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Abstract: Precise delineation of individual tree crowns is critical for accurate forest biophysical param-
eter estimation, species classification, and ecosystem modelling. Multispectral optical remote sensors
mounted on low-flying unmanned aerial vehicles (UAVs) can rapidly collect very-high-resolution
(VHR) photogrammetric optical data that contain the spectral, spatial, and structural information of
trees. State-of-the-art tree crown delineation approaches rely mostly on spectral information and un-
derexploit the spatial-contextual and structural information in VHR photogrammetric multispectral
data, resulting in crown delineation errors. Here, we propose the spectral, spatial-contextual, and
structural information-based individual tree crown delineation (S3-ITD) method, which accurately
delineates individual spruce crowns by minimizing the undesirable effects due to intracrown spectral
variance and nonuniform illumination/shadowing in VHR multispectral data. We evaluate the per-
formance of the S3-ITD crown delineation method over a white spruce forest in Quebec, Canada. The
highest mean intersection over union (IoU) index of 0.83, and the lowest mean crown-area difference
(CAD) of 0.14 m2, proves the superior crown delineation performance of the S3-ITD method over
state-of-the-art methods. The reduction in error by 2.4 cm and 1.0 cm for the allometrically derived
diameter at breast height (DBH) estimates compared with those from the WS-ITD and the BF-ITD
approaches, respectively, demonstrates the effectiveness of the S3-ITD method to accurately estimate
biophysical parameters.

Keywords: remote sensing; UAV; photogrammetry; tree detection; crown delineation

1. Introduction

Spruce trees are important conifers in the temperate and boreal regions of the North-
ern hemisphere. They display the highest gross primary productivity in global forest
ecosystems [1,2]. They are critical entities in mitigating the anthropogenically induced
carbon imbalance between the atmosphere and the Earth’s land surface [3]. Efforts to
preserve and/or generate a climate-resilient forest ecosystem include sustainable forest
management [4], precision forestry [5], and pest- and climate-resilient species and genotype
selection [6,7]. However, such efforts demand accurate estimates of forest parameters
such as tree height [8], biomass [9], leaf area index [10], and foliar pigment concentra-
tion [11], which are crucial inputs in activities such as tree-health monitoring [12], ecosys-
tem modelling [13], and carbon-cycle studies [14]. Traditional field-surveying approaches
for collecting tree-level parameters in large forests is time-consuming, low-throughput,
and costly in terms of human labour. Alternatively, remote sensing data collected using
optical light detection and ranging (LiDAR) and radio detection and ranging (RADAR)
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sensors offers a cost-effective, highly repeatable and high-throughput solution for tree-level
parameter estimation [4]. Although both LiDAR and RADAR remote sensors provide com-
prehensive canopy structural information, the higher data-acquisition costs and complex
data-processing requirements are key drawbacks when performed over large forest areas.
In the case of optical sensors, the low and medium spatial-resolution optical data collected
from remote sensors onboard high-altitude platforms such as satellite and aeroplanes
are often associated with a limited spatial and spectral resolution that is not enough to
accurately estimate tree parameters such as biomass, leaf area index, leaf water content,
and chlorophyll concentration at the tree level. In fact, the limited data resolution allows
only a blockwise (i.e., on a group of trees) estimation of forest parameters. On the contrary,
very-high-resolution (VHR) optical remote sensing data from optical sensors on low-flying
(<200 m) unmanned aerial vehicles (UAVs) is a promising data acquisition strategy to
capture individual-tree-level data [12,15].

The low operational cost together with the unprecedentedly high payload carrying
capacity of state-of-the-art UAVs have enabled forest managers to perform periodic optical
data collection using multispectral and/or hyperspectral remote sensors [16]. In addition,
the relatively short flight time associated with UAVs over other remote sensing platforms
allows to quickly capture forest data with large swath overlap. This enables accurate
retrieval of two-dimensional (2D) and three-dimensional (3D) crown structural information
from VHR optical remote sensing data using photogrammetric techniques. The conical
geometry of spruce trees causes the most brilliant pixels in their VHR optical data to be
associated with the crown apex (which also aligns with the stem location for a straight
stem). Hence, tree detection and localization in VHR optical data is usually performed by
detecting the centroid of the region spanned by the set of brilliant pixel(s). Local Maxima
(LM) algorithm [17] is one of the most popular approaches, which exploits the conical
geometry of spruce crowns to detect individual trees in VHR optical data. However,
the LM algorithm is often affected by undesirable intracrown spectral variance induced
by local crown components and the nonuniform illumination/shadowing caused by the
crown geometry and the sun’s angle [18]. The effects of intracrown spectral variance are
usually minimized using smoothing filters employed in multiscale [19] and morphological
analysis [20] of VHR data. However, such smoothening often results in omission errors as
the local maxima corresponding to smaller spruce-tree apexes are lost in the process [21].
Object-oriented approaches such as template matching, which jointly consider shape, size,
and texture of crowns, achieve improved accuracy by mapping crown pixels based on
spatial and spectral similarity [22]. Nevertheless, treetop localization using only the spectral
component in optical data is limited in its ability to quantify crown structural attributes
such as height and geometry. Thus, photogrammetric techniques such as structure-from-
motion [23] and multiview stereopsis [24] approaches are employed to derive a 3D point
cloud of the visible canopy from optical data stereo pairs (i.e., images of the canopy taken
from different flight-path locations).

