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Abstract: Moderate-resolution satellite imagery is essential to detect conifer tree decline on a regional
scale and address the threat caused by pinewood nematode (PWN), (Bursaphelenchus xylophilus. This
is a quarantine organism responsible for pine wilt disease (PWD), which has caused substantial
ecological and economic losses in the maritime pine (Pinus pinaster) forests of Portugal. This study
describes the first instance of a pre-operational algorithm applied to Sentinel-2 imagery to detect
PWD-compatible decline in maritime pine. The Random Forest model relied on a pre-wilting and an
in-season image, calibrated with data from a 24-month long field campaign enhanced with Worldview-
3 data and the analysis of biological samples (hyperspectral reflectance, pigment quantification in
needles, and PWN identification). Independent validation results attested to the good performance
of the model with an overall accuracy of 95%, particularly when decline affects more than 30% of the
100 m2 pixel of Sentinel-2. Spectral angle mapper applied to hyperspectral measurements suggested
that PWN infection cannot be separated from other drivers of decline in the visible-near infrared
domain. Our algorithm can be employed to detect regional decline trends and inform subsequent
aerial and field surveys, to further investigate decline hotspots.

Keywords: machine-learning; pinewood nematode; pine wilt disease; remote sensing; Sentinel-2;
tree decline

1. Introduction

Multiple causal agents lead to temporary or irreversible tree decline in European
temperate forests. Abiotic and biotic agents often act in synergy [1], disrupting ecosystems
and value chains, thus creating both tangible and intangible losses to local communities [2].
Purposeful or accidental introduction of alien species, a common issue in a world of global
trade, can also severely compromise the stability of ecosystems. This was the case in the
years following the detection of the pinewood nematode (PWN), Bursaphelenchus xylophilus
(Steiner and Bührer, 1934) Nickle, 1970 in Europe [3].

PWN is native to North America but it is now found in Asian and European countries [4],
including Portugal (mainland) [3], Spain [5,6], and the Madeira Island [7]. Given the threat
posed by this nematode to conifers, it is listed as a quarantine organism by the European
and Mediterranean Plant Protection Organization [8]. Specific rules and regulations have
also been adopted by national and international organisms to contain this biotic agent.
These included several directives issued by the European Commission, designed to curb
the spread of PWN beyond the borders of Portugal.

PWN is the causal agent of the pine wilt disease (PWD), which is spread by pine beetles
mainly belonging to the genus Monochamus. In Portugal and Spain, the only Monochamus
species known as a vector is M. galloprovincialis (Olivier) [9,10]. Even though several
conifers are vulnerable to PWN infection, maritime pine (Pinus pinaster Aiton) is the most
susceptible host tree in Portugal. This species was once the most abundant in the country,
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but recent estimates now rank it as the third most common species due to widespread
wildfires and PWD [11].

PWN transmission can occur in two ways: (i) primary transmission through feeding
wounds, in which nematodes carried by beetles move into the tree [4,12], and; (ii) secondary
transmission, during oviposition under the bark of stressed trees [4,13]. PWN causes a
decrease in photosynthesis, xylemic dysfunction, water transport blocking, and affects
cortex anatomy. Ultimately, it leads to parenchyma cell senescence, cambium destruction
and a quick death (within weeks to months) [14]. However, symptoms are non-specific
and include a decrease in resin exudation, needle browning and wilting, and drying of the
crown. From a management perspective, the earliest and most obvious symptom is the
discoloration of needles, which sets in early in the decline process and is associated with a
reduction of photosynthetic pigments [15].

Since the symptoms are non-specific, field surveys must be focused on monitoring
conifer trees showing decline symptoms, particularly a totally or partially dried crown or
an unusual coloration of leaves [16]. This approach was followed by regulatory bodies,
with mandates requiring the removal of all declining trees being adopted in Europe. As
such, research on the remote detection of PWD has surged in recent years because of the
complexity of traditional surveying methods, the area that must be covered (i.e. 714,000 ha
of maritime pine forest in Portugal alone), and legal requirements. Previous studies, which
were mostly exploratory, encompassed the analysis of spectral changes in the needles of
PWN-infected trees using portable systems [17,18], sensors onboard remotely piloted aerial
systems (RPAS) [19,20] or aircraft [21], and satellite imagery [22].

In [17] a hyperspectrometer was used to analyze leaf reflectance after P. thunbergii
PWN inoculation. In this controlled setting, several known vegetation indices were used
and a new one was proposed. The green-red spectral area index (GRASI) leveraged the
area under the reflectance values between 500 nm and 670 nm and the increase in red
wavelengths as infection progressed. The same study also reported other potentially
useful changes in the spectral signature of infected trees in the shortwave infrared (SWIR)
domain. Furthermore, a 2015 feasibility study by the Joint Research Center (JRC) [21]
acquired hyperspectral imagery in the 400–1000 nm interval, along with thermal and
high-resolution commercial satellite imagery. Fifty-nine spectral indices were evaluated,
with all hyperspectral indices showing statistically significant differences between healthy
and infected trees. However, the co-occurrence of discoloration and defoliation created
difficulties to discriminate between meaningful levels of chlorosis.

The launch of Copernicus’ Sentinel-2 satellites in 2015 (S-2A) and 2017 (S-2B) heralded
a new era in forest monitoring, upgrading the virtual constellation of medium resolu-
tion satellites, which was until then led by Landsat [23]. Data became available with
improved spatial, temporal, and spectral characteristics (e.g., [24]), which enabled innova-
tive data-intensive solutions to detect biotic forest disturbance [25–28]. This opportunity
was explored in a study by Zarco-Tejada et al. [29], which highlighted the relevance of the
red edge bands to detect and monitor tree decline, particularly in the temporal domain.
The models published in the study paved the way for the future use of Sentinel-2 imagery
to operationally monitor conifer decline over large swaths of land. However, the study also
emphasizes the challenges inherent to real-world monitoring, caused by natural variability
and heterogeneous forest cover.

Mapping chlorophyll content using Sentinel-2 data was also proposed by [22] as a
solution to monitor conifer disturbance and decline. Needle chlorophyll (Ca+b) content was
successfully retrieved from an Iberian sparse pine forest. Red Edge bands were found to be
particularly useful to estimate Ca+b, through the application of the R750/R710 Chlorophyll
Index (CI), CI-Gitelson, Normalized Difference of Red-Edge bands (NDRE1 and NDRE2).
The non-linear relations were, however, strongly affected by seasonal variability, with a
poorer (but significant) performance in the winter.

It is also important to emphasize the wealth of information available on the detection of
conifer decline (unrelated to PWD), including the evaluation of established and new indices
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(e.g., [30]). These papers contributed to an increasing body of knowledge on the spectral
and structural response to biotic and abiotic stressors by a wide range of Pinus species.

Project FOCUS (European Commission H2020 GA 776026, http://focus.uc.pt, avail-
able at the time of writing) addressed the challenge of detecting declining trees due to PWD
under a three-tier approach including field, airborne, and satellite imagery. This approach
covered user needs and requirements while consistently advancing decline detection using
multiple remote systems supported by field campaigns.

