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Abstract: Three-dimensional (3D) point cloud classification methods based on deep learning have
good classification performance; however, they adapt poorly to diverse datasets and their classi-
fication accuracy must be improved. Therefore, FSDCNet, a neural network model based on the
fusion of static and dynamic convolution, is proposed and applied for multiview 3D point cloud
classification in this paper. FSDCNet devises a view selection method with fixed and random view-
points, which effectively avoids the overfitting caused by the traditional fixed viewpoint. A local
feature extraction operator of dynamic and static convolution adaptive weight fusion was designed
to improve the model’s adaptability to different types of datasets. To address the problems of large
parameters and high computational complexity associated with the current methods of dynamic
convolution, a lightweight and adaptive dynamic convolution operator was developed. In addition,
FSDCNet builds a global attention pooling, integrating the most crucial information on different view
features to the greatest extent. Due to these characteristics, FSDCNet is more adaptable, can extract
more fine-grained detailed information, and can improve the classification accuracy of point cloud
data. The proposed method was applied to the ModelNet40 and Sydney Urban Objects datasets. In
these experiments, FSDCNet outperformed its counterparts, achieving state-of-the-art point cloud
classification accuracy. For the ModelNet40 dataset, the overall accuracy (OA) and average accuracy
(AA) of FSDCNet in a single view reached 93.8% and 91.2%, respectively, which were superior to
those values for many other methods using 6 and 12 views. FSDCNet obtained the best results for
6 and 12 views, achieving 94.6%, 93.3%, 95.3%, and 93.6% in OA and AA metrics, respectively. For
the Sydney Urban Objects dataset, FSDCNet achieved an OA and F1 score of 81.2% and 80.1% in a
single view, respectively, which were higher than most of the compared methods. In 6 and 12 views,
FSDCNet reached an OA of 85.3% and 83.6% and an F1 score of 85.5% and 83.7%, respectively.

Keywords: 3D point cloud classification; convolutional neural network; dynamic convolution

1. Introduction

With the rapid development of artificial intelligence and deep learning technology,
breakthroughs have been made in 3D perception and understanding; one such break-
through, the point cloud, contains abundant geometric, shape, and structure information.
The 3D point cloud is mainly collected by light detection and ranging (LiDAR) scanner, red,
green, blue, and depth (RGB-D) camera, and other sensor equipment or obtained by model
conversion using computer software, as shown in Figure 1. It is widely used in several
fields, such as urban environment monitoring [1], urban form analysis [2], autonomous
driving [3,4], computer vision [5,6], robotics [7], and reverse engineering modeling [8].
Research fields related to the 3D point cloud include registration, denoising, classification,
target detection, and segmentation. Among these fields, the classification-based 3D point
cloud is one of the most basic and significant. Hence, most research focuses on improving
the accuracy and efficiency of classification-based point clouds [9–15].
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Classification methods based on the 3D point cloud include voxel, direct point cloud,
and multiview methods, which are the subject of much research.

1.1. Voxel-Based

Voxels, i.e., volume pixels, represent a 3D region with a constant scalar or vector [16].
Because voxels can represent complex objects with simplified and discrete units, such as
particles, they have powerful capabilities in simulating the behavior of complex objects in
the real world, while their structural representation is relatively simple. Plaza et al. [17]
proposed a voxel-based 3D point cloud data classification method for natural environments
that uses a multilayer perceptron (MLP) to conduct a statistical geometric analysis on the
spatial distribution of internal points and voxel classification. The local spatial distribution
characteristics around points are defined by the principal components of the point position
covariance matrix. The combination of voxels and neural networks realizes faster comput-
ing speeds than other strategies; however, it does not remedy the essential shortcomings of
voxels themselves, including intensive computation and time consumption. Liu et al. [18]
presented a convolutional neural network (CNN) model, point-voxel, that captures the
overall structure and details of an object with two modules, integrating the advantages
of a point cloud and a grid. It has less data overhead, better data regularity, and a lower
memory consumption than other voxel models, as well as better classification accuracy than
many voxel-based models; however, it still has the low efficiency and intrinsic stereotype
of voxel convolution and the combination of voxels and a point cloud. Plaza et al. [19]
proposed a general framework based on a voxel neighborhood, which was compared to
different supervised learning classifiers. The framework uses simple features in the support
region that are defined based on the voxel itself, and it assigns each non-overlapping
voxel point in the regular grid to the same class, which improves the effectiveness of 3D
space shape feature classification. Therefore, it is easier to reduce processing time and
parallelize. Preliminary experiments have been conducted, and further analysis is required
using diverse performance indicators, environments, and sensors. Liu et al. [20] proposed a
generalized learning network based on voxels—VB-Net—and used it to classify 3D objects.
By transforming the original point cloud to voxels, VB-Net can be used to extract features
for the target classification of a generalized learning system. The technique significantly
reduces the time required for system training, although the classification accuracy must be
improved. In particular, with an increase in 3D object resolution, the classification accuracy
decreases sharply. Hamada et al. [21] considered the change in voxel density along the
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depth direction and presented a 3D scene classification measure based on three-projection
voxel expansion, which normalizes the scene according to the position and size and projects
it onto three vertical planes. The algorithm applies deep learning to predict the category of
each scene, combining three images, and greatly improves classification accuracy. However,
three-projection voxel expansion must be standardized to make each 3D scene suitable
for voxels. Apparently, if the 3D scene is large enough, then tri-projection voxel splatting
(TVS) may not recognize small objects. Wang et al. [22] proposed a voxel-based CNN,
NormalNet, that employs a reflection convolution concatenation (RCC) series module
as a convolution layer to extract distinguishable features via a relatively good reflection
number for 3D visual tasks, which significantly reduces the number of parameters and
enhances network performance. Nevertheless, the model could still be further optimized
since the best reflection number was not found in the key module RCC. Hui et al. [23]
explored the unsuitability of binary voxels for 3D convolution representation. By assigning
distance values to voxels, they improved the accuracy by about 30% and designed a fast,
full connection and convolution hybrid cascade network for the classification of 3D objects.
Its average reasoning time is faster than that of methods based on a point cloud and voxels,
and its accuracy is also higher; however, the recognition rate of some hard samples (some
sample data that take a high price to train and learn, yet usually obtain a large loss value
and worse performance) in the deep network is lower than that of its shallow counterpart.
Voxel-based classification has the disadvantage of a high storage overhead, and processing
a large, complicated 3D image represented by direct voxels in 3D convolution requires
significant graphics processing unit (GPU) resources and considerable computing time.
This problem can be solved by reducing the resolution of the 3D image; however, this will
decrease the accuracy of the final trained model.