The canopy height model (CHM) derived from the 3D point cloud represents the tree-
canopy structure and is minimally affected by crown spectral variance and nonuniform
illumination and shadowing. Hence, tree detection using CHM is reliably preformed using
LM detection [25] and the pouring algorithm [26], under the assumption that the treetops
correspond to the local maxima in CHM. Tree detection is generally followed by crown
delineation (i.e., tree-crown perimeter demarcation). In the case of optical remote sensing
data, individual crown delineation refers to identifying the set of pixels that corresponds
to an individual spruce tree. A plethora of approaches for delineating tree crowns from
medium- and high-resolution multispectral data has been described in the literature, includ-
ing valley following [27], watershed segmentation [28], region growing [29], multiscale [30],
and object-oriented analysis [25]. However, most of the delineation approaches assume
homogeneous crowns, i.e., there is minimal variance between the reflectance spectrum
of individual crown pixels. Unfortunately, the spectral homogeneity assumption in tree
crowns is valid only in low and medium-resolution data, which are less affected by het-
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erogeneity and shadowing within an individual crown. In contrast, VHR multispectral
data contain details of crown components, including branches, twigs, and leaves, resulting
in an undesirably large variation in pixel values within individual tree crowns [31]. Thus,
a preprocessing step that minimizes crown heterogeneity (i.e., intracrown pixel variance) is
critical to delineate tree crowns reliably in the case of VHR multispectral data. Employing
techniques such as the Gaussian smoothening mitigates the spectral heterogeneity in the
data at the cost of losing crown edge information [32]. By grouping pixels based on spectral
similarity and being subjected to geometric constraints, object-oriented crown delineation
approaches use template matching [22], multiresolution analysis [30], and hierarchical
segmentation [33] to mitigate the effect of spectral heterogeneity in crown delineation.
Huang et al. (2018) mitigated the crown spectral heterogeneity problem in VHR multispec-
tral data by performing marker-controlled watershed segmentation on the morphologically
smoothened bias field estimate [25]. However, deriving edge-mask (i.e., image representing
the edges) using an edge-detection filter often results in inaccurate boundary delineation
of tree crowns in forests with proximal and/or overlapping crowns. In addition, it does
not exploit the potential of the 3D crown structural information in VHR multispectral data
to accurately delineate tree crowns. Thus, it is essential to develop a crown delineation
approach that jointly exploits both the spectral, spatial-contextual, and 3D crown structural
characteristics to address the undesirable effects of intracrown spectral heterogeneity and
nonuniform illumination/shadowing.

This paper describes a novel approach to delineate individual spruce crowns by
combining spectral, spatial-contextual, and crown structural information in VHR pho-
togrammetric multispectral data. The proposed crown delineation method, referred to as
the S3-ITD, achieves accurate crown delineation by: (a) minimizing the undesirable effect
of intracrown spectral variance and nonuniform illumination/shadowing by exploiting the
noise robustness of the fuzzy framework and (b) jointly exploiting the spectral, spatial-
contextual, and 3D structural information in VHR photogrammetric multispectral data.

In the following Section 2, we will first describe the study area and the data collected.
Section 3 elaborates on the proposed crown delineation approach. The experiments that
validate the performance of the method are reported in Section 4. Section 5 discusses the
experimental results in addition to highlighting merits and limitations of the proposed
method. The paper is concluded in Section 6.

2. Study Area and Data Description

The study area is a mature planned white spruce (Picea glauca) forest located in Saint-
Casimir in the province of Quebec in southern Canada, with an approximate centre at
46°72′N–46°11′E. The forest stand is at the centre of a Canada-wide research project investi-
gating white-spruce tolerance in response to a changing climate and includes individuals
of 180 different white-spruce genotypic families, differing in their physiological and pheno-
logical characteristics [34].

2.1. Reference Data

In the experiments, we use two different sets of reference data collected for trees
in eight carefully selected plots with different levels of crown complexity and overlap.
The former set of reference data includes field-collected tree height and stem diameter at
breast height (DBH) for all the trees in the eight plots, obtained in August 2018. The latter
set consists of crown boundary/span (in the form of vector shape files) of the individual
trees in the eight plots which were manually derived by an expert operator by visual
interpretation of the photogrammetrically generated 3D dense point cloud and the image
orthomosaic. The manual approach to crown span/boundary collection was preferred as it
was challenging to derive crown span/boundary from the field due to factors such as the
proximity to neighbouring trees, crown overlaps, and irregular conical shape of the spruce
crowns. The plotwise basic statistics of the tree height and the DBH for all the trees in the
eight plots are shown in Table 1.
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Table 1. Basic statistics of the reference height, the reference crown diameter, and reference stem
diameter breast height (DBH) of trees in the eight circular plots with varying degree of complexity,
considered for the performance evaluation of the S3-ITD.