A previous study published by the FOCUS team [19] described the most conclusive
use of very high resolution hyper- and multispectral imagery acquired from remotely
piloted aerial systems (RPAS) to detect declining/symptomatic trees. The described meth-
ods provided a highly reliable solution to map and characterize tree decline at stand or
tree level. However, given the known constraints surrounding RPAS operation, we hy-
pothesize that moderate resolution satellite imagery may be adequate to determine the
location of decline hotspots at a regional level, especially when time series are employed.
If verified, the outputs of the regional assessment maps could be used to select areas for
subsequent high resolution (aerial) and field surveys. To test this hypothesis, we developed
a machine-learning method to detect pixels containing declining maritime pine trees using
Sentinel-2, 10-m bands. It was not the objective of this work to develop a PWN-specific
decline detection algorithm, which was deemed unfeasible given the unspecific nature of
the symptoms.

To accomplish this purpose, a comprehensive study was designed covering three
regions in central Portugal. Firstly, we mapped declining maritime pine trees from two
seasons (2018 and 2019), through monthly field campaigns supported by the analysis
of Worldview-3 imagery. These data were used to generate a reference grid covering
all test plots. A set of extensive laboratory measurements was also compiled to inform
algorithm development and characterize decline trajectories (spectral signature of needles,
photosynthetic pigment concentration). Finally, the spectra retrieved from Sentinel-2
imagery collocated with the reference grid used to calculate spectral indices before the
construction of a Random Forest classifier (binary, declining/healthy).

2. Materials and Methods
2.1. Study Area

Three test areas (Troviscal (TRV), Sertã (SER), and Condeixa-a-Nova (CAN)) were
selected in central Portugal (Figure 1), comprising nearly 300 km2 of heterogeneous land
cover. Site selection was designed to maximize the diversity of conditions including
topography, climate, and management practices. A total of 11 test plots were maintained
throughout the study, as detailed in the next section.

The three regions were located at the boundary between Csa (hot-summer Mediter-
ranean climate) and Csb (warm-summer Mediterranean climate) climates, according to
the Köppen-Geiger classification [31]. Under available climate scenarios, a northward
expansion of the Csa climate region is likely, which will possibly encompass the entire
country by 2100. This climate shift will increase the relevance of abiotic stressors, including
temperature and drought, which are known to cause widespread decline trends in Mediter-
ranean forests [32]. The new climate extremes are likely to affect P. pinaster populations
differently, based on their genetic and phenotypic variability [33].

Land cover across all three test regions is dominated by forest and shrubland and
characterized by low human population density. Forest cover consists of large swaths
of monoculture, most often maritime pine and eucalypt (Eucalyptus spp.). Smaller, in-
terspersed patches of broadleaf species occur, but these are of marginal relevance in the
studied areas. Frequent forest fires affect the entire region and have caused an increase in
the area covered by shrublands and invasive species (e.g., Acacia spp.).

http://focus.uc.pt
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Figure 1. Location of the test regions (Troviscal (TRV), Sertã (SER), and Condeixa-a-Nova (CAN))
overlaid to Corine land cover.

Management practices in the maritime pine forests of the region are quite variable.
Natural regeneration followed by thinning is the preferred method including in previously
burned or clear-cut areas. However, an aging population and migratory trends towards
coastal areas create insurmountable labor and investment shortages that hinder robust
forest management efforts. Moreover, the three test regions are considered as PWD-affected
areas [34].

One of the regions (Condeixa-a-Nova) was strongly disturbed by the post-tropical
cyclone Leslie (October 2018), destroying several of the monitored trees and compromising
the continuity of the time series. From this site, only data collected before the storm
were used.

2.2. Field Campaign

An extensive 24-month long field campaign was conducted to locate, map, and char-
acterize healthy and declining maritime pine trees. Field campaigns were initiated in
January 2018, with the first three months dedicated to mapping the region of interest, defin-
ing the test plots, and selecting groups of trees for monthly monitoring. Overall, we selected
11 large plots with an average area of 110,055 m2, which were mapped using a 1 m2 grid.
These plots were equally distributed among the three test regions (3 in Condeixa-a-Nova,
4 in Sertã, 4 in Troviscal). For each cell in the grid, we compiled information on land cover
attributes, vegetation structure and composition, management activities, canopy cover,
and the presence of declining maritime pine trees. Map production and surveillance were
supported by the regular acquisition of very high-resolution imagery (WorldView-3) as
detailed in a later section.

One hundred four (104) individual tree specimens in 26 groups (at least 3 trees per
group within 50 m of each other) were monitored throughout the project. Data from these
trees were used to define the baseline conditions for healthy maritime pine trees and capture
the differences observed in declining specimens. The monitoring effort was designed to
include the collection of initial standard measurements (diameter at breast height (DBH);
height, and health status) and a regular set of laboratory measurements conducted on
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needles (reflectance and photosynthetic pigments). Not all trees were monitored throughout
the entire campaign with several of them dying or being destroyed by fire or cut before its
conclusion. Several trees were also added to the dataset when new cases of decline (and
healthy controls) were detected. A core dataset of approximately 36 trees was continuously
sampled across the entire period. Twenty-four declining trees were sampled for PWN
detection. Neighboring trees displaying symptoms with the same onset date were classified
as PWN-probable.

To detect the presence of PWN, pine wood samples were collected at 1.5 m from the
base of the trunk, using a low-speed drill, and stored inside plastic bags. Nematodes were
extracted from the wood samples by the tray method [7,35,36], and Bursaphelechus xylophilus
was identified and quantified under stereoscopic and light microscopes based on the main
morphological diagnostic characters: male spicules form, female tail terminus shape and
vulval flap presence. Morphological identification was confirmed molecularly by the
polymerase chain reaction of internal transcribed spacers regions (PCR-ITS) and restriction
fragment length polymorphism (RFLP) analysis using five restriction endonucleases [36].

2.3. Needle Reflectance and Photosynthetic Pigments Measurement

Hyperspectral data of needles from healthy and declining maritime pine trees were
used to (1) determine whether there were spectral differences between PWN-infected and
other declining trees, (2) characterize decline trajectories and compare them to pigment
concentration, and (3) assess the usefulness of channels from medium and high-resolution
space-borne sensors. A summary of the workflow adopted in the study is described in
Figure 2.
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Figure 2. Workflow of the research project, which combines the analysis of field and satellite imagery
for the development of a decline detection model focused on maritime pine occurring in Southwest
Europe. PWN: Pinewood nematode; SAM: spectral angle mapper.

Needles were collected from different parts of the crown using the methods de-
scribed in [30]. Needle reflectance was recorded in the visible-near infrared (VNIR) range
(400–1000 nm, 1 nm sampling interval) using a fiber optic spectrometer (StellarNet Silver-
Nova) coupled to an integration sphere [37]. Three replicates were made on each random
sample of healthy and declining trees, totaling 2400 spectra (14% of samples from declining
trees, with over 20% of these being infected with PWN). Infection was confirmed by labora-
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tory analysis as described in Section 2.2. The samples covered the entire range of decline
stages, a wide interval of pigment concentration values, and the seasonal variability found
in healthy trees. Reflectance values were normalized, averaged, and stored in a database
for subsequent comparison with laboratory and remote measurements.

