGRR point cloud distribution metrics improved the prediction
of AGB in terms of variance explained (∆R2) and precision (∆RMSE) over the Standard
point cloud predictions. When relativized, the magnitude of ∆R2 improvement of NGRR
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point clouds over the Standard models was only ~2%, but the ∆RMSE was improved by
~12%. When NGRR metrics were included, they accounted for ~29% of important random
forest predictors, with ~19% coming from the Stem point cloud metrics. Comparison of
the Standard and Standard + NGRR model performance metrics revealed no clear trend
across the UAS acquisition parameters. Despite using only RGB spectral information, the
improved model performance suggests that spectral segmentation of photogrammetric
point clouds may be a powerful tool for improving models of forest structural attributes.
Other studies share our results, which found that including spectral indices from image
orthomosaics as predictors of forest structure and biomass significantly improved model
performance [16]. There is reason to believe more advanced segmentation and characteri-
zation of SfM points beyond indices available from RGB imagery could further improve
the modeling of forest biomass done in this study. Including a greater range of spectral
data from more powerful multispectral sensors may provide better discernment between
vegetation structural components within SfM point clouds.

4.2. Implications for Forest Management

This study highlights the potential of UAS SfM plot-based AGB modeling to match or
exceed aerial LiDAR modeling. However, it also emphasizes the importance of flight alti-
tude and speed selection on UAS model reliability. UAS based-data collection approaches
are increasingly used to characterize forest structure and biomass across many ecosys-
tems and forest management objectives [38–40]. The growing focus on UAS technology
is attributed to its high temporal and spatial resolution at relatively low operational costs
compared to similar datasets from aerial LiDAR. The reduced price of UAS remote sensing
could make AGB monitoring a viable mechanism for managing low productivity forest
and woodlands and other ecosystems where more common aerial LiDAR approaches are
cost-prohibitive.

The potential of flying at heights 4–6 times a stand’s Lorey’s Height should be ex-
pected to result in faster data collection and processing times and reduced data storage
demands [19]. The wider image footprints obtained at higher altitudes in this study pro-
vided more efficient flight times (~2 min ha−1), with 1 ha being acquired in 2.5 min and
5 min on average for altitudes of 100 m and 60 m, respectively. Additionally, since moderate
increases in UAS flight speed did not detrimentally impact model performance (Table 2),
flying at 4 m s−1 could further improve the rate of data acquisition. These results indicate
that rapid and reliable plot-based AGB modeling from UAS SfM is possible.

This study’s plot-based UAS modeling strategy effectively describes the vertical distri-
butions of forest attributes, potentially lending the data to modeling other forest attributes.
Following developments in the aerial LiDAR literature, extending UAS modeling to other
forest attributes such as basal area, volume, and successional stages should find simi-
lar success to this study. While this strategy successfully described plot and stand-level
AGB, further exploration of the potential for UAS-based systems to characterize forest
structure at both tree and landscape scales is needed. The ultra-high resolution of UAS
data products and potential to fuse spectral and structural characteristics should enable
improved individual tree characterizations. Early testing of single tree extraction methods
from UAS SfM data has successfully identified >90% of trees [41,42]. These individual tree
characterization strategies perform best when canopy cover is < 50% [43]. Additionally,
UAS has the potential to serve as a sampling tool, potentially providing vast amounts of
data to train coarser landscape-scale satellite-based models of woodland, savannas, and
forest biomass. Recent research has demonstrated techniques for scaling UAS observations
to describe biomass at greater extents than UAS were capable of characterizing [44].

5. Conclusions

This study demonstrates the potential of plot-based UAS photogrammetry for model-
ing aboveground biomass in low productivity forests and woodlands. The UAS modeling
performance was optimized when flying at altitudes greater than four times a forest’s
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Lorey’s Height, resulting in an average 7.8% improvement in R2 over aerial LiDAR. Ad-
ditionally, segmenting the SfM point cloud based on image spectral signatures tied to
individual points to describe the distribution of Stem and Canopy points provided further
improvements to the AGB modeling. This study highlights the role of UAS acquisition
parameters on plot-based forest biomass modeling while also showing strong potential
for UAS-based forest monitoring at increased temporal frequencies than have been fea-
sible from aerial LiDAR. Operationalizing UAS monitoring in low productivity forests
and woodlands could provide access to alternative management funding strategies but
will require full vetting of the method through the monitoring, reporting, and verification
process required by carbon markets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs14091989/s1, Table S1: Agisoft Metashape processing parameters for SfM photogrammetry
forest reconstruction.
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