Plot Number Tree Height (m) Crown Diameter (m) DBH (mm)

ID of Trees Max Min Mean Max Min Mean Max Min Mean

Plot 1 46 8.4 6.6 3.3 1.4 6.6 2.4 66.5 172.2 119.5
Plot 2 55 8.9 6.7 3.6 1.5 6.7 2.9 62.3 186.4 112.9
Plot 3 52 10.0 7.8 4.9 1.6 7.8 3.4 78.5 168.0 119.1
Plot 4 49 9.3 6.8 4.6 1.1 6.8 3.8 67.4 192.0 130.2
Plot 5 41 9.1 6.9 4.3 1.7 6.9 3.3 70.6 162.3 123.9
Plot 6 55 9.3 7.4 5.4 1.2 7.4 2.9 70.0 170.1 124.7
Plot 7 33 8.4 7.5 6.2 1.1 7.5 2.7 70.5 187.3 138.0
Plot 8 52 9.3 7.6 5.1 1.4 7.6 3.1 80.4 160.5 130.8

We compare the reference DBH with estimated DBH to evaluate the performance of
the ITD approaches. Optical data provides only the canopy-level information of trees and,
hence, we indirectly estimate the stem DBH of a delineated tree in the experiments by using
the allometric equation

DBHi = f (b0 + b1
√

hi + b2
√

di)
2
+ var(ε) (1)

where DBHi is the estimated DBH of the ith tree in millimetres, and hi and di are the tree
height in decimetres and the crown diameter (in decimeter), respectively. The model
coefficients specific to spruce trees used are b0 = −3.524, b1 = 0.729, and b2 = 1.345 [35]. We
correct the bias ε in the DBH estimate resulting from the nonlinear transformation on the
dependent variables in (1) by the method described in [36]. The estimated stem DBH is
compared with the reference stem DBH measured on the field to evaluate the biophysical
parameter estimation performance of the respective delineation tree method.

2.2. Remote Sensing Data

The VHR multispectral images of the forest area were acquired on 10 October 2018
using a modified MicaSense RedEdge multispectral camera (Micasense, Seattle, WA, USA)
mounted on a DJI Matrice 100 quadrocopter (DJI Technology Co., Ltd., Shenzhen, China)
with Autonomous mode with the global positioning system (GPS)-based waypoint naviga-
tion. The custom-filter camera captures near-simultaneous images in five narrow bands in
the visible and the near-infrared regions of the electromagnetic spectrum (Table 2).

Table 2. Micasense custom-filter camera specifications and unmanned aerial vehicle (UAV) flight
mission parameters used in the mission planner software PRECISIONFLIGHT v.1.4.3 (PrecisionHawk,
Toronto, ON, Canada). Here, CW is centre wavelengths, FWHM is full width at half maximum,
HFOV is horizontal field of view, and GSD is ground sampling distance.

Parameter Value

Bands CW, FWHM (nm) B1: 528, 5; B2: 570, 17; B3: 645, 17; B4: 680, 10;
B5: 900, 20

Focal length (mm) 5.4
Pixel Size (µm) 3.75
HFOV (◦) 47.2
Bit depth (bits) 12
Nominal speed (m/s2) 4
Altitude (m) 26
GSD/band @ 60 m (cm) 4
Average flight duration (min) 25
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Images were acquired for a 0.11 square km area (Figure 1) on 10 August 2017 within
two hours of local solar noon to minimize shadowed area and in stable illumination
conditions (i.e., clear skies or fully overcast). The data acquisition was made with more
than 75% swath overlap and sidelap to facilitate accurate detection of tie-points critical for
accurate photogrammetric processing.

Figure 1. The orthomosiac (a) of the St. Casimir forest generated from the VHR multispectral data
collected in October 2018. The reference data including the diameter at breast height (represented
by coloured dots) and the crown spans (dotted-white-lines) were obtained for every tree in all eight
circular plots (b–i).

3. Methodology

The proposed method exploits the spectral, spatial-contextual, the 3D crown struc-
tural information in the VHR photogrammetric multispectral data to perform accurate
crown delineation in a fuzzy framework. Figure 2 shows the block scheme of the proposed
S3-ITD tree crown delineation approach. The 3D point cloud P and the orthomosaic O
derived from the UAV optical data are the sources of the geometric and spectral/spatial-
contextual information in the S3-ITD approach.
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Figure 2. Block scheme of the spectral, spatial-contextual, and structural information-based indi-
vidual tree crown delineation method (S3-ITD), crown detection, and delineation method for VHR
multispectral data. The geometric and radiometric corrections of the VHR data are performed using
the photogrammetrically derived digital surface model (DSM) and the known reflectance panel
parameters, respectively. The set of treetops t corresponding to local maxima in the canopy height
model (CHM) are detected using the local maxima detection (LM) algorithm. The crown-fractional
map (uc) generated using the Markov random field based spatial-contextual model (FCM-MRF)
classifier is integrated with the ridge map (ur) obtained using the marker-controlled watershed
segmentation in order to derive the ridge-integrated fractional map (urc). Spruce crown delineation
is achieved by performing region growing on the ridge-integrated fractional map (urc) using the
gradient vector field (GVF) snake algorithm.

3.1. Preprocessing

Radiometric preprocessing of the raw VHR multispectral data is performed separately
for individual bands to transform respective pixel values to physically meaningful radiance
value L. The transformation compensates for sensor black level, the sensitivity of the sensor,
the sensor gain, the exposure settings, and the lens vignette effects, using (2).