Spectral angle mapper (SAM) [38] was used to compare samples from PWN-infected
trees and others showing similar decline symptoms but caused by different agents. SAM
calculates the distance between spectra, treating each band as a n-dimensional vector,
for a total number of bands n. Each comparison yields a spectral angle that is lower for
similar samples. To determine the separability of classes, the distance values are compared
and possibly classified, based on a pre-defined threshold set by the user. This approach
provided important insights into the potential separability of PWN-infected trees in the
VNIR domain and informed subsequent development steps. SAM was calculated using
the ‘hsdar’ package available on R [39]. Furthermore, common red edge parameters (i.e.
R0, l0, lp, Rs) were also calculated using the same library for comparison with pigment
concentration and general decline trends.

All needle samples were scanned using a flatbed scanner for later reference. Hsdar
was also used to convert the hyperspectral measurements into simulated Sentinel-2 and
Worldview-3 bands. The simulated data were used to inform a pre-selection of spectral
indices for decline detection, which were later applied to real satellite imagery.

Destructive laboratory analysis included the quantification of photosynthetic pigments
such as chlorophyll a and b (Chla and Chlb) and, carotenoids. Chlorophyll concentration
was measured using the methods by [40]. To this end, 50 mg of frozen needles were
macerated in 2 ml of acetone buffer and then placed in a vortex (30 s) and centrifuged
(4800 rpm, 10 min, 4 ◦C). In dark conditions, the supernatant was decanted, and 3 ml of
acetone was added, after which the sample is returned to the vortex and centrifuged. An
acetone buffer was added to a final volume of 6 ml. Absorbance at 663, 537, 647, and 470 nm
were measured (along with blank acetone buffers) in silica fused cells using a Jenway model
7300 spectrophotometer. Chla, Chlb concentration is given in g.ml−1 upon the application
of the equations included in [40].

A similar protocol was made for anthocyanin extraction, except the extraction buffer,
where we used cold methanol (MeOH):H2O:HCl (90:1:1 v:v:v) to prevent anthocyanin
hydrolysis, and the absorbances were taken at 559 and 650 nm. Anthocyanin corrected
absorbance at 529 nm from what was calculated, then the concentration was estimated
using the Beer-Lambert relation with a molar absorption coefficient of 30,000 b/mol·cm [41].

Lastly, total carotenoid content was estimated using the concentration of Chla, Chlb,
and anthocyanin using the equation proposed by [40].

2.4. Satellite Imagery

Freely available Copernicus Sentinel-2 data were used to test whether medium-
resolution imagery was adequate to detect the decline in maritime pine forests at a regional
level. Sentinel-2 consists of a constellation of 2 similar satellites (launched in 2015 and
2017), which are equipped with the wide-swath MultiSpectral instrument (MSI). This
instrument collects information in 13 bands in the visible, near-infrared, and shortwave
infrared wavelengths. The bands are available in 3 spatial resolutions including 10, 20, and
60 m. With a combined revisiting period at the equator of 5 days, Sentinel-2 is ideal for
forest health monitoring.

Sentinel-2 data were acquired for the days in which field campaigns (and subsequent
laboratory analyses) were conducted (±24 h) and image quality was high (e.g., no cloud
cover). Table 1 summarizes the imagery used. Data were downloaded from the European
Space Agency’s Open Hub as Level 2 files (tiles T29TNE and T29TME).
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Table 1. Dates of acquisition of imagery used in the study for the development of the decline model
and analysis of spectral trajectories.

Sentinel-2 Imagery Dates Worldview-3 Imagery Dates

2017/06/14 (pre-study reference) 2017/06/21
2018/06/19 (pre-season) 2018/07/11

2018/07/29 (pre-season reference #1) 2018/07/23
2018/09/22 (in-season #1) 2018/09/11

2018/12/06 (late season #1) 2018/12/06
2019/07/14 (pre-season reference #2) 2019/07/15

2019/10/22 (in-season #2) 2019/10/25
2020/01/05 (late season #2) 2019/12/07

The imagery was processed using the open software SNAP (version 8.0). All images
were co-registered to a reference date (29 July 2018) using a bicubic interpolation. This is an
important step to guarantee the coherence of Sentinel-2 time series. The lower resolution
bands were interpolated to 10-m using SNAP’s Sen2Res tool [42].

To support the development of a model capable of identifying the presence of maritime
pine decline in Sentinel-2 pixels, 35 spectral indices were calculated upon a selection based
on the interpretation of hyperspectral data (Table 2). Preference was given to formulations
relying exclusively on the 10-m bands (native). Reflectance values and derived indices
were retrieved for all pixels overlapping monitored trees and test plots.

Table 2. List of spectral indices calculated using the Sentinel-2 imagery and employed in the devel-
opment of the decline detection model. Selected indices used to build the Random Forest model
are listed.

Index Number Index Selected Reference

1 CARI [43]

2 CI Yes [44]

3 CIAInt [45]

4 Datt [46]

5 EVI [47]

6 Gitelson2 Yes [48]

7 GreenNDVI [49]

8 Maccioni Yes [50]

9 MCARI [51]

10 MCARI2 [52]

11 mND705 [40]

12 mNDVI [40]

13 MPRI [30]

14 MSAVI [52]

15 mSR Yes [40]

16 mSR2 Yes [53]

17 mSR705 Yes [40]

18 MTCI Yes [54]

19 MTVI [55]

20 NDII [56]
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Table 2. Cont.

Index Number Index Selected Reference

21 NDVI Yes [57]

22 NDVI2 Yes [49]

23 NDVI3 [58]

24 OSAVI [59]

25 OSAVI2 [60]

26 PSND [61]

27 RDVI [62]

28 SAVI Yes [63]

29 SIPI [64]

30 SIPI+ [64]

31 SPVI [65]

32 TCARI [55]

33 TCARI_OSAVI [55]

34 TCARI2 [60]

35 TGI [66]

36 Vogelmann2 [67]

37 Vogelmann4 [67]

B4/B3 Yes

NDVIpre–NDVImid-season Yes

The model training dataset was enhanced by the analysis of regular acquisitions of
WorldView-3 imagery obtained through the Copernicus Space Component Data Access
quota. The imagery was acquired as level-1 products, which were then processed to
surface reflectance using ENVI’s FLAASH. The imagery enabled a detailed mapping (1 m2

resolution) of the field plots, including the manual mapping of the healthy and declining
tree crowns identified in the field surveys.

The detailed Worldview-enhanced field plot maps were resampled to match the 10-m
Sentinel-2 grid creating a collocated dataset of land cover and crown decline percentage
cover. A 10-m land cover product provided by Project ‘Monitorizar para Decidir e Valorizar’
(MDV) (BPI/La Caixa Foundation), provided the necessary information to mask irrelevant
cover classes. The methods were only applied to the pixels identified as ‘Pine Forest’ in the
maps, which were available for 2016, 2018, and 2020.