1.2. Point Cloud-Based

A point cloud is a collection of data points defined by a coordinate system. Each point
contains abundant information, including 3D coordinates (x, y, z), color, classification value,
intensity, and time. This representation form has the characteristics of disorder, sparsity,
rotation, and translation invariance. Compared with voxel methods, point cloud-based
processing discards additional model transformations and directly considers the original
point cloud as the processing object, which can reduce storage. Qi et al. [10] designed
PointNet, a neural network that directly trains point clouds using a learned T-Net trans-
formation matrix to ensure invariance in the specific spatial transformation and extract
the features of point cloud data through an MLP. The final global features are obtained by
maximum pooling for features in each dimension and sent to the MLP for the classification
of 3D objects. Since the point cloud operates directly without complex preprocessing, the
network architecture is efficient, and it resists disturbance. Yet, the network does not learn
the connection among local points; hence, the model cannot capture information on local
features. Zhao et al. [24] proposed a deep neural network that combines multiscale features
with PointNet, adopting multiscale approaches to extract the neighborhood features of
points and combining them with global features extracted by PointNet to classify LiDAR
point clouds. The network has a good classification effect; however, it extracts local features
with poor efficiency. Li et al. [25] proposed an optimization method based on PointNet
to improve the accuracy of 3D classification models. The model can obtain more abstract
features by increasing the number of hidden layers and can generate discriminant features
by combining the Softmax and central loss functions. The improved model has better
performance than the original PointNet. Nevertheless, it has not been studied in detail
whether a more lightweight deep convolution network can be used to further optimize the
model. Aiming to solve the occlusion problem of environment classification using a 1D
signal and two-dimensional (2D) image, Zhang et al. [26] proposed directional PointNet to
directly classify a 3D point cloud. The model utilizes the direction information of a point
cloud to classify terrain in order to help wearable robot objects walk in complex environ-
ments. It provides a robust and efficient classification of the environment; however, its high
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classification accuracy is limited to specific application fields, and the generalization effect
warrants further exploration. Because a PointNet network is unable to capture the local
structure generated by metric space points, its capability to identify fine-grained patterns
and generalize complex scenes is limited. The PointNet++ hierarchical network model [11]
was proposed to improve PointNet. The PointNet++ architecture adaptively combines
multiscale features through a learning layer and combines the local point set density to
effectively learn the point set features at a deep level for more accurate classification. The
time consumption is greatly increased compared to PointNet, especially in preprocessing.
Rivlin et al. [27] used 3D coordinates as class identifiers by comparing the attributes of
shape moments and added a polynomial function of coordinates to accommodate higher-
order shape moments. Their experiments demonstrated its improved memory usage and
computational complexity; it was also able to classify rigid objects. However, this method
has not been applied for use in other fields involving geometric analysis. Yang et al. [28]
replaced the expensive multi-head attention mechanism with parameter-efficient group
shuffle attention (GSA) to develop a converter of point attention that can process input
data of different sizes and exhibits equivalence of transformation. Gumble subset sampling
(GSS) was proposed for end-to-end learning and task-agnostic sampling. By selecting
subsets in the representative hierarchy, the network can obtain a stronger representation
of the input set at a lower computational cost. Experiments revealed the effectiveness
and efficiency of the method in 3D image classification; however, GSS was not applied to
general datasets, and its effectiveness and interpretability in hierarchical multi-instance
learning were not explored. Zhao et al. [29] presented PointWeb to extract context features
from a local neighborhood in the point cloud; PointWeb closely connects each point and
uses an adaptive feature adjustment module to find the interaction among points. This
framework can better learn the point representation for point cloud processing; however,
its application to the understanding of 3D scenes needs further verification. Xie et al. [30]
proposed a generation model of a disordered point cloud, where an energy function learns
the coordinate coding of each point and then aggregates all individual point features into
the energy of the whole point cloud. The model is trained by maximum likelihood learn-
ing based on Markov chain Monte Carlo (MCMC) and its variants, without an auxiliary
network, and does not rely on the manual drawing of distance measurements to generate
the point cloud. Thus, it is an efficient method for point cloud classification. However, the
disturbance rejection of the model and the processing of point clouds with many outliers
are unsatisfactory in practical applications. Yan et al. [31] proposed an end-to-end network
called point adaptive sampling and local and nonlocal module (PointASNL) for robust
point cloud processing in the presence of outliers and noise in the original point cloud. The
network includes an adaptive sampling module and a local and nonlocal module. The
first module adopts farthest point sampling (FPS) to sample the initial point cloud and
reweights the neighborhood value, while the second captures neighborhood points and
long-range dependencies. PointASNL has achieved a high level of robustness in point
cloud classification; however, the fine-tuning strategy in the adaptive sampling module
requires constant exploration. In the task of point cloud classification and segmentation,
it is difficult to use geometric information to extract local features and correctly select
important features. Accordingly, Jin et al. [32] proposed a graph-based neural network
with an attention pooling strategy, named AGNet, which can effectively extract the spatial
information of different distances and select the most crucial features, achieving a good
classification and segmentation effect. Because of the influence of sensors, scenes, and
other factors, the sparsity of collected point clouds in real environments is much different,
which affects the accuracy of the final classification. Hence, complex preprocessing on
point clouds is inevitable. Moreover, disturbances and outliers will inevitably appear in a
real point cloud, i.e., a point may appear in a radius near its sampled area or anywhere in
space and rotating the point cloud will represent the same 3D object with a different shape.
Therefore, point cloud outliers and disturbances, as well as rigid transformation processing,
make point cloud-based 3D object classification more intricate.
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1.3. Multiview-Based

Multiview-based 3D point cloud classification involves the collection of 2D images
of a 3D point cloud object from different viewpoints, which are sent to a CNN model for
classification to produce the final representation. Chen et al. [4] studied 3D high-precision
target detection in autonomous driving scenes and proposed a multiview 3D network
consisting of sub-networks for 3D object representation and multiview feature fusion. Its
deep fusion scheme combines regional features from multiple views, enabling the middle
layers of different paths to interact. This improves the accuracy of the classification and
reduces the amount of calculation. However, because the model utilizes a region-based
fusion network, it is deficient in the extraction of feature information of objects from a
global point of view. Using a large-scale ground truth dataset and a baseline view-based
recognition method, Papadakis et al. [33] benchmarked multiple multiview hypothesis
fusion schemes under various environmental assumptions and observation capabilities.
Their experimental results highlighted significant aspects that should be considered in the
design of a multiview-based recognition pipeline, while the analysis was only reflected in
the 3D shape without considering texture characteristics. Cheng et al. [34] proposed a fea-
ture selection method that embeds low-rank constraints, sparse representation, and global
and local structure learning in a unified framework; constructs a Laplace matrix based
on the regularization term of a hypergraph; and applies a novel optimization algorithm
to solve the objective function. The method achieves good classification performance on
multiview datasets but does not extend to unsupervised and clustering learning. Inspired
by the singular multiview convolution network structure, Pramerdorfer et al. [35] proposed
a 3D bounding box approach that combines jointly classified objects and regression models
in a depth map. This method has excellent robustness to occlusion. It can process the
views of encoded object geometry and occlusion information to output class scores and
bounding box coordinates in world coordinates without post-processing. The model has
excellent classification accuracy and a low regression error rate. It is worth researching
whether its performance can be improved with different front-end architectures, such as
ResNet, or by integrating the model into a deployed detection system based on Kinect
to evaluate its performance. Feng et al. [12] presented a group view convolution neural
network (GVCNN) for discriminative 3D shape description and hierarchical correlation
modeling to better utilize the inherent hierarchical correlation and resolution between mul-
tiple views. This method introduces a hierarchical shape description framework, including
views, groups, and shape level descriptors; considers the correlation among the views
of each shape; and uses the group information for shape representation. It has realized
performance improvements in 3D shape classification and retrieval tasks; however, it is
not perfect with more complete views. Liu et al. [36] proposed a multiview hierarchical
fusion network (MVHFN) that includes visual feature learning and multiview hierarchical
fusion modules. In the first module, a 2D CNN extracts the visual features of multiple
views drawn around a 3D object, while multiple view features are integrated as a compact
descriptor in the second module. The model can find discriminant content by learning
the cluster-level feature information, making full use of multiview and improving the
classification accuracy. However, the number of views captured is low and the order of
views is fixed, which cannot simulate ground object recognition in real 3D scenes well.
Li et al. [37] proposed a probabilistic hierarchical model for multiview classification that
learns a potential variable to fuse multiple features obtained from the same view, sensor,
and morphology; applies the mapping matrix of a view to project the potential variable
from the shared space to multiple observations; and employs expectation maximization
(EM) to estimate parameters and potential variables. The network model can integrate
multiview and feature data in multilevel, and the calculation of relevant parameters is
repeatable and in line with common sense; however, the complexity of the model is high
and its calculations are inefficient. He et al. [38] presented an online Bayesian multiview
learning algorithm that learns the prediction subspace based on the principle of maximum
margin, defines the potential marginal loss, and minimizes the learning problems associ-
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ated with various Bayesian frameworks by using the theory of pseudo-likelihood and data
enhancement. It obtains an approximate a posteriori change according to past samples.
The model can attain higher classification performance than some advanced methods
and can automatically infer weights and penalty parameters; however, the calculation is
complex when the dataset is large. Li et al. [39] designed a Gaussian process latent variable
model (GPVLM), which represents multiple views in a common subspace. It learns another
projection from observed data to shared variables through view sharing and view-specific
kernel parameters under a Gaussian process structure. Potential variables are changed
to label information by Gaussian transformation, which reveals the correlation between
views, and the model performs relatively well. Nevertheless, the radial basis function (RBF)
cannot adapt to distributed and complex data, and multi-core learning is not considered.
Yu et al. [40] proposed latent multiview CNN (LMVCNN), which utilizes predefined or
random multiview images to identify 3D shapes and consists of three sub-convolution
neural networks. The three CNN modules generate a multi-category probability distri-
bution, build a potential vector to help the first CNN select the appropriate distribution,
and output the category probability distribution of one view from another. LMVCNN
has good discriminative ability for predefined and random views and can show excellent
performance when the number of views is small; however, it does not solve the problem of
3D shape recognition without background interference. Hence, it is difficult to recognize
objects in real 3D environments. Considering similarity measurements between image
blocks, Yu et al. [13] proposed a multiview harmonized bilinear network (MHBN) for 3D
object recognition. The model applies bilinear pooling to local convolution to obtain a
compact global representation and produces a more discriminant representation by coor-
dinating the singular values of set features. Its effectiveness in 3D object recognition was
verified by experiments, where a high classification accuracy was achieved. Traditional
methods invariably have certain disadvantages, such as multiview selection from a fixed
viewpoint and static convolution for feature extraction. Therefore, if these disadvantages
are overcome, the classification accuracy can be further improved. Multiview-based meth-
ods occupy less storage space than voxel and direct point cloud processing because they
only require several 2D views. Converted 2D views can be adequately utilized by the
current 2D CNN model; thus, training time is significantly reduced and the accuracy of
model classification is the highest among the three different methods described above,
namely voxel, point cloud, and multiview-based techniques.