L = V(x, y).
a1

g
.

p− pBL
te + a2y− a3tey

(2)

where p is the normalized raw DN number, PBL is the normalized dark pixel value, a1, a2
and a3 are the radiometric calibration coefficients, te is the exposure time, g is the sensor
gain, (x, y) is the pixel coordinate set, and L is the radiance. The reflectance conversion
is performed by multiplying the radiance image by a scaling factor that is determined by
measuring the radiance of a surface with known reflectance [12]. In this study, the radio-
metric processing to convert raw digital numbers (DN) to radiance and then to reflectance
is performed in the AgiSoft Metashape Professional commercial software (version 1.5.5)
using the radiance derived from a 61% reflectance panel that is imaged right before the
data acquisition [12,37]. The reflectance (i.e., radiometrically corrected) images are also
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geometrically preprocessed to (a) estimate the camera and sensor orientation at the imag-
ing instance, (b) determine the 3D crown geometric models from images, and (c) remove
spatial distortions in the images. We perform all the geometric preprocessing steps using
the Agisoft Metashape Professional commercial software for its excellent performance
in feature detection, tie-point matching, and photo-based 3D reconstruction using the
structure from motion (SfM) photogrammetric technique [38]. The camera and the sensor
orientation parameters required for the image alignment and sparse point cloud generation
were estimated using Agisoft with high accuracy by selecting 40,000 and 4000 key and tie
points, respectively. An automatic outlier removal is performed on the sparse 3D cloud
by removing 10% of the points with the largest reprojection errors. The alignment and
location errors were estimated based on 14 widely spaced control points, for which the
accurate geographic location is collected using the Trimble Geo XT GPS (Trimble Inc.,
Sunnyvale, CA, USA). A 3D dense point cloud representing the 3D canopy structure and
underlying ground topography was generated with the quality attribute set to medium.
The dense point cloud data are used to derive the digital surface model (DSM) and digital
elevation model (DEM) that represent the crown surface geometry and underlying Earth
surface geometry, respectively [39]. The canopy height model (CHM) representing the
local tree canopy height is obtained by subtracting the DEM from the DSM. Effects of
canopy/ground surface relief on the reflectance images are compensated for by performing
orthorectification using the DSM. The output of the geometric processing is referred to
as the image orthomosaic, where all crown geometric distortions are minimized, if not
removed, for the individual trees.

3.2. Crown Detection

The individual spruce crowns are detected and localized by (a) performing Gaussian
smoothening using a Nm × Nm spatial mask on the CHM to remove artifacts caused due to
vertical branches proximal to the treetop, where Nm is the the kernel size of the Gaussian
filter that is chosen in an empirical way to minimize both omission and commission errors
in detecting tree crowns; (b) detecting and localizing peaks in the CHM using the LM
algorithm on the assumption that treetops manifest themselves as local maxima in the
CHM; and (c) selecting only the apexes points that have an apex-height greater than a
threshold th in order to minimize the commission error caused by other shorter vegetation
such as shrubs in the scene [40]. The value of th is selected using a sensitivity analysis that
aims to maximizes the overall crown detection accuracy by varying th between 0 m and
3 m with increments of 0.25 m. Based on the assumption that treetops in CHM, which are
very proximal to one another, are very likely to be part of the same tree (e.g., false peaks
resulting from protruding branches), we merge the treetops that are less than a threshold
Euclidean distance of dg from each other. Considering the approximate conical shape of
spruce crowns, we define dg to be equal to one-fourth of the average distance of individual
treetops to its nearest neighbour. The locations of treetops which remains after merging are
used as the seed points to perform spruce crown delineation.

3.3. Crown Delineation

For each detected spruce crown, the S3-ITD approach performs crown delineation
by performing region growing on a fuzzy crown-spectral map integrated with ridge-
location information.

3.3.1. Fractional Map Generation

VHR multispectral images contain pixels which are often not pure but mixed in nature
due to the presence of more than one object/land-cover class in the scene and, hence, the
relative composition of each class in a pixel can be better represented by a class membership
value rather than digital numbers. In our case, the membership value uij ∈ [0, 1] of the ith
image pixel to belong to jth class is estimated by jointly considering the information in
both the multispectral spectral bands and the CHM. We use the fuzzy C-means classifier
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integrated with the Markov random field based spatial-contextual model (FCM-MRF) [41]
to generate noise-robust fractional maps U = uij, i ∈ [1, N]; j ∈ [1, Nc] and which contain
estimates of the class membership values of each pixel. Here, N and NC are the total number
pixels and classes, respectively. The fractional maps generated by the FCM-MRF classifier
are the least affected by spectral variance and nonuniform illumination/shadowing, as the
class membership values of a pixel is estimated by jointly considering the spectral (i.e., DN)
value, CHM value, and spatial-context of the pixel. Here, the study focuses only on two
broad object/land-cover classes: (a) the crown and (b) the background. The former class is
composed of stem, branches, and leaves, and the latter class is composed of the remaining
background objects in the scene, including soil and shadowed regions/objects. We refer
to the factional maps generated against the crown and the background class as uc ∈ U
and ub ∈ U, respectively. The objective function (3) of the FCM-MRF is a minimization
problem that minimizes the posterior energy E of each image pixel by considering both the
spectral similarity with respective class reference spectrum, local crown height, and spatial
context of pixels.