2.5. Machine-Learning Classifier

A Random Forest model [68] was trained with the aforementioned worldview-enhanced
field data. The classifier was built on Weka [69] using predefined parameterization. Weka
outputs were converted into map layers (Geotiff format) using a custom Python script for
ArcGIS 10.8.

A total of 7482 training pixels (22% declining trees) were used in the development of
the model, applying the combined approach (WorldView-3-enhanced field data) described
in the previous section. These pixels were selected from a larger initial set using the extent
of maritime pine cover (>90%) and the need to create a balanced dataset as the main
selection criteria. Balancing the training data was relevant to avoid the ‘accuracy paradox’,
as mentioned in [19]. Validation was conducted on a random independent set comprising
30% (3200 pixels) of the complete database.

Model performance was assessed using standard metrics including overall accuracy
(OA), producer Accuracy (PA), user accuracy (UA), Cohen’s Kappa, and recall.
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The spatial distribution of cases was analyzed in the region of ‘Pinhal Interior Sul’
(former nomenclature of territorial units for statistics, level III). The data were aggregated
using a hex polygon grid, created in the context of the aforementioned project MDV.
The grid was used to convey information to stakeholders on multiple variables and was
adopted as a reference framework to share PWN data as well. Spatial autocorrelation in
the aggregated decline detection data was tested by applying Global Moran’s I [70].

3. Results and Discussion
3.1. Implementation of the Field Campaign

The 24-month long field campaign starting in 2018 allowed the detailed mapping of
declining maritime pine trees across the test regions. From the batch of regularly (monthly)
monitored trees, 24 entered decline at some stage of the field campaign, and 4 were positive
for PWN infection. Additionally, 10 trees within 10 m of the PWN-infected trees entered
decline at the same time and were labeled as PWN-probable. It should be noted that the
number of declining trees in the test regions and the vicinity greatly exceeded this number,
which accounts only for the trees being monitored monthly.

The test regions of Sertã and Troviscal (Central Portugal) were particularly informative
since the number of declining trees in 2017 was negligible when the test plots and sampling
groups were defined. However, during the 2018 season, especially after September, the
distribution of declining trees became widespread. Declining trees were found in both
dense clusters (e.g., in the vicinity of sawmills and along main roads) and smaller, isolated
groups or single trees. Since systematic sampling and laboratory analysis of all trees in
the sites would be impractical, only monitored trees were tested for the presence of PWN,
as aforementioned.

The plot distribution strategy was successful (medium-sized plots spread across the
landscape, some of which were on theoretically hazardous areas) and allowed the detection
and characterization of natural infection of several trees by PWN in 2018 and 2019. This
coincidence enabled the construction of time series summarizing natural variability in the
physiologic and spectral properties and subsequent decline trajectories. This is, to the best
of our knowledge, the first time such a time series of spectral measurements and ancillary
data of maritime pine was recorded, without the deliberate or controlled infection of trees
in the wild.

3.2. Reflectance Signature of Declining Maritime Pine Trees

The hyperspectral data were used threefold to (1) assess whether unique traits were
discernible in PWN-infected trees, (2) characterize decline trajectories, and (3) to determine
the usefulness of available channels in spaceborne sensors. A separate paper will describe
the seasonal and inter-annual variability of pigment concentration and other parameters
measured throughout the field campaign. A total of 2400 spectra were collected from
needle samples from healthy and declining trees (14% of the total).

SAM analysis applied to the subset of declining trees using three labels (PWN-infected,
PWN-probable, other agents) showed these classes were not separable in the VNIR domain.
SAM values were below the pre-defined threshold of 0.1 and, it was not possible to classify
the hyperspectral measurements according to the causal agent of decline. By comparison,
random controls from healthy trees (n = 60) returned an average SAM value of 0.04 ± 0.03.

Furthermore, a visual inspection also failed to identify unique traits in the spectra of
needles from PWN-infected trees even across decline stages. These results stressed the need
to focus on decline detection instead of seeking the remote identification of PWN infection.
The finding is in line with requirements outlined in applicable legislation and technical
guidance for the removal of all declining trees, irrespective of the cause. Moreover, the
findings supported the use of the complete set of samples (PWN-positive and otherwise) to
develop the decline detection model.

The information provided by hyperspectral measurements was important to under-
standing decline trajectories and optimum bands or indices for algorithm development
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(Table 2). Consistent spectral trends included an increase in reflectance values in the visible
range and a decrease in the NIR range. The changes take place around a breakpoint centered
in the interval found between 660 and 675 nm (Figure 3, Table 3). It is important to note
that decline was only considered to be taking place when visual symptoms were recorded.
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Figure 3. (A) Comparison of (unitless) normalized reflectance values (and standard deviation) of
needles collected from healthy (green, n = 2140) and declining (red, n = 260) maritime pine trees.
Samples were collected throughout the year and analyzed for the spectral range 400–1000 nm.
(B) Sentinel-2 surface reflectance (490–2200 nm) of pixels containing healthy (green) and declining
(red) maritime pine trees.

Table 3. Pigment values and Red Edge parameters for the needles represented in Figure 4 (June 2018
to January 2019).

24 June 25 July 2 October 6 November 3 January

Chlorophyll-a+b (g·mL−1) 1.1 0.84 0.41 0.07 0.08

Carotenoids (g·mL−1) 0.07 0.08 0.06 0.04 0.03

Red Edge l0 (nm) 675 671 668 660 660
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The findings agree with previous reports, which demonstrated the feasibility of using
spectral data to identify the decline in PWN-infected trees [17]. The study by [19] is also
in agreement with our findings. The spectral similarities to those from previous studies
suggest that the findings made on the decline trajectories at needle level are transferable to
very high-resolution data collected from drones and, possibly satellites.

As in the paper by [19], pre-visual spectral changes were also recorded in naturally
infected trees. Figure 4 illustrates the PWN-driven decline trajectory as shown by scanned
needles and matching spectra (tree code ITR 49). The analysis of the data demonstrated the
occurrence of pre-visual spectral changes in the visible and NIR ranges. To the best of our
knowledge, this is the first time such time series are reported for naturally PWN-infected
maritime pine trees with matching physiological analysis. However, the small set available
calls for the collection of additional information to build longer time series and establish the
timelines of infection, spectral or physiologic changes, and the onset of visible symptoms.

Table 3 summarizes pigment concentration and red edge parameters for the samples
represented in Figure 4. Notice that as Ca+b declined rapidly so did the red edge parameter,
lo, which denotes the position of the lowest reflectance value in the red range of the
spectrum. In a previous study, the reflectance at 688 nm was considered an important
indicator of decline [71]. In our study, we extend this knowledge and determined the
trajectory of l0 as decline sets in, providing a window for physiologic status assessment.
In fact, Ca+b is significantly correlated in a linear way with l0, for a subset comprising
200 samples (needles) from healthy and PWN infected trees (60% healthy, 40% infected;
m = 0.07, r2 = 0.90, p < 0.01).