However, most multiview-based methods [9,12,13] use traditional fixed-view projec-
tion when converting a 3D point cloud to 2D views, which can cause high similarity among
view data. Therefore, the discriminative ability of the model decreases with multiple
views on a test set, thus reducing the generalization ability of the model. Moreover, these
methods often use a pretrained CNN backbone model to improve the efficiency of feature
extraction; however, most backbone models adopt traditional static convolution, which is
not adaptive to different data. Additionally, the use of only maximum and average pooling
in feature fusion causes a considerable loss of detail and makes fusion inefficient. In order
to solve these problems, we propose FSDCNet, a fusion of static and dynamic convolution
networks for 3D point cloud classification with high accuracy, high efficiency, and a strong
generalization ability. The model has five advantages over the abovementioned deep
learning-based methods:

(1) FSDCNet, a fusion static and dynamic convolution neural network, is proposed and
applied to the classification of a 3D point cloud. The network adopts fixed and random
viewpoint selection method for multiview generation. Meanwhile, it carries out local
feature extraction by combining lightweight dynamic convolution with traditional
static convolution in parallel. In addition, adaptive global attention pooling is used
for global feature fusion. The network model is applicable not only to dense point
clouds (ModelNet40), but also to sparse point clouds (Sydney Urban Objects). Our
experiments demonstrate that it can achieve state-of-the-art classification accuracy on
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two datasets. Our algorithm framework, FSDCNet, is evidently different from other
advanced algorithm frameworks.

(2) FSDCNet devises a view selection method of fixed and random viewpoints in the
process of converting a point cloud into a multiview representation. The combination
of random viewpoints avoids the problem of high similarity among views obtained
by the traditional fixed viewpoint and improves the generalization of the model.

(3) FSDCNet constructs a lightweight dynamic convolution operator. The operator
solves the problems of large parameters and expensive computational complexity in
dynamic convolution, while maintaining the advantages of dynamic convolution; the
complexity is only equivalent to that of traditional static convolution. Meanwhile, it
can obtain abundant feature information in different receptive fields.

(4) FSDCNet proposes an adaptive fusion method of static and dynamic convolution. It
can solve the problem of weak adaptability associated with traditional static convolu-
tion and extract more fine-grained feature information, which significantly improves
the performance of the network model.

(5) FSDCNet designs adaptive global attention pooling to avert the low efficiency of
global feature fusion with maximum and average pooling. It can integrate the most
crucial details on multiple local views and improve the fusion efficiency of multi-
view features.

The remainder of this paper is organized as follows. The FSDCNet network framework
is introduced in Section 2. Section 3 describes the datasets and the experimental environ-
ment, compares FSDCNet with other point cloud classification algorithm models using
multiple metrics, and presents the experimental results and analysis. Section 4 summarizes
the paper and proposes future work.

2. Methods

The point clouds obtained in various approaches were used as the input of our
FSDCNet model to obtain the final 3D point cloud classification results. Our FSDCNet
framework is shown in Figure 2. It has three parts: (a) preprocess the original point cloud,
convert it into 2D views through fixed and random viewpoints, and combine them in a
specific proportion (Section 2.1); (b) for these preprocessed 2D views, a lightweight dynamic
convolution and traditional static convolution work in parallel to form a local operator
for point cloud feature extraction, thereby improving the model’s efficiency (Section 2.2);
and (c) for higher classification accuracy, apply influence weights to view features in the
process of fusion to global features using attention pooling (Section 2.3).

2.1. Multiview Selection of Fixed and Random Viewpoints

Here, we introduce the multiview point cloud classification algorithm, which first
transforms a 3D point cloud to 2D views via projection. Both orthogonal and perspective 3D
point cloud projection methods exist. Since the original point cloud is a 3D object composed
of 3D coordinate points, it cannot be processed directly through a 2D CNN. Hence, it must
be projected; we employed orthogonal projection because it guarantees that the scale of
each point does not change due to its distance from the virtual camera. The conversion
from point cloud to multiview is accomplished by fixing an angle and then rotating the
point cloud 360◦ around that angle, as proposed in multiview CNN (MVCNN) and other
point cloud classification methods [9,12,13]. If we intend to obtain the projection of multiple
views, then we must project 2D views every 360

◦

n , where n is the number of views.
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Figure 2. The framework of our FSDCNet model used to classify a 3D point cloud.

A fixed viewpoint is not conducive to model generalization and may cause overfitting.
This is because the CNN learns the features of objects from preprocessed 2D views with a
fixed viewpoint, and the discriminative power will decline for views extremely different
from those. In other words, fixed-viewpoint preprocessing causes the CNN model to per-
form well in multiviews from some angles and poorly from others. Therefore, we propose
multiview preprocessing to generate point clouds from fixed and random viewpoints. The
method has four steps, as shown in Figure 3.
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(1) Normalization of point cloud spatial location: Because the location distribution of
the original point cloud group may be inconsistent, the virtual camera must move
the viewpoint to the center of different objects. Therefore, we normalize the position
information of each point of all the point clouds to build its position distribution
around the origin of the 3D coordinate system. Normalization is represented by
Equation (1) as follows:

pi,j,k =
pi,j,k −min(PX,Y,Z)

max(PX,Y,Z)−min(PX,Y,Z)
(1)

where pi,j,k is any point in the point cloud, and min(PX,Y,Z) and max(PX,Y,Z) represent
the points obtained by taking the minimum and maximum values, respectively, of the
X, Y, and Z coordinate axes in the point cloud.