E(
uij

d
) = (1− λ)

[
N

∑
i=1

C

∑
j=1

(
uij
)m||~xi −~cj||2

]
+ (λ)

N

∑
i=1

C

∑
j=1

∑
j̀∈Nξ

(−γe
−η2

γ ) (3)

Here, N is the number of pixels, m is the fuzzification index, and D is the Euclidean
distance between the data point ~xi and the cluster centre~cj. The optimal m is estimated by
a sensitivity analysis that aims to maximize classification performance while minimizing
the loss of edge information in the data measured using image entropy. Here, m is varied
between 1.2 and 3.0 with increments of 0.2 [42]. We initialize the crown class with the
average spectral response of the 25 brightest pixels that are located within a distance of
1 m from the 10 randomly selected treetop locations (i.e., local maxima in the CHM), while
the ground class is initialized with the average spectral response of the 25 darkest pixels
that are located within a distance of 1 m from 10 randomly selected local minima locations
in the CHM. All parameter updates are subjected to the constraint 0 ≤ uij ≤ 1, which
ensures that the class membership values are effectively relaxed. Here, Nξ is the pixel
neighbourhood defined as v1(wr) + v2(wr, wr′) + v3(wr, wr′ , wr′′), where v1(wr), v2(wr, wr′)
and v3(wr, wr′ , wr′′) represent the potential function corresponding to the single-site wr,
pair-site wr′ , and triple-site wr′′ cliques, respectively. A clique is a neighborhood pixel subset
where individual members are mutual neighbours [41]. The first term in (3) estimates the
spectral similarity of a pixel to individual classes, while the second term is an adaptive
potential function that estimates the influence of a pixel with its neighbours in Nξ , where η
is the pixel value variance in Nξ . A larger η results in lower neighbourhood influence, and a
higher neighbour influence can be generated from smaller η. It is worth saying that higher
η occurs at the crown boundaries and, hence, causes minimum neighbourhood influence
in the estimation of the corresponding class membership values. The influence of the first
and the second components in determining the class membership value is controlled by
λ ∈ [0, 1]. The smoothening strength at the boundaries is controlled by γ ≥ 0. The global
posterior energy E for the ith pixel and jth class in (3) is minimized using the simulated
annealing optimization algorithm (Goffe, 1996) by iteratively modifying uij and~ci using (4)
and (5), respectively.

uij =
1

∑C
k=1 (

D(~xi ,~cj)

D(~xi ,~ck)
)

2
m−1

; 1 ≤ i ≤ N, 1 ≤ j ≤ C
(4)

~cj =
∑N

i=1 um
ij~xi

∑N
i=1 um

ij
; 1 ≤ j ≤ C (5)
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The optimized fractional maps uc and ub represent the likelihood of a pixel to belong
to the crown and the background class, respectively. Here, uc is identified as the one which
has its mean spectral value most proximal to the mean spectral value of the reference-
crown-class spectral value. The class membership associated with a class is often never
zero, even in regions dominated by other classes. For example, the vegetation membership
value associated with a soil pixel is not often zero. This low membership value is a source
of noise and, hence, is undesirable for our analysis. Thus, we remove the undesirable
variance in uc ∈ [0, 1] by assigning zero to all membership values uc

ij where uc
ij ≤ ub

ij.

3.3.2. Crown Ridge Detection

Crown delineation using only uc becomes challenging when there is no detectable
variation in the likelihood values uij at the crown boundaries. Such challenges occur
at those sections of tree crowns which overlap or touch the neighbouring crown(s). In
this case, we exploit the canopy surface information in the CHM to identify ridges that
correspond to the lowest height contour in the local valley around tree crowns. It is worth
noting that the ridges only define the section of boundaries where tree crowns overlap
or touch and not the boundary sections, which are already separated from neighbouring
crown(s) by another class (e.g., the ground class). Individual pixels in CHM, bi ∈ [0, N]
represent the ith pixel height and, hence, a binary ridge map ur derived from the CHM
is used to locate the crown boundaries at the overlapping regions. We derive urc by (a)
performing the marker-controlled watershed algorithm with the treetop locations as the
markers/seeds, (b) assigning maximum membership value (i.e., 1) to all the watershed
pixels in ur, and minimum membership value (i.e., 0) to all the ridge pixels in ur. We
perform a pixelwise multiplication of the ridge map ur and the uc to generate the ridge-
integrated fractional map urc, which is used to perform the crown delineation. The ridges
occur at the crown boundaries of all proximal trees with overlapping or touching crowns,
and the pixelwise multiplication forces all the uc pixels at the watershed ridges to have the
minimum membership value (i.e., 0). To this point, we assume that canopy overlap/fusion
does not occur below the height of the local crown valley, as both branch and foliage density
below the height is likely to be very low due to the minimal availability of sunlight.