As noted by [29], the use of spectral indices is more appropriate for the development
of operational monitoring solutions than the use of inversion models. To select an initial set
of spectral indices to be applied to real satellite imagery, the hyperspectral measurements
were converted to simulated Sentinel-2 and Worldview-3 bands. The set of pre-defined
spectral indices is presented in Table 2. Later analysis would allow for the detection of the
final set of indices to be used to create the Random Forest model, based on the information
gain offered by each option when using real Sentinel-2 data.

The use of simulated bands allows the rapid assessment of the capabilities of different
sensors and their ability to contribute to multi-platform and multi-sensor monitoring
solutions. The Multispectral Instrument (MSI) of Sentinel-2 clearly covers spectral ranges
of interest for decline detection, as highlighted by the preliminary assessment made on
hyperspectral and simulated bands. However, simulated data did not offer any indication
of the successful retrieval of decline signatures in real-world contexts. Differing vegetation
cover, structure, and homogeneity could create significant obstacles [29].

The analysis of real Sentinel-2 data provided important insights into the decline
dynamics as viewed from the medium resolution sensor. Figure 3B shows the entire
set of Sentinel-2 (pixel) spectra, classified as either declining (11% of total) or healthy.
The same trends seen in the hyperspectral data (Figure 3A) are present in the satellite
imagery. Nonetheless, there was some (expected) overlap between both classes, which
can be caused by different reasons including the subjective nature of the classification,
pre-visual symptoms, and clutter caused by heterogeneous vegetation cover.

Differences in the percentage of the declining canopy in the pixel were also an im-
portant variable influencing spectral trajectories. Figure 5 compares the decline trajec-
tory across three timestamps (early, mid, and late-season) for Sentinel-2 and matching
WorldView-3 imagery. The pixels cover a homogenous forested area of maritime pine, to
reduce the uncertainty associated with mixed land cover. In one of the instances, decline
covers 43% of the Sentinel-2 pixel, while in the other only healthy vegetation was imaged.
The decline signature in the Sentinel-2 pixel is evident but still less conspicuous than the
median values obtained from the WordView-3 images. In fact, the decline is visible in
high-resolution images even without the application of complex techniques. A total of
78% of the monitored trees that underwent decline during the project could be detected
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using WorldView-3 imagery without advanced processing or classification methods (at
late-season timestamps).
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This result strongly suggests that the acquisition of large datasets of high-resolution
satellite imagery covering important regions (e.g., the buffer zone on the Spanish border)
could be relevant for the development of operational monitoring solutions. Worldview-like
(or Planet, for instance) imagery, would offer a bridge between Sentinel-2 regional datasets
and very high-resolution drone data, providing stakeholders with accurate data at stand
level or better.

However, Sentinel-2 remains the best option for country-wide detection and moni-
toring of decline given the favorable balance between technical (bands, spatial resolution)
and financial (free imagery, easy access) characteristics. Given the preliminary results, the
development of a Sentinel-2 based model for decline detection was pursued.

3.3. Sentinel-2 Decline Detection Model

The Sentinel-2 decline detection algorithm (hereafter referred to as the “decline model”)
was designed after the analysis of the aforementioned results, which informed the initial
selection of indices and acquisition dates. The final configuration used a pre-season
reference image (July) and an in-season acquisition. A parsimonious development approach
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was adopted to reduce computational costs and simplify the future operationalization of
the solution. Late season images, from November or later months, were found to be sub-
optimal for decline detection in rugged terrain. Topographic shadows have a significant
impact on the (relatively faint) spectral signatures of pixels containing declining trees.
Furthermore, of the pixel subset labeled as ‘declining’, only 15.4% of the pixels included
specimens showing decline symptoms in December that were not visible in early October.
Even in these cases, declining trees were generally part of clusters, which can still be
detected in earlier time stamps.

Figure 6 depicts the relative mean change of assessed indices in pre- and mid-season
images, highlighting the variable competence of each to capture decline manifestations.
Based on this information and mean decrease in impurity (MDI), a set of 12 indices,
along with the spectral bands, were selected for model development. Of these, the most
informative indices were the early/mid-season difference of the NDVI, Macc, CI, mSR
and mSR2, Gitelson, and SAVI, all with MDI values exceeding 0.5. Using the full set of
indices is also possible but would make the process computational more expensive and
add redundancy, making it less practical for operational use as well as prone to error.
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Figure 6. Radar plot of the average values of selected indices (green line and shade: June data,
healthy; brown line: November data, declining). The plot supported the identification of useful
indices for further exploration and use in the Random Forest model (Compare with results of [19]).
Index numbers can be found on Table 2.

The resulting decline maps generated by the Random Forest model were subjected
to a quantitative performance assessment using independent data. Table 4 summarizes
these performance results, including the confusion matrix, accuracies, recall, and Kappa.
Furthermore, the receiving operator curves (ROC) are displayed in Figure 7.
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Table 4. Summarized performance results of the Sentinel-2 decline detection model, based on the
assessment conducted using independent validation data.

Class Symptomatic Healthy Total (Map) User Accuracy Kappa Mean Absolute Error (MAE)

Symptomatic 274 64 338 81% 0.79 0.053

Healthy 83 2779 2862 97%

Total (reference) 357 2843

Producer accuracy 77% 98%

Overall accuracy: 95%
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The performance of the model exceeded initial expectations, which were conservative
in face of the heterogeneous makeup of the Portuguese forest. Given the requirements of
the model, the forest mask developed in the MDV Project was essential to guarantee its
application to suitable areas. Ongoing efforts by the Portuguese government to launch a
nationwide LiDAR campaign may aid in the future development of enhanced land cover
and change detection datasets for the country.

With a successful quantitative performance assessment complete, we continued the
analysis through visual comparison with WorldView-3 data supplemented by field surveys
over regions not used for calibration purposes. Representative examples of the model
output are depicted in Figure 8, where it is compared against very high-resolution data. The
high spatial resolution of Worldview-3 imagery enabled the visual detection and delineation
of declining crowns, as aforementioned. The assessment, supported by fieldwork, could
then be compared against the detections made by the model applied to moderate spatial
resolution Sentinel-2 imagery. The comparison confirmed the good agreement between the
decline detection model and WorldView-3 visual analysis supported by fieldwork.
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Figure 8. (Left): Output of the decline model applied to Sentinel-2 imagery (at the end of the 2018
decline season) and (Right): comparison with WorldView-3 True Color RGB. The location of declining
trees can be detected visually in the high-resolution imagery (orange circles) and compared against
the Sentinel-2-based detections.

Some issues were also identified during the detailed quality assessment. False positives
were detected along the edges of forested areas and where the low-density forest was
present. In these areas, understory vegetation often senesces in late Summer, mimicking
the spectral trajectories of declining pine trees. However, the ability to detect clusters of
declining maritime pines was successfully validated upon the visual inspection.