(2) Fixed viewpoint generation: Next, viewpoint selection is required. Since it is more
complex to fix the original point cloud and then move the virtual camera frequently in
space, we use an equivalent method, which is to rotate the object around a stationary
virtual camera. We define a set of rotation angles, Θ = {( θx, θy, θz)|θx, θy, θz ∈
[0, 360◦)}, where θx, θy, θz represent the rotation angles of the original point cloud
in X, Y, and Z coordinates, respectively. We rotate the object at equal intervals on
the remaining coordinate axis, use the virtual camera for 2D projection, and choose
the required view on the fixed viewpoint. Then, we place the virtual camera in a
fixed position, keep the positions of two coordinate axes unchanged, rotate at equal
intervals on the third coordinate axis, employ the virtual camera for 2D projection,
and select the required view on the fixed viewpoint.

(3) Random viewpoint generation: Then, we randomly generate (θx, θy, θz) on the rotation
angle set of the original point cloud and rotate the center point of the object to this
angle. The virtual camera is used for projection to obtain the required view on the
random viewpoint.

(4) Multiview selection of fixed and random views: After many views are selected from
fixed and random viewpoints, they must be combined in a certain proportion to
generate the ultimate multiview representation in the initial stage. It is assumed that
the fixed view set f ixed(Θ) and the random view set rand(Θ) have been obtained by
the fixed and random projection methods, respectively. n represents the number of
views and t is the number of random views. Defining Fi as the i-th view, P indicates
the final multiview combination, as shown in Equation (2):

P = (F1, F2, . . . , Fi, . . . , Fn) =
n−t

∑
i=1

f ixed(Θ) +
t

∑
j=1

rand(Θ) (2)

In practice, when n < 6, we take the view obtained from the fixed viewpoint; thus,
t = 0. Otherwise, we add one random view for every five fixed views, i.e., t =

⌊ s
6
⌋
. The

original multiview combination in different conditions is represented by Equation (3)
as follows:

P = (F1, F2, . . . , Fi, . . . , Fn) =


s
∑

i=1
f ixed(Θ) i f n < 6

n−t
∑

i=1
f ixed(Θ) +

t
∑

j=1
rand(Θ), t =

⌊ s
6
⌋

i f n ≥ 6
(3)

2.2. FSDC Local Feature Processing Operator

FSDC local feature extraction is shown in Figure 4, which has two subfigures. Figure 4a
involves the conversion of the i-th view in the multiview representation P of the 3D
point cloud obtained by the fixed and random viewport selection into the local view
representation Fviewi . After 7× 7 convolution and maximum pooling, it serially passes
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through n FSDC layers to obtain Fviewi through global average pooling. The details of
the i-th FSDC layer in Figure 3a are shown in Figure 4b. The layer extracts fine-grained
features by applying static convolution (3× 3 convolution of a ResNet50, ResNext50, and
SENet50 network) and our proposed lightweight dynamic convolution generation operator
to the input feature Xi in parallel, adaptively fuses the features of the two branches via
weight parameters β and γ, and thereby obtains the output feature Xi+1 through the BN
and ReLU layers.
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2.2.1. Lightweight Dynamic Convolution Generator

A series of convolution and pooling operations in the CNN extract features from im-
ages. The convolution kernel is weight-shared and suitable for processing high-dimensional
data; however, there are drawbacks, e.g., the parameters of the whole network will be
stationary after training, the adaptability is poor, and the flexibility is insufficient. Dynamic
convolution [41,42] can avoid the problems of static convolution, but it is computationally
complex and has a high memory overhead. Hence, we propose a more lightweight dynamic
convolution operator, as shown in Figure 5. It has 6 steps.



Remote Sens. 2022, 14, 1996 11 of 28Remote Sens. 2022, 14, x  12 of 30 
 

 

 

Figure 5. Lightweight dynamic convolution. “” means dot product. 

(1) Pooling of batch size dimension: First, we define a batch pool function, which fuses 

the original input feature map iX  in the batch dimension to achieve a lightweight 

effect and ensure that the most critical feature information is obtained; the function 

is defined in Equation (4) as follows: 

1

1

1
( ) ( , , , )

=

 = = 
b

i i

j

BatchPool X X j c h w
b

 (4) 

where 1
,

i
X Z  indicate the input and output features of BatchPool , respectively; 

( , , , )iX j c h w  represents an input image; b  is the number of batch sizes; and c , h , 

and w  are the channel, height, and width of the input features, respectively. The dimen-

sions of the original i
X  are b c h w     and the dimensions of 1

Z  as processed by the 

batch pool function are   1 c h w . 

(2) Convolution operation on different receptive fields: The original input features are 

convoluted from different receptive fields using 1 × 1 and 3 × 3 convolution, shown 

in Equations (5) and (6) as follows: 

2 1 1( ) = W  (5) 

3 2 1( ) = W  (6) 

where 1W  and 2W  are the 1 1  and 3 3  convolution matrices, respectively, and 

2Z  and 3Z  are the corresponding output features. The receptive field of the 1 1  con-

volution is relatively small and is used to integrate the information of each pixel in the 

Figure 5. Lightweight dynamic convolution. “∗” means dot product.

1© Architecture

(1) Pooling of batch size dimension: First, we define a batch pool function, which fuses
the original input feature map Xi in the batch dimension to achieve a lightweight
effect and ensure that the most critical feature information is obtained; the function is
defined in Equation (4) as follows:

Z1 = BatchPool(Xi) =
1
b

b

∑
j=1

Xi(j, c, h, w) (4)

where Xi, Z1 indicate the input and output features of BatchPool, respectively; Xi(j, c, h, w)
represents an input image; b is the number of batch sizes; and c, h, and w are the channel,
height, and width of the input features, respectively. The dimensions of the original Xi
are b× c× h× w and the dimensions of Z1 as processed by the batch pool function are
1× c× h× w.

(2) Convolution operation on different receptive fields: The original input features are
convoluted from different receptive fields using 1 × 1 and 3 × 3 convolution, shown
in Equations (5) and (6) as follows:

Z2 = W1(Z1) (5)

Z3 = W2(Z1) (6)

where W1 and W2 are the 1× 1 and 3× 3 convolution matrices, respectively, and Z2 and
Z3 are the corresponding output features. The receptive field of the 1× 1 convolution
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is relatively small and is used to integrate the information of each pixel in the spatial
dimension, while the receptive field of the 3 × 3 convolution is relatively large and can
obtain more neighborhood information around pixels.

(3) Fusion of information from different receptive fields: We add the output features Z2
and Z3 element by element and shrink them to Z4, whose dimensions are 1× c× 1× 1,
using spatial average pooling, as shown in Equation (7):

Z4 =
1

h× w

h

∑
i=1

w

∑
j=1

(Z2(1, c, i, j) + Z3(1, c, i, j)) (7)

(4) Dropout to avoiding overfitting: The dropout layer causes the neurons to randomly
inactivate in a certain proportion, which can avoid overfitting while dynamically
generating convolution, as shown in Equation (8) below:

Z5 = fdropout(Z4, p) (8)

where p is the proportion of inactivation and 0 < p < 1.