3.3.3. Crown Segmentation

Delineation of individual tree crowns is performed on the ridge-integrated fractional
map urc. Here, the gradient vector Ffow (GVF) snake region-growing algorithm [43,44] is
used to perform crown delineation in VHR multispectral data for its (a) tolerance to pixel
heterogeneity (i.e., abrupt changes or edges) within a crown area and (b) ability to map
complex crown shapes without causing overestimation of crown area. The GVF snake
algorithm detects tree-crown boundaries by iteratively minimizing the energy ES of a seed
curve f (s) = [x(s), y(s)], s ∈ [0, 1] in the spatial domain R2 of the input tree-crown image.
The objective energy function of the GVF snake algorithm is given by (6),

ES =
∫ 1

0

1
2
(α| f ′(s)|2 + β| f ′′(s)|2 + Eext( f (s))ds (6)

At minimum energy state, (6) must satisfy the Euler equation as shown in (7).

α f ′′(s)− β f ′′′′(s) + ∆Eext = 0 (7)

This can be viewed as a force balance equation Fint + Fext = 0, where Fint = αx′′(s)
− βx′′′′(s) and Fext = −∆Eext are the internal and external forces acting on the input seed
curve. On the one hand, the internal force Fint resists the stretching and bending of the
curve, while on the other hand, the external force Fext pulls the curve towards the image
edges/boundary. Here, the edge map e(x, y), derived from the image uc(x, y), is used as
the −Eext.
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The gradient vector field (GVF) is the vector field g(x, y) = (v(x, y), w(x, y)), which
minimizes the energy function (8).

ε =
∫ ∫

µ(v2
x + v2

y + w2
x + w2

y) + |∆e|2|g− ∆e|2dxdy (8)

where, the first and second terms represent the partial derivatives of the vector field,
and the gradient field of the edge map f (x, y) = Ei

ext(x, y) where i = 1, 2, 3, 4, respectively.
The regularization parameter µ controls the contributions from the first and the second
terms. The GVF can be iteratively solved by treating v and w as time-variant parameters,
using (9) and (10)

vt(x, y, t) = µ∆2v(x, y, t)− (v(x, y, t)− ex(x, y)).

(ex(x, y)2 − ey(x, y)2)
(9)

wt(x, y, t) = µ∆2w(x, y, t)− (w(x, y, t)− ey(x, y)).

(ex(x, y)2 − ey(x, y)2)
(10)

The computed g is used as the external potential force in (11).

xt(s, t) = αx′′(s, t)− βx′′′′(s, t) + g (11)

The parametric curve that solves (11) is referred to as the GVF snake contour. We
initialize the parametric curve corresponding to the ith tree crown as a set of uniformly
spaced 100 points at a distance of 0.1 m from the respective treetop (i.e., in a circular pattern).
The assumption here is that the region most proximal to the treetop is very likely to be part
of the respective tree crown. The thin-plate energy β, membrane energy α, and balloon
force δ are estimated in an empirical way to minimize crown segmentation error. Over a
finite number of iterations, the vertices of the seed curve (which is has a circular shape
in our case) shifts toward the crown boundary based on the membership values of the
crown pixels. However, the shifting is constrained at the crown edges as the membership
values abruptly fall to a minimum at the ridges. The boundary point updation is stopped
when the average shift in vertices over successive iteration is less than 1 unit. The resulting
contour captures the 2D crown boundary/span of a tree crown in the VHR multispectral
data. The output of the GVF-snake-based region growing on a tree is a polygon vector
shape vt that defines the crown boundary of the tree.

4. Results

The alignment of individual UAV images was performed using the AgiSoft Metashape
Professional software and had a mean standard deviation error of 3 m for the camera
locations and a mean error of 3.2 pixels for the tie points. The reprojection errors were
approximately 0.35 pixels, and the root mean square error (RMSE) values of the GPS
position residuals is 1.2 m. In our case, the point cloud P generated (Figure 3a) was of
medium quality with a mean density of 96 points/m2, and is in turn used to generate the
image orthomsaic (Figure 3b). The apex-height threshold th that maximizes the crown
detection accuracy is estimated to be 2 m. For all experiments, treetops are automatically
detected by performing local-maxima detection on the CHM (Figure 4c) that is Gaussian
smoothened using the 3 × 3 spatial mask. The kernel size Nm is estimated to be 3 for the
considered plots. We merged treetops detected by the local-maxima algorithm, which are
more proximal than dg equal to 1 m to prevent multiple treetops for the same tree.
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(a) (b)

Figure 3. The 3D point cloud (a) and orthomosaic (b) corresponding to a plot are used as the source
of structural and spectral information, respectively, by the S3-ITD method.

(a) (b) (c)

Figure 4. The digital elevation model (a) representing the ground surface height is subtracted from
the digital surface model (b) representing the canopy surface height to derive the canopy height
model (c) representing the real height of canopy in meters.