Performance was also found to be strongly correlated with the percentage of the pixel
exhibiting decline (as calculated from WorldView-3-enhanced ground truth data). Figure 9
illustrates the frequency of false negatives as a function of the percentage of decline found
in the pixel. The model tends to underperform in pixels with a low percentage of decline
cover (<20%). However, above the threshold of 30% of decline cover, the frequency of false
negatives drops to under 10%. This means that isolated, young trees will be harder to
detect with Sentinel-2 data, further justifying the use of multi-mission data and different
service layers in an integrated solution.
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Figure 9. Histogram of false negative detections in Sentinel-2 imagery (2018/2019) as a function of
percentage of decline symptoms in the canopy.

3.4. Spatial Analysis

The potential for a non-random spatial distribution of declining pine trees was ana-
lyzed in the region of ‘Pinhal Interior Sul’ (former Nomenclature of Territorial Units for
Statistics (NUTS), level III). A tessellated hex grid was deemed suitable for the analysis
and to communicate the results, as highlighted by discussions with end-users supporting
project development. To this end, pixels of the Sentinel-2 model showing decline were
summed up for each hex grid cell. The resulting value provides a summarized visualization
of decline at the local level, at a user-relevant scale. Results of Moran’s I Index applied to
the hex grid indicated there is less than a 1% likelihood that the clustered pattern could be
the result of random chance (z-score: 6.65, Moran’s I: 0.39, p = 0.0) (Figure 10).
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Figure 10. The number of detections in the Sentinel-2 model (declining trees), at a regional level,
calculated for a reference tessellated hex grid for the 2020 season. Percent cover of conifers (mostly
maritime pine) is represented as well as main roads, major population centers, and sawmills/wood
depots (dark squares). S: Sertã; P: Proença-a-Nova; C: Cernache do Bonjardim (main urban centers).

Burned areas within the study region influenced the distribution (and density) of
detections creating the first layer of spatial inhomogeneity. After a fire, surrounding
trees become vulnerable to xylophagous insects, including the PWN insect vector, M.
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galloprovincialis. This may even further affect the vigor of surviving trees [72]. These insects
are attracted to woody plants that are severely stressed, often near to death, by fire, drought,
or by the action of other organisms [73–76]. Together with the aforementioned drivers,
the proximity to urban areas and roads seems to be another driving force influencing the
number of detections in the grid. The presence of sawmills and wood depots was also
an important factor, as recognized by previous studies [77]. Around all such facilities
identified in the study region, a high density of declining trees (not exclusively caused by
PWN infections; see the lower image of Figure 8, for an example) were found both in the
field surveys and commercial satellite imagery. However, these very local hotspots do not
seem to be always correlated with the number of detections in the grid.

Anecdotal observations, compiled during the field campaign, suggested a higher
incidence in the vicinity of roads, especially in areas subject to fuel management operations.
The results obtained were not sufficient to validate this potential connection, as more data,
especially the locations and timing of management actions, would be necessary. For these
reasons no attempts at building temporal and spatial trends analyses were conducted.

3.5. Potential for Operational Monitoring of Tree Decline Using Sentinel-2

Detecting tree decline in a timely manner and disseminating that information to
stakeholders is critical to enhancing stewardship. The solution presented here provides an
important step toward the operational deployment of a Sentinel-2 based model capable of
detecting and tracking declining maritime pine trees at a national or regional scale.

The effort required to monitor large swaths of land, sometimes in rugged terrain
with poor access is no trivial pursuit. The labor required to identify, map, and sample
symptomatic trees using traditional methods was blatant throughout the field campaign.
As such, it is urgent to assess the feasibility of using free and open satellite data to detect
and monitor tree decline in vulnerable ecosystems on a large scale.

The results now reported, support the use of Sentinel-2 data to detect the gradual
change connected with maritime pine decline due to PWN infection. The results expand
on findings previously reported by [21,22,29]. The previous works laid an important foun-
dation to the field, which was now extended through the development of an operational
algorithm for regional assessment of maritime pine decline.

Unlike previous works, the hyperspectral measurements collected in the VNIR range
were used for guidance purposes only. The model was developed using native Sentinel-2
imagery, using a large training dataset constructed from a successful combination of field
and very high-resolution imagery.

Hyperspectral data highlighted several key aspects of the decline trajectories, made
obvious by the discoloration of needles. As reported by [19], pre-visual detection of decline
is possible in the hyperspectral domain. Increasing reflectance values in the visible range
and a decrease in the NIR were also observed in our study, even in needles with no apparent
discoloration (Figure 4). Our results and those of [19] strongly suggest early detection is
possible using either portable or aerial systems. The spectral trajectory is strongly linked to
pigment dynamics and in particular to chlorophyll content. The decreasing concentration
of the pigment is highly correlated with the red edge parameter l0, which could probably be
leveraged in the development of expedite field sampling systems adjusted to maritime pine
(and possibly other similar conifers). Nonetheless, and despite the advances, early detection
of decline by Sentinel-2 is hardly feasible. This barrier is suggested by the challenges in
detecting visibly symptomatic trees, whenever the declining crowns cover less than 30% of
the pixel area.

Furthermore, the training dataset (and the guidance spectral database) is still dom-
inated by end-members, with a large number of samples classified as healthy or clearly
declining. The classification is based on a visual interpretation of symptoms in the tree,
which do not provide any indication on the date of infection. As sampling to determine
the presence of PWN is only conducted when the decline is already installed, determining
the lag between infection and the onset of visual and pre-visual symptoms is challeng-
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ing. Without a known date of infection, more research is warranted on the exact spectral
trajectories and timings of visual and pre-visual decline breakpoints at different scales.

Symptomatology (severity and timings) is also influenced by environmental condi-
tions and tree phenotypes, adding a layer of complexity to the development of flexible
but reproducible solutions. Increases in temperatures and the onset of drought conditions
can directly affect the extension of PWD-affected areas [78]. Such conditions can alter the
interactions among PWN, vector insects, and pine trees [79], making automated decline
potentially vulnerable to interannual variability. However, such variability must be con-
sidered in future operational solutions, in the context of climate change. The expected
degradation accompanied by changes to phenology and overall trends in maritime pine
forests in the Mediterranean region [80,81] calls for climate-aware decline detection models
capable of incorporating variability while maintaining a consistent performance.

Previous studies were mostly focused on studying the impact of conifer decline over
specific spectral and structural indices. Forest and canopy heterogeneity as well as seasonal
variability are consistently reported as barriers to temporal approaches using satellite
data [22,30]. The use of multiple images, as employed in this study, greatly reduces the
chances of false positives or negatives created by spurious changes in the reflectance values
and seasonal minima, solar angle, and other artifacts.

Further enhancements could stem from the integration of climate data (e.g., precipi-
tation, temperature). The potential advantages are twofold and include the enhancement
of spectral time series available for analyses and smooth inter-annual changes due to nat-
ural variability [82]. It is also important to emphasize that remote methods can only be
used to detect decline, and not to determine its cause. PWD is characterized by a set of
non-exclusive symptoms, which call for a laboratory confirmation of PWN infection. SAM
results highlighted the lack of specific traits and separability of PWN infection in maritime
pine trees.