(5) Generation of dynamic weight: Here, we change the original dynamic weight to the
appropriate number of channels through the 1× 1 convolution of W3 and employ
sigmoid activation to obtain a probability between 0 and 1 as the dynamic weight to
generate the final convolution layer, as shown in Equation (9) below:

Ω = (ω1, . . . , ωi, . . . , ωn, ) = σsigmoidW3(Z5) (9)

where Ω = (ω1, ω2, · · · , ωn) is a 1×n vector of the generated dynamic convolution weights.

(6) Generation of dynamic convolution kernel: Next, we multiply the original n groups
of convolution kernels K by the dynamically generated weights Ω to generate the
final dynamic convolution kernels, as shown in Equation (10):

Convdynamic = Ω × K =
n

∑
i=1

ωiConvi (10)

2© Performance Analysis

(1) Parameters

It is assumed that the number of convolution input and output channels is cin and cout,
respectively, which are equal to c. The size of the output feature map is n = hout × wout,
where hout and wout are the height and width, respectively, of the output feature map. The
convolution kernels are represented by k × k, and the batch size by b. FSDC dynamic
convolution employs the pooling of the batch size dimension, which reduces the parameter
bc2k2 of the original dynamic convolution to c2k2, while the parameter of the traditional
static convolution is also c2k2; hence, the final parameter is 2c2k2.

(2) FLOPs

As is shown in Equation (11), the floating-point operations (FLOPs) of traditional static
convolution are about 2nc2k2, i.e.,

cout(cin × k× k + cin(k× k− 1) + cin − 1)× hout × wout
= cout(k2cin + k2cin − 1)× hout × wout

= (2k2cin − 1)couthoutwout
= (2k2c− 1)cn
≈ 2nc2k2

(11)

and the main FLOPs of FSDC dynamic convolution are reflected when the final generated
dynamic convolution kernel participates in convolution. Consequently, we can refer to
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traditional static convolution, whose FLOPs are approximately 2nc2k2; thus, the total
computation is 4nc2k2. Table 1 shows that the general dynamic convolution computation is
bnc2k2. The numbers of parameters and computations of FSDC convolution are only twice
those of traditional static convolution; however, they are generally far less than those for the
previous method of dynamic convolution, because a larger b means a higher computational
cost of dynamic convolution. It has been shown [43,44] that to obtain better performance,
b should often be large, i.e., b >> 4. Hence, our method can combine the advantages of
traditional static convolution and dynamic convolution, with a greatly reduced number of
parameters and computations.

Table 1. Comparison of static convolution, dynamic convolution, and FSDC in terms of parameters
and computation.

Conv. Type Static Conv. Dynamic Conv. FSDC

Parameters c2k2 bc2k2 2c2k2

FLOPs 2nc2k2 bnc2k2 4nc2k2

2.2.2. Adaptive Process Combining Static and Dynamic Convolution

Next, we combine static and dynamic convolution to make the most of their advan-
tages. Specifically, two convolution branches are applied to the input feature Xi to obtain
the output features Xs and Xd, which represent the output characteristics obtained by static
and dynamic convolution, respectively. The learnable parameters β and γ are introduced
as the corresponding weights of Xs and Xd, respectively, and the final value can be written
as shown in Equation (12):

Xi+1 = β× Xs + γ× Xd (12)

If β = 1 and γ = 0, the output feature Xi+1 will degenerate to Xs as extracted by
traditional static convolution; if β = 0 and γ = 1, it will be transformed to Xd as extracted
by the proposed lightweight dynamic convolution. Thus, different weights can be obtained
through the continuous optimization of β and γ according to the input data, i.e., the features
learned by static and dynamic convolution can be emphasized to more or less achieve the
desired feature extraction effect.

2.3. Adaptive Global Attention Pooling

An adaptive global attention pooling architecture, see Figure 6, is designed to fuse
multiple local view features into an ultimate global view representation according to their
importance for classification tasks. Figure 6a shows that different local views feature
Fviewi are operated by pooling, convolution, and Swish [45] activation functions, so as to
learn their corresponding weight αi. Figure 6b shows that each local view feature Fviewi
is fused view-wise with the learned weight αi to obtain the global view representation
Fview. The proposed method considers the influence of different views to make the global
representation more typical and representative in three steps.
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(1) Global average pooling (GAP) of local features: Global average pooling is applied
to n local features Fview1 , Fview2 , . . . , Fviewn , and an n-dimensional vector is obtained as
the initial value set of all dynamic weights, as shown in Equation (13) below:

A1 =
1

h× w

h×w

∑
i=1,j=1

fi,j (13)

where A1 ∈ Rn, and h and w are the height and width, respectively, of the local
features. In general, either H or W is 1, and fi,j is the value of a feature at the
subscript position.

(2) Dynamic weight generation of local features: Next, we apply two 1× 1 convolutions to
the n-dimensional vector and add a nonlinear activation function, Swish [45], between
them. This is similar to the attention mechanism of SENet [46]; however, we do not
squeeze and excite the channel, and the activation function is Swish. Then, the feature
weight of each view can be acquired through the softmax activation function. The
generation process is shown in Figure 5a. The dynamically generated weight is shown
in Equation (14) below:

A2 = σso f tmax(Conv1×1(σswish(Conv1×1(A1)))) (14)

where σso f tmax and σswish are the softmax and Swish activation functions, respectively,
and Conv1×1 is a 1× 1 convolution with n input and output channels.

(3) Global feature fusion: Finally, we multiply each view by its learned weight and add
them in the view dimension. The ultimate global representation contains the feature
information of all local views. The global representation fusion process is shown in
Figure 5b and Equation (15):

F = α1 × Fview1 + . . . + αi × Fviewi + . . . + αn × Fviewn (15)

It should be noted that α1, . . . , αi, . . . , αn are the components of weight A2, and F and
Fviewi are the final global representation and the i-th local feature, respectively.

3. Experiment
3.1. Dataset

We used the ModelNet40 [47] and Sydney Urban Objects [48] datasets for training
and testing in our experiment. ModelNet40 is a dense point cloud dataset, completely
synthesized by a computer, which simulates point cloud data under idealized conditions.
It was chosen to reflect the accuracy of our proposed algorithm in point cloud classification
due to its noise-free data. Sydney Urban Objects is a sparse point cloud dataset obtained
via LiDAR scanning of outdoor scene objects in Sydney, Australia. The datasets contain
a considerable amount of noise, local deformity, and uneven point density, which could
be used to test the robustness and accuracy of FSDCNet in a real sparse point cloud
classification task.

ModelNet40 is a widely used dataset for multiview 3D point cloud classification. It
was published by Princeton University and contains 662 object categories and 127,915
CAD models. ModelNet40 selects 40 categories of objects, including aircraft, bathtub, bed,
and bench, with a total of 12,314 CAD models. It contains 26 object categories, including
common urban road objects, such as vehicles, pedestrians, buildings, and trees, with a total
of 631 point clouds. Figures 7 and 8 show several models from the two datasets.
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3.2. Implementation

The hardware used for all experiments included a Nvidia Titan XP dual graphics card,
64 GB random access memory (RAM), and a 256 GB solid-state disk. The operating system
used was Ubuntu 20.04, and the software included Blender 2.92.0 to preprocess the point
cloud, PyTorch 1.7.1, and compute unified device architecture (CUDA) 10.1. The initial
learning rate was set to 0.0001. An Adam optimizer was used for the gradient update.
Several strategies were used to prevent model overfitting, including L2 regularization and
a weight decay coefficient of 0.0001. The batch size was set to 128 for a single view, 16 for
6 views, and eight for 12 views. We constructed a point cloud dataset corresponding to the
original ModelNet40 dataset by sampling 9999 points for each mesh. No preprocessing
was required for the Sydney Urban Objects dataset, which was in scanned point cloud
format. All multiviews were generated from the original point clouds of the two datasets
according to the fixed and random perspective method. For ModelNet40, 108,732 views
and 29,616 views were generated in the training set and testing set, respectively; for Sydney
Urban Objects, 6954 views and 3156 views were generated in the training set and testing
set, respectively. The training and testing periods were all set to 30 epochs.