Both uc and ub are derived from the FCM-MRF classifier with the optimal fuzzification
factor m as 2 and the number of clusters C set to 2. Figure 5a,b shows the fractional maps
derived without and with the incorporation of the MRF-based spatial-contextual term in
FCM, respectively. It can be clearly seen that the uc generated by the FCM-MRF classifier
has relatively less intraclass membership variance. The thin-plate energy β, membrane
energy α, and balloon force δ for the dataset are estimated as 1.5, 0.2, and 0.8, respectively.
Figure 6a shows the marker-controlled watershed segments (coloured areas) obatined using
the detected treetops (red dots) as markers, and ridges (white lines) in the CHM, for a
sample plot. The fractional image of the crown class and the ridge-intergrated fractional
map for the sample plot are show in Figure 6b,c, respectively. Figure 7a,b show the iterative
region growing (starting from the seed circle placed around the treetop) performed by GVF
snake on a fractional image with and without ridge integration, respectively. It can be
clearly seen (Figure 7b) that crown span is overestimated when the ridge integration is not
performed on the crown fractional map. This is because (a) the GVF snake can smoothly
expand the seed curve as the intracrown class membership values tend to be more homoge-
neous, and (b) the abrupt fall in membership values at the crown boundary constrain the
expansion of the seed curve. In other words, crown delineation error is maximum when
considering only the spectral information but ignoring the spatial contextual and structural
crown information. Figure 8 shows the crowns detected and delineated by the proposed
method for the eight reference plots with various levels of complexities in terms of crown
proximity, tree height, and crown span.
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(a) (b)

Figure 5. The fractional image uc ∈ [0, 1] obtained for a sample crown using (a) the fuzzy C-means
(FCM) without spatial contextual term and (b) FCM with the spatial-contextual term (i.e., FCM-MRF
classifier). The manually extracted reference treetop and crown boundary are shown as red dot and
dotted-red line, respectively.

(a) (b) (c)

Figure 6. (a) Marker-controlled watershed segmentation using the treetops (red dots) as markers,
used to detect the watershed regions (coloured areas) and ridges (white lines) in the canopy height
model (CHM); (b) fractional map of the crown class uc ∈ [0, 1] with all uc pixels with uc < ub set to 0;
(c) ridge-integrated fractional map generated by element-wise multiplication of the ur and uc.

(a) (b)

Figure 7. The crown delineation by the gradient vector field snake (GVF snake) on fractional images
with and without ridge integration are shown in (a,b), respectively. A circular seed contour whose
centre is placed at the treetop (red dot) is iteratively grown (red lines) using the GVF snake to detect
crown boundary (dotted-green line). The reference crown boundary is shown in white-dotted lines.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. The crown polygons (black lines) were derived using the spectral, spatial-contextual,
and structural information-based individual tree crown delineation (S3-ITD) approach for the eight
reference plots (Plot 1–Plot 8 (a–h)). The manually delineated reference crown boundaries and
treetops are shown using dotted white lines and red dots, respectively.
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4.1. Assessing Crown Delineation Accuracy

We assessed the performance of the S3-ITD method on the eight circular forest plots
and also compared it with the performance of two other state-of-the-art (SoA) methods.
The first SoA method considered is the widely used marker-controlled watershed seg-
mentation (WS-ITD), which uses treetop locations in the image as the seeds for crown
segmentation [20]. The second SoA method is the bias-field segmentation algorithm
(BF-ITD), which performs watershed segmentation on the bias-field image generated by
modelling the variance in the local neighbourhood of a pixel [25]. The absolute accuracy of
individual crown polygons is obtained by comparing it with the reference crown polygons.
The trees proximal to the plot boundaries with incomplete crowns were not considered for
the accuracy assessment. The accuracy of delineation is quantified using two indices: (a)
The intersection over union (IoU) ∈ (0, 1), which is the ratio of the common area and the
total area, between the estimated and the reference crown polygons, respectively. The IoU
value of less than 1 occurs when the estimated crown polygon does not exactly overlap
the reference crown area, and an IoU value equal to 0 corresponds to no crown overlap.
(b) The crown-area difference (CAD) ∈ (−∞, ∞), which is the difference in area between
delineated crown polygons and reference polygons. A crown polygon larger than the
reference polygon results in positive CAD values, and a polygon smaller than the reference
polygon results in negative CAD values. The CAD value provides a quantitative estimate
of the underestimation (i.e., positive CAD values) or overestimation (i.e., negative CAD
values) in the crown area. The IoU and CAD for an accurately delineated crown are 1
and 0 m2, respectively. Table 3 shows the mean IoU and mean CAD for trees in the eight
reference plots. It can be seen that the S3-ITD method delineated crowns with high IoU
and small CAD for all the eight reference plots, compared with the WS-ITD and the BF-
ITD methods. This shows the ability of the S3-ITD method to accurately delineate tree
crowns by addressing issues resulting from large crown spectral variance and nonuniform
illumination/shadowing. In the case of WS-ITD, the low IoU and high CAD occur due to
overestimation of the crown boundaries by the watershed algorithm. This is because the
watershed algorithm assigns all the pixels including the noisy and the shadowed ones to
one of the nearest crown segments, and the background is selected by performing binary
thresholding on the input image. The BF-ITD attempts to address the problem of large
crown spectral variance with the help of field-bias maps. However, the algorithm relies
only on the spectral crown data to achieve crown delineation, and, hence fails to distinguish
crowns of neighbouring trees, where there is no or little difference in crown spectral prop-
erties. Although the BF-ITD method performs better than the WS-ITD methods, its limited
ability to accurately delineate proximal and or overlapping crowns affects the delineation
performance. Figure 9 shows the IoU and CAD distribution for all the trees in the eight
reference plots represented as boxplots.