Lastly, we also lack accurate information on the proportion of asymptomatic trees,
which may still constitute important reservoirs of PWN while escaping detection using tra-
ditional surveys and remote methods. These trees will play a critical role in the subsequent
spread of PWD to non-affected areas. Studies on asymptomatic infection in pine trees show
that asymptomatic infected trees may remain infected for up to a year without displaying
wilting symptoms such as the yellowing of needles. Asymptomatic but infected trees can
thus lead to an increase in the number of infested vectors, which can cause additional
infections in the region [15,83].

For these reasons, the proposed solution does not focus on early detection but provides
a single seasonal map of decline, which can be leveraged by stakeholders to plan for
follow-up surveys (e.g., unmanned aerial vehicle (UAV) flights) or containment actions.
This approach also helps avoid the seasonal impact of shadows and varying understory
vegetation cover reported by [29].

Overall, if previous works highlighted the potential of Sentinel-2 data to detect PWD-
driven decline, our findings reinforce it, under a pre-operational setting but based on a
robust set of field data and the classification of real satellite imagery. The development
of integrated product suites including land cover, phenology, and persistent decline can
support the introduction of new, integrated management practices. The development
process emphasized the need for communication between projects and the establishment
of comprehensive long-term test sites managed by multidisciplinary teams. This approach
contributed to the development of the decline model and its validation by stakeholders in
the course of Project FOCUS.

4. Conclusions

We studied the spectral trajectories of PWN-infected maritime pine trees in Southwest
Europe (Portugal) and developed the first pre-operational decline detection model (Random
Forest) based on Sentinel-2 imagery and a large ground-truth database.

The following conclusions can be extracted from the present study.
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(1) PWD generates a non-specific spectral signature in the VNIR domain.

The analysis of hyperspectral measurements from needles of declining maritime pine
trees demonstrated that the changes taking place in the VNIR domain are centered around
the region comprised between 660 and 675 nm and are not specific to PWN infection
(according to SAM). This supports the development of decline-detection models using
larger and more robust datasets.

(2) A machine-learning (Random-forest) model based on Sentinel-2 imagery can detect
declining maritime pine trees.

Sentinel-2 (A and B) bands and derived indices can capture decline trajectories and
the frequency of image acquisition is suitable to detect the changes taking place throughout
the typical wilting season of Southwest Europe. The proposed Random Forest model uses
a pre- and an in-season image to detect meaningful change. The exact dates are flexible
within a fortnight, to accommodate for the stochastic nature of image availability (i.e.,
cloud-free acquisitions).

(3) The decline detection model performs well and provides information at user-
relevant scales.

The model performed well, with an overall accuracy of 95% as verified by independent
test data built on satellite-enhanced field data. The detected decline cannot be assigned to
specific causal agents in the output maps, given the non-specific nature of symptoms in
cases of PWN infection. Performance is particularly good when trees exhibiting decline
symptoms account for over 30% of the 100 m2 pixel of Sentinel-2. This renders the identifi-
cation of small, isolated trees more challenging. The detection of decline under extreme
environmental conditions (e.g., drought) and mixed land cover is also demanding and
additional research is required.

(4) Sentinel-2 can be used to detect regional decline hotspots for further study using
conventional and/or aerial surveys.

The outputs of the decline detection model can be used to conduct follow-up surveys
using traditional observation methods or aerial campaigns, as described in [19]. This
allows for a parsimonious use of resources and addresses specific user needs mapped
during the project. Even though more research is required, the results were useful to
determine the non-random nature of the decline hotspots, as highlighted by Moran’s I
Index. Resources can be allocated preferentially to decline hotspots for maximum efficiency
of containment actions. These hotspots include areas near urbanized zones, main roads,
and timber processing infrastructures.

(5) Stakeholder involvement is required, and permanent test sites are useful for the
construction of reliable long-time series.

The maintenance of multi-year and multidisciplinary test plots that are not discon-
tinued after the conclusion of funded projects is important to inform the development of
robust methods to study forest degradation. To this purpose, the development of stable
consortia engaging stakeholders is recommended.

Our future activities include the deployment of the model for regional or nationwide
operational monitoring and the transfer of relevant technologies and skills to stakeholders.

Author Contributions: Conceptualization, V.M. and L.F.; methodology, V.M.; software, V.M.; val-
idation, V.M., E.B. and L.F.; formal analysis, V.M., E.B., L.F., J.C. and I.A.; investigation, V.M., E.B.
and L.F.; resources, V.M., L.F., I.A. and J.C.; data curation, V.M., E.B. and L.F.; writing—original draft
preparation, V.M. and L.F.; writing—review and editing, V.M., L.F., E.B., J.C. and I.A.; visualization,
V.M.; supervision, V.M.; project administration, V.M.; funding acquisition, V.M. All authors have read
and agreed to the published version of the manuscript.



Remote Sens. 2022, 14, 2028 20 of 23

Funding: This research was funded by Project FOCUS (Forest Operational monitoring using Coper-
nicus and UAV hyperSpectral data), funded by the European Commission under Horizon 2020
(Grant Agreement 776026). Additional funding was obtained from project ‘Monitorizar para De-
cidir e Valorizar’, funded by Programa PROMOVE of BPI/Fundação La Caixa. Funding was also
received from “Fundação para a Ciência e a Tecnologia” (FCT, Portugal), through the project POINT-
ERS (PTDC/ASP-SIL/31999/2017) and ReNATURE (Centro-01-0145-FEDER-000007). We also ac-
knowledge the support from FCT through the strategic project UIDB/04004/2020 granted to CFE,
respectively and to “Instituto do Ambiente, Tecnologia e Vida”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We acknowledge the continuous support of all stakeholders engaged in the
projects that supported the development of the study. We also acknowledge the work of the
anonymous reviewers and journal editors, who provided important contributes to enhancing the
original manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hennon, P.E.; Frankel, S.J.; Woods, A.J.; Worrall, J.J.; Norlander, D.; Zambino, P.J.; Warwell, M.V.; Shaw, C.G. A framework to

evaluate climate effects on forest tree diseases. For. Pathol. 2020, 50, 1–10. [CrossRef]
2. Macpherson, M.F.; Kleczkowski, A.; Healey, J.R.; Hanley, N. Payment for multiple forest benefits alters the effect of tree disease

on optimal forest rotation length. Ecol. Econ. 2017, 134, 82–94. [CrossRef] [PubMed]
3. Mota, M.M.; Braasch, H.; Bravo, M.A.; Penas, A.C.; Burgermeister, W.; Metge, K.; Sousa, E. First report of Bursaphelenchus

xylophilus in Portugal and in Europe. Nematology 1999, 1, 727–734. [CrossRef]
4. EPPO Bursaphelenchus xylophilus. EPPO Datasheets on Pests Recommended for Regulation 2022. Available online: https:

//gd.eppo.int (accessed on 1 February 2022).
5. Abelleira, A.; Picoaga, A.; Mansilla, J.; Aguin, O. Detection of Bursaphelenchus xylophilus, Causal Agent of Pine Wilt Disease on