3.3. Metrics

For the ModelNet40 dataset, the performance of the algorithm was evaluated by the
overall accuracy (OA) and average accuracy (AA). In the training set, ∆ is the total number
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of samples, ∆true is the number of samples correctly classified by FSDCNet, δi is the number
of samples in class i, δi(true) is the number of samples correctly classified by FSDCNet in δi,
ci is the accuracy of the i-th class, and n is the total number of classes. OA and AA were
calculated according to Equations (16) and (17) as follows [9]:

OA =
∆true

∆
(16)

AA =
c1 + c2 + . . . + cn

n
, ci =

δi(true)

δi
(17)

The number of objects in each class of the Sydney Urban Objects dataset varies greatly.
For instance, there are 88 car samples, and just one scooter sample. The correct judgment
of a small sample class involves less computational cost and inference time than a large
sample class; however, the influence of their weight on the final AA is indeed the same,
which is clearly unjustified. This is because AA will be affected by a small sample class,
resulting in sharp fluctuations. Replacing AA with the F1 score can effectively reduce the
impact of such problems on the final evaluation. Hence, the measurement criteria used for
the Sydney Urban Objects dataset were the OA and F1, which was calculated according to
Equation (18) as follows [49]:

F1 =
2× P× R

P + R
(18)

where P and R are the average precision and recall, respectively, of all classes.

3.4. Experimental Results and Analysis
3.4.1. Comparison with State-of-the-Art Methods

We compared FSDCNet with the most advanced point cloud classification models,
including VoxelNet, VRN, Orion, and LightNet, which are voxel-based; PointNet, Point-
Net++, PointGrid, PointASNL, SimpleView, and ECC, which are based on a direct point
cloud; and MVCNN, GVCNN, MVTN, and MHBN, which are view-based. It can be seen
from Table 2a that on the ModelNet40 dataset, the OA and AA of FSDCNet in 6 views
were 94.6% and 93.3%, respectively, compared to 94.1% and 92.2%, respectively, for the best
comparison method, MHBN. For 12 views, the OA and AA of FSDCNet reached 95.3% and
93.6%, respectively, which were the highest values among all the models. From Table 2b, on
the Sydney Urban Objects dataset, FSDCNet had an OA of 85.3% and an F1 score of 83.6%
on 6 views. LightNet had the best classification accuracy among the point cloud-based
models, and its F1 score was 79.8%. In 12 views, the OA of FSDCNet was 85.5% and the
F1 score was 83.7%. Compared with other point cloud classification algorithm models,
the evaluation metrics in the Sydney Urban Objects dataset were also superior. We also
obtained the OA and F1 metrics for 6 views of MVCNN and GVCNN on the Sydney Urban
Objects dataset. It can be seen that the two indicators of our FSDCNet in a single view
were approximately equivalent to the 6 views of MVCNN. FSDCNet in 6 views was also
much better than GVCNN’s, where the OA and F1 metrics of our model were 1.4% and
1.1% higher than those of the counterpart, respectively. This demonstrates that FSDCNet
has broad applicability and can achieve state-of-the-art classification effects on both dense
and sparse point clouds. On the one hand, the multiple views selected by the traditional
fixed viewpoint are not conducive to the generalization of the model, i.e., accuracy will be
greatly reduced in a viewpoint that has not been seen, or there will be large differences
between the training set and the test set. In contrast, our model applies fixed and random
viewpoint selection, which can increase its generalization performance, i.e., it can improve
the accuracy of the classification of unknown viewpoints and is flexible. On the other hand,
with the fusion of dynamic and static convolution, as found in our local feature extraction
operator, we can combine their advantages in an adaptive approach to achieve a better
feature extraction effect. Most models adopt traditional static convolution; thus, abundant
and fine-grained information cannot be extracted. In addition, the proposed model assigns



Remote Sens. 2022, 14, 1996 18 of 28

different weights to views according to their importance through adaptive global attention
pooling, such that the final fusion-generated global view is more representative. Other
point cloud pooling methods, e.g., average pooling and maximum pooling, cannot achieve
this level of performance.

Table 2. Performance comparison of classification algorithms based on the ModelNet40 and Sydney
Urban Objects datasets.

(a) ModelNet40

Method Views Modality OA AA

VoxelNet [50] - Voxel - 83.0
VRN [51] - Voxel - 91.3

3D Capsule [52] - Point 89.3 -
PointNet [10] - Point 89.2 86.2

PointNet++ [11] - Point 91.9 -
PointGrid [53] - Point 92.0 88.9

PointASNL [31] - Point 93.2 -
SimpleView [54] - Point 93.9 91.8

MVCNN [9] 12 Views 92.1 89.9
GVCNN [12] 12 Views 92.6 -
MVTN [55] 12 Views 93.8 92.0
MHBN [13] 6 Views 94.1 92.2

FSDCNet (ours) 1 Views 93.8 91.2
FSDCNet (ours) 6 Views 94.6 93.3
FSDCNet (ours) 12 Views 95.3 93.6

(b) Sydney Urban Objects

Method Views Modality OA F1

VoxelNet [50] - Voxel - 73.0
ORION [56] – Voxel - 77.8

ECC [57] - Point - 78.4
LightNet [58] - Voxel - 79.8
MVCNN [9] 6 Views 81.4 80.2
GVCNN [12] 6 Views 83.9 82.5

FSDCNet (ours) 1 Views 81.2 80.1
FSDCNet (ours) 6 Views 85.3 83.6
FSDCNet (ours) 12 Views 85.5 83.7

3.4.2. Influence of the Multi-Perspective Selection Method

Fixed and random viewpoint selection methods were adopted. The AA metrics of
the two methods were compared on 6 and 12 views. According to Formula 3, in the fixed
and random viewpoint selection methods, 6 views consisted of five fixed views and one
random view, and 12 views consisted of 10 fixed views and two random views. As can be
seen from Table 3, the AA metrics of the ModelNet40 and Sydney Urban Objects datasets
in 6 and 12 views were improved by a certain proportion after the fixed and random
viewpoint selection method. From Table 3a, for the ModelNet40 dataset, if fixed and
random viewpoints were employed, the OA of 6 and 12 views reached 94.6% and 95.3%,
respectively. In contrast, the OA of 6 and 12 views reached 94.1% and 94.7%, respectively, if
only a fixed viewpoint was employed. From Table 3b, for the Sydney Urban Objects dataset,
if fixed and random viewpoints were employed in 6 and 12 views, their OAs were 85.3%
and 85.5%, respectively, while the OAs were 84.1% and 84.9%, respectively, if using only
fixed viewpoints. Therefore, it can be concluded that for views selected from the traditional
fixed viewpoint, combining some views obtained from the random viewpoint can increase
the accuracy and even the robustness of model classification, such that the model can learn
some features that cannot be learned from the fixed viewpoint. However, the number
of views selected from random viewpoints cannot be too large, as the accuracy of the
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model will decline sharply. This is because the different views generated by these random
viewpoints will have considerable differences, which will reduce the data correlation of the
training and test sets or even cause them to be completely different, affecting the accuracy
of classification.

Table 3. Comparison of the classification performance of different viewpoint selection methods.

(a) ModelNet40

Preprocessing Views OA

Fixed 6 94.1
Fixed and random 6 94.6

Fixed 12 94.7
Fixed and random 12 95.3

(b) Sydney Urban Objects

Preprocessing Views OA

Fixed 6 84.1
Fixed and random 6 85.3

Fixed 12 84.9
Fixed and random 12 85.5

3.4.3. Influence of the Number of Views

In the evaluation of the classification performance of FSDCNet on different views,
we sought a tradeoff between classification performance and computational storage cost.
In the experiment, the number of views was set to 1, 6, and 12, so as to compare the
OA, AA, and F1 metrics of FSDCNet and other advanced multiview classification models
using the ModelNet40 and Sydney Urban Objects datasets. From Table 4a, it can be seen
that the OA and AA of FSDCNet in a single view were 93.8% and 91.2%, respectively, on
ModelNet40, which were higher than those of MVCNN in 6 and 12 views and of GVCNN
in 12 views. The OA and AA of FSDCNet in 6 views were 94.6% and 93.2%, respectively,
and the corresponding metrics of MHBN were 94.1% and 92.2%, respectively. The OA and
AA of FSDCNet reached 95.3% and 93.6%, respectively, in 12 views, which were much
higher than those of the most advanced multiview classification models. From Table 4b, it
can be seen that the OA and F1 score of FSDCNet on the Sydney Urban Objects dataset
were 81.2% and 80.1%, respectively, in a single view; 85.3% and 83.6%, respectively, in 6
views; and 85.5% and 83.7%, respectively, in 12 views. The F1 score of LightNet, which
showed excellent performance among these models (Table 4b), was only 79.8%, while that
of FSDCNet was 0.3%, 3.8%, and 3.9% higher in 1, 6, and 12 views, respectively. It is worth
noting that the classification performance of FSDCNet in a single view was better than that
of most of the compared point cloud classification models on both the ModelNet40 and
Sydney Urban Objects datasets.

Overall, with an increase in the number of views, the OA, AA, and F1 metrics of
FSDCNet also increased. In contrast, the classification performance of MHBN in 12 views
was poorer than that in 6 views, which shows that our algorithm is more robust than
MHBN and our model is not prone to jitter. The ModelNet40 dataset showed significantly
better performance than the Sydney Urban Objects dataset. We believe that this is because
Sydney Urban Objects is a sparse point cloud dataset taken from the real world with a
small number of samples; hence, it lacks sufficient learning data. In addition, since its data
were scanned by LiDAR in a real scene, it contains a considerable amount of noise. Since
the noise increases with the number of views, the model learns more noisy data, which will
eventually affect its classification performance.
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Table 4. Influence of the number of views on classification performance.

(a) ModelNet40

Method Views OA AA

MVCNN [9] 6 92.0 -
MVCNN [9] 12 91.5 -
GVCNN [12] 12 92.6 -
MVTN [55] 12 93.8 92.0
MHBN [13] 6 94.1 92.2
MHBN [13] 12 93.4 -

FSDCNet (ours) 1 93.8 91.2
FSDCNet (ours) 6 94.6 93.3
FSDCNet (ours) 12 95.3 93.6

(b) Sydney Urban Objects

Method Views OA F1

VoxelNet [50] - - 73.0
ORION [56] - - 77.8

ECC [57] - - 78.4
LightNet [58] - - 79.8
MVCNN [9] 6 81.4 80.2
GVCNN [12] 6 83.9 82.5

FSDCNet 1 81.2 80.1
FSDCNet 6 85.3 83.6
FSDCNet 12 85.5 83.7

3.4.4. Influence of Static Convolution and Dynamic Convolution

In the local feature extraction module of FSDCNet, dynamic and static convolution
work together to obtain the local feature information of the view, which is the basis of the
subsequent global feature fusion. For the static convolution part, the convolution of any
existing 2D CNN model can be applied. Here, we employed the three most commonly
used models—ResNet50, ResNext50, and SENet50—and compared the OA, AA, and F1
metrics of the models with and without our proposed lightweight dynamic convolution.
All comparisons were made in 6 views in order to balance storage overhead and accu-
racy improvement. As can be seen from Table 5, the classification accuracy of the two
datasets improved after combining lightweight dynamic convolution and the proposed
adaptive weight parameter fusion. The OA and AA of the ResNet50 network model on
the ModelNet40 dataset were 93.0% and 92.0%, respectively. Combined with lightweight
dynamic convolution, the OA and AA were 93.8% and 92.6%, respectively. On the Sydney
Urban Objects dataset, the OA and F1 score of the original ResNet50 were 83.1% and 81.7%,
respectively. Combined with lightweight dynamic convolution, they were 84.5% and 82.3%,
respectively. Similarly, it can be seen in Table 5 that for ResNext50, the OA and AA on
ModelNet40 increased by 1.2% and 0.5%, respectively, while the OA and the F1 score on
Sydney Urban Objects increased by 1.0% and 0.8%, respectively. For SENet50, the OA
and AA on ModelNet40 increased by 1.1% and 1.0%, respectively, and by 1.3% and 1.4%,
respectively, on Sydney Urban Objects. Through the above comparisons, we can conclude
that, after using static convolution and our proposed lightweight dynamic convolution
branch in parallel, these metrics were enhanced to some degree.
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Table 5. Comparison of classification performance between static and dynamic convolution.

CNN Model
ModelNet40 Sydney Urban Objects

OA AA OA F1

ResNet50 [59] 93.0 92.0 83.1 81.7
FSDCNet-ResNet50 93.8 92.6 84.5 82.3

ResNext50 [60] 92.9 92.2 83.8 81.7
FSDCNet-ResNext50 94.1 92.7 84.8 82.5

SENet50 [46] 93.5 92.3 84.0 82.2
FSDCNet-SENet50 94.6 93.3 85.3 83.6

When investigating the reason for this, we found that lightweight dynamic convolution
can extract some fine-grained feature information that cannot be obtained by traditional
static convolution, and this is more conducive to the final model classification. Moreover,
lightweight dynamic convolution and static convolution are combined adaptively, which
can better integrate the features of different dimensions.

3.4.5. Influence of Fusion Strategy

The fusion strategy of dynamic and static convolution is mainly completed through the
learnable parameters β and γ, as shown in Equation (12). If we analyze the fusion strategy
in detail, it largely depends on the impact of using or not using the learnable parameters
β and γ on the classification performance. It should be noted that when the learnable
parameters β and γ are used, their initial values are set to 1.0, and the values of β and γ will
be dynamically updated with the back propagation of the network. When the learnable
parameters β and γ are not used, the feature information extracted from the dynamic and
static convolution branches is directly added element by element. Here, we presented some
experimental results of the OA, AA, and F1 metrics in 6 and 12 views on two datasets,
as shown in Table 6. As can be seen from Table 6a, for ModelNet40, the OA and AA
indicators in 6 and 12 views increased by 0.4%, 1.3%, 0.4%, and 0.5%, respectively, after
using learnable parameters. Similarly, Table 6b shows that, for the Sydney Urban Objects
dataset, the OA and F1 indicators in 6 and 12 views increased by 0.8%, 1.1%, 0.6%, and 0.8%,
respectively, after using the learnable parameters. The performance on the ModelNet40 and
Sydney Urban Objects datasets were improved after using the learnable parameters β and
γ; however, the latter was better than the former. This shows that extracting local feature
information via adaptive fusion outperforms the element-wise addition of the extracted
features directly.

Table 6. Comparison of classification performance with or without the learnable parameters β and γ.

(a) ModelNet40

Learnable Parameters
6 views 12 views

OA AA OA AA

With β and γ 94.6 93.3 95.3 93.6
Without β and γ 94.2 92.0 94.9 93.1

(b) Sydney Urban Objects

Learnable Parameters
6 views 12 views

OA F1 OA F1

With β and γ 85.3 83.6 85.5 83.7
Without β and γ 84.5 82.5 84.9 82.9

3.4.6. Influence of Pooling

Considering the tradeoff between storage overhead and accuracy improvement, we
still used 6 views for evaluation. The most commonly used pooling methods, including
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maximum pooling, average pooling, maximum and average pooling, and soft pooling,
were compared with the adaptive attention pooling method of FSDCNet. As shown in
Table 7, the OA and AA of FSDCNet on the ModelNet40 dataset were 94.6% and 93.3%,
respectively, compared to 94.2% and 92.5%, respectively, for maximum pooling. The
OA and F1 score of FSDCNet were 85.3% and 83.6%, respectively, on the Sydney Urban
Objects dataset, compared to 84.9% and 83.1%, respectively, for maximum pooling. These
experiments demonstrate that our adaptive global attention pooling achieves the most
desirable performance. It can learn a weight for each local view feature according to its
importance and integrate different view features with learned weights into the final global
view representation, so as to strengthen important features, weaken non-essential features,
and integrate the most crucial information in multiple local views, contributing to the final
classification and judgment of the 3D point cloud.

Table 7. Comparison of classification performance with different global pooling.

Method
ModelNet40 Sydney Urban Object

OA AA OA F1

MaxPooling 94.2 92.5 84.9 83.1
MeanPooling 93.7 92.1 84.1 82.3
Max+Mean 94.2 92.8 85.2 83.1

SoftPool [61] 93.7 91.9 84.5 83.0
FSDCNet (ours) 94.6 93.3 85.3 83.6

3.4.7. Visualization and Analysis of Confusion Matrices and ROC Curves
1© Confusion matrices

A confusion matrix is usually used to more intuitively exhibit the classification perfor-
mance of a model in various categories. It can clearly reveal which categories are easy to
distinguish and which are difficult to determine. Figure 9 shows the confusion matrices
of our FSDCNet on two datasets. Here, the most representative 6 views were selected to
evaluate the classification performance of our model on each class. As can be seen from
Figure 9a, for the ModelNet40 dataset, the classification accuracy of FSDCNet on some
classes, e.g., aircraft, bathtub, bed, car, and cone, reached 100%. There were a few incorrect
judgments about the classification of other classes, e.g., bench, bowl, and curtain. It is worth
noting that FSDCNet had a high proportion of errors when judging plant objects. Among
the 198 plant samples, 48 samples were misjudged as a flowerpot, accounting for about
24.2% of the plant samples. When investigating the reason for this, we found that there
were several similar instances in the two classes. A certain proportion of plant samples
contained both flowers (plants class) and flowerpots, leading to incorrect classification
by the model. In contrast, the majority of classes in the ModelNet40 dataset had a high
classification accuracy. As can be seen from Figure 9b, for the Sydney Urban Objects dataset,
our FSDCNet also achieved 100% classification accuracy on some classes, e.g., bench, bi-
cycle, car, and excavator, although some of these classes merely had a small number of
instances. There were a few misjudged samples in several classes, e.g., building, traffic
lights, and traffic signs. However, it is worth nothing that FSDCNet demonstrated a high
proportion of errors when discriminating “pedestrian” objects. Among the 119 “pedestrian”
samples, 20 samples were incorrectly judged as “cyclist”, accounting for about 16.8% of
the “pedestrian” samples. We believe that the model learned human characteristics from
“cyclist” and “pedestrian”, causing misjudgment in the actual classification. Overall, our
FSDCNet model achieved excellent classification performance through the visual confusion
matrix on the two datasets. Meanwhile, our experiments also show that FSDCNet has
widespread applicability, not only to dense point clouds (ModelNet40), but also to sparse
point clouds (Sydney Urban Objects).
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reflecting the impact of any threshold on the generalization performance of the model.
We visualized the average ROC curves of all classes of FSDCNet on the two datasets and
calculated the corresponding area under curve (AUC), as shown in Figure 10. Overall,
FSDCNet achieved outstanding performance on the ModelNet40 and Sydney Urban Objects
datasets; however, the indicator of the former was better than that of the latter. For the
ModelNet40 dataset, when FPR was 0, its TPR reached about 0.95. For the Sydney Urban
Objects dataset, when FPR was close to 0.1, its TPR reached about 0.95. The average macro-
and micro-AUC of all classes were 0.9961 and 0.9973, respectively, on the ModelNet40
dataset. Similarly, the average macro- and micro-AUC were 0.9839 and 0.9830, respectively
on the Sydney Urban Objects dataset. There was a slight discrepancy between the results
from the two datasets. We believe this was due to the differences between the ModelNet40
and the Sydney Urban Objects datasets themselves. On the one hand, ModelNet40, as
the representative of a dense point cloud dataset, simulates point cloud classification in
the ideal environment. On the other hand, Sydney Urban Objects, which represents a
sparse point cloud dataset, characterizes noisy point cloud classification in the real world.
Therefore, the generalization performance of the former is better than that of the latter for
the same classifier. However, the overall generalization performance of both is very high.
This again shows that our FSDCNet model can not only achieve very high accuracy, but
also has wide applicability.
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4. Conclusions

Here, we proposed FSDCNet, a multiview 3D point cloud classification method based
on a dynamic and static convolution fusion neural network. With the aim of resolving the
problem of overfitting in the preprocessing stage of the traditional fixed view selection
method, our FSDC model applies fixed and random viewpoint selection to improve the
generalization performance of the model on different views. An adaptive weight fusion
operator of static and dynamic convolution is used for local feature extraction in order
to extract more fine-grained feature information. In addition, adaptive global attention
pooling can more effectively integrate local features on different views and obtain the most
critical detail in the global representation of the point cloud. Compared with some advanced
3D point cloud classification models, FSDCNet achieved state-of-the-art classification as
measured by the OA, AA, and F1 score. Experiments on the ModelNet40 and Sydney Urban
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Objects datasets demonstrated that FSDCNet is not only suitable for the classification of
dense point cloud data but can also achieve the best results for sparse point clouds with
noise and local block defects, which shows its wide applicability. However, FSDCNet,
similar to other convolutional neural networks, still needs a large number of sample
datasets to support training and testing. Hence, in future work, we intend to introduce
one-shot, zero-shot, vision transformer, and other technologies, such that FSDCNet can
also achieve superior performance on small sample datasets.
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Abbreviations

2D Two-dimensional
3D Three-dimensional
FSDCNet Fusion static and dynamic convolutional neural network
OA Overall accuracy
AA Average accuracy
LiDAR Light detection and ranging
RGB-D Red, green, blue, and depth
MLP Multilayer perceptron
CNN Convolutional neural network
VB-Net Voxel-based broad learning network
TVS Tri-projection voxel splatting
RCC Reflection convolution concatenation
GPU Graphics processing unit
GSA Group shuffle attention
GSS Gumble subset sampling
MCMC Markov chain Monte Carlo
PointASNL Point adaptive sampling and local and nonlocal module
FPS Farthest point sampling
FLOPs Floating point operations
GVCNN Group view convolution neural network
MVHFN Multiview hierarchical fusion network
EM Expectation maximization
GPVLM Gaussian process latent variable model
RBF Radial basis function
LMVCNN Latent multiview CNN
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MHBN Multiview harmonized bilinear network
GAP Global average pooling/global attention pooling
RAM Random access memory
CUDA Compute unified device architecture
GB Gigabyte (1024 megabytes)
ROC Receiver operating characteristic curve
AUC Area under curve
FPR False positive rate
TPR True positive rate
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