Table 3. The mean intersection over union (IoU) and mean crown-area difference (CAD) for trees in
the eight reference plots. For an accurately delineated crown, the IoU ∈ (0, 1) and CAD ∈ (−∞, ∞)
will be 1 m2 and 0 m2, respectively.

Plot S3-ITD WS-ITD BF-ITD

ID IoU CAD (m2) IoU CAD (m2) IoU CAD (m2)

Plot 1 0.79 0.25 0.75 1.20 0.73 0.51
Plot 2 0.83 0.32 0.76 1.31 0.78 0.63
Plot 3 0.85 0.12 0.77 0.72 0.81 0.28
Plot 4 0.84 0.10 0.77 1.13 0.79 0.48
Plot 5 0.82 0.23 0.65 1.26 0.75 0.73
Plot 6 0.85 −0.08 0.74 0.87 0.78 −0.05
Plot 7 0.81 0.11 0.64 0.74 0.75 0.24
Plot 8 0.87 0.04 0.78 0.69 0.82 −0.12
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(a) (b) (c)

(d) (e) (f)

Figure 9. The intersection over union (IoU) and crown-area difference (CAD) distribution for all
the trees in the eight circular plots are represented as boxplots for the spectral, spatial, and struc-
tural information-based individual tree crown delineation (a,d), the marker-controlled watershed
segmentation (b,e), and the bias-field segmentation algorithm (c,f), respectively.

4.2. Performance Validation Using DBH Estimates

We validate the performance of crown delineation approaches based on its ability to
accurately estimate the stem DBH. The crown parameters derived from the S3-ITD, WS-
ITD, and BF-ITD methods are separately used to estimate the stem DBH in an allometric
fashion using (1) and comparing with the field-collected reference DBH to qualify the DBH
estimation performance. The input parameters of (1) include the crown diameter di and
tree height hi and are taken as the maximum span of crown boundary of polygon shape
vector derived from the respective crown delineation method and the field-collected tree
height, respectively. The DBH estimation accuracy quantifies the ability of the considered
approach to accurately delineate spruce crowns. We also evaluate the DBH estimation
accuracy of trees based on the spectral homogeneity within tree crown in order to quantify
the effect of intracrown spectral variance in crown delineation. Thus, we divide the
383 trees from the eight plots into three spectral groups with different ranges of pixel
homogeneity represented in terms of image entropy. The Group 1 and the Group 3 consist
of trees with the lowest (i.e., homogeneous) and the highest (i.e., heterogeneous) intracrown
spectral variance, while Group 2 has trees with intermediate intracrown spectral variance.
Table 4 shows the mean error (ME), mean absolute error (MAE), and root mean squared
error (RMSE) in DBH estimates for the three different groups. In all the investigated
cases, increasing heterogeneity in the crown affected the crown delineation accuracy and
is reflected as higher RMSE (see Table 4). In general, the lower DBH estimation error
associated with the S3-ITD approach proves its ability to accurately delineate tree crowns in
very-high-resolution multispectral data. This is evident from the minimum RMSE in DBH
for S3-ITD in all three entropy groups compared with the WS-ITD and the BF-ITD methods.
The ME provides an estimate of the underestimation or overestimation associated with
the individual methods. i.e., a negative ME value implies that the DBH values for most of
the trees in a plot were underestimated, and a positive ME corresponds to overestimation.
The WS-ITD often results in large inaccurate segments and is evident from its positive ME
in DBH estimation, obtained on the plots (Table 3). It is also worth noting that the ME
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is found to be minimum and the closest to zero for the S3-ITD method compared with
the other methods for all the three groups. This infers the ability of the S3-ITD method to
accurately estimated stem DBH.

Table 4. The mean error (ME), mean absolute error (MAE), and root mean squared error (RMSE)
accuracy of estimated DBH for the proposed and state-of-the-art methods for different image entropy
groups. Each entropy group contains the set of trees with similar intracrown pixel variance.

Image Entropy Method ME (cm) MAE (cm) RMSE (cm)

S3-ITD −0.80 4.42 5.24

Group 1 (0–3) WS-ITD 1.14 6.16 7.65

BF-ITD −1.20 5.25 6.35

S3-ITD −1.20 4.90 5.90

Group 2 (3–6) WS-ITD 1.30 6.61 8.85

BF-ITD −2.83 7.45 7.40

S3-ITD −2.87 5.94 8.80

Group 3 (≥6) WS-ITD −2.24 6.55 10.90

BF-ITD −2.78 7.25 8.96

5. Discussion

The proposed S3-ITD method merges the spectral, spatial-contextual and structural
information derived from the photogrammetric multispectral data into to a fuzzy member-
ship map, where trees are delineated using the GVF-snake-based region-growing technique.
The MRF-based estimation of membership values based on the context of pixels minimizes
the intracrown spectral variance resulting from nonuniform illumination/shadowing in
VHR optical data. Such an estimation forces the membership values within a class (i.e.,
crown or ground) to be homogeneous, and this allows the GVF snake region-growing algo-
rithm to detect tree crowns accurately. In addition, the crown ridges/