Pinus pinaster in Northwestern Spain. Plant Dis. 2011, 95, 776. [CrossRef] [PubMed]
6. Robertson, L.; Cobacho Arcos, S.; Escuer, M.; Santiago Merino, R.; Esparrago, G.; Abelleira, A.; Navas, A. Incidence of the

pinewood nematode Bursaphelenchus xylophilus Steiner & Buhrer, 1934 (Nickle, 1970) in Spain. Nematology 2011, 13, 755–757.
[CrossRef]

7. Fonseca, L.; Cardoso, J.; Lopes, A.; Pestana, M.; Abreu, F.; Nunes, N.; Mota, M.; Abrantes, I. The pinewood nematode,
Bursaphelenchus xylophilus, in Madeira Island. Helminthologia 2012, 49, 96–103. [CrossRef]

8. EPPO List A2. Available online: https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list (accessed on 1 February 2022).
9. Sousa, E.; Bravo, M.A.; Pires, J.; Naves, P.; Penas, A.C.; Bonifácio, L.; Mota, M. Bursaphelenchus xylophilus (Nematoda; Aphe-

lenchoididae) associated with Monochamus galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematology 2001, 3, 89–91.
[CrossRef]

10. David, G.; Giffard, B.; Piou, D.; Jactel, H. Dispersal capacity of Monochamus galloprovincialis, the European vector of the pine wood
nematode, on flight mills. J. Appl. Entomol. 2014, 138, 566–576. [CrossRef]

11. Inácio, M.L.; Nóbrega, F.; Vieira, P.; Bonifácio, L.; Naves, P.; Sousa, E.; Mota, M. First detection of Bursaphelenchus xylophilus
associated with Pinus nigra in Portugal and in Europe. For. Pathol. 2015, 45, 235–238. [CrossRef]

12. Fielding, N.J.; Evans, H.F. The pine wood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle (=B. lignicolus Mamiya
and Kiyohara): An assessment of the current position. For. Int. J. For. Res. 1996, 69, 35–46. [CrossRef]

13. Naves, P.M.; Sousa, E.; Rodrigues, J.M.; Florestal, E. Biology of Monochamus galloprovincialis (Coleoptera, Cerambycidae) in the
Pine Wilt Disease Affected Zone, Southern Portugal. Silva Lusit. 2008, 16, 133–148.

14. Fukuda, K. Physiological process of the symptom development and resistance mechanism in Pine Wilt Disease. J. For. Res.
1997, 2, 171–181. [CrossRef]

15. Futai, K. Role of asymptomatic carrier trees in epidemic spread of pine wilt disease. J. For. Res. 2003, 8, 253–260. [CrossRef]
16. Rodrigues, J.M.; Sousa, E.; Abrantes, I. Pine wilt disease historical overview. In Pine Wilt Disease in Europe—Biological Interactions

and Integrated Management; Sousa, E., Vale, F., Abrantes, I., Eds.; FNAPF: Lisbon, Portugal, 2007; pp. 13–32.
17. Kim, S.R.; Lee, W.K.; Lim, C.H.; Kim, M.; Kafatos, M.C.; Lee, S.H.; Lee, S.S. Hyperspectral analysis of pine wilt disease to

determine an optimal detection index. Forests 2018, 9, 115. [CrossRef]
18. Kim, M.I.; Lee, W.K.; Kwon, T.H.; Kwak, D.A.; Kim, Y.S.; Lee, S.H. Early detecting damaged trees by pine wilt disease using DI

(Detection Index) from portable near infrared camera. J. Korean For. Sci. 2011, 100, 374–381.
19. Iordache, M.D.; Mantas, V.; Baltazar, E.; Pauly, K.; Lewyckyj, N. A machine learning approach to detecting Pine Wilt Disease

using airborne spectral imagery. Remote Sens. 2020, 12, 2280. [CrossRef]
20. Deng, X.; Tong, Z.; Lan, Y.; Huang, Z. Detection and location of dead trees with pine wilt disease based on deep learning and

UAV remote sensing. AgriEngineering 2020, 2, 294–307. [CrossRef]

http://doi.org/10.1111/efp.12649
http://doi.org/10.1016/j.ecolecon.2017.01.008
http://www.ncbi.nlm.nih.gov/pubmed/28373745
http://doi.org/10.1163/156854199508757
https://gd.eppo.int
https://gd.eppo.int
http://doi.org/10.1094/PDIS-12-10-0902
http://www.ncbi.nlm.nih.gov/pubmed/30731923
http://doi.org/10.1163/138855411X578888
http://doi.org/10.2478/s11687-012-0020-3
https://www.eppo.int/ACTIVITIES/plant_quarantine/A2_list
http://doi.org/10.1163/156854101300106937
http://doi.org/10.1111/jen.12110
http://doi.org/10.1111/efp.12162
http://doi.org/10.1093/forestry/69.1.35
http://doi.org/10.1007/BF02348216
http://doi.org/10.1007/s10310-003-0034-2
http://doi.org/10.3390/f9030115
http://doi.org/10.3390/rs12142280
http://doi.org/10.3390/agriengineering2020019


Remote Sens. 2022, 14, 2028 21 of 23

21. Beck, P.; Zarco-Tejada, P.J.; Strobl, P.; San-Miguel-Ayanz, J. The feasibility of detecting trees affected by the pine wood nematode
using remote sensing. In EUR—Scientific and Technical Research Reports; Publications Office of the European Union: Luxembourg,
2015; pp. 1831–9424. ISBN 978-92-79-48946-4.

22. Zarco-Tejada, P.J.; Hornero, A.; Beck, P.S.A.; Kattenborn, T.; Kempeneers, P.; Hernández-Clemente, R. Chlorophyll content
estimation in an open-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forest decline. Remote
Sens. Environ. 2019, 223, 320–335. [CrossRef]

23. Wulder, M.A.; Hilker, T.; White, J.C.; Coops, N.C.; Masek, J.G.; Pflugmacher, D.; Crevier, Y. Virtual constellations for global
terrestrial monitoring. Remote Sens. Environ. 2015, 170, 62–76. [CrossRef]

24. Senf, C.; Pflugmacher, D.; Hostert, P.; Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the
coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 2017, 130, 453–463. [CrossRef]

25. Huo, L.; Persson, H.J.; Lindberg, E. Early detection of forest stress from European spruce bark beetle attack, and a new vegetation
index: Normalized distance red & SWIR (NDRS). Remote Sens. Environ. 2021, 255, 112240. [CrossRef]

26. Hornero, A.; Hernández-Clemente, R.; North, P.R.J.; Beck, P.S.A.; Boscia, D.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Monitoring the
incidence of Xylella fastidiosa infection in olive orchards using ground-based evaluations, airborne imaging spectroscopy and
Sentinel-2 time series through 3-D radiative transfer modelling. Remote Sens. Environ. 2020, 236, 111480. [CrossRef]

27. Löw, M.; Koukal, T. Phenology modelling and forest disturbance mapping with sentinel-2 time series in austria. Remote Sens.
2020, 12, 4191. [CrossRef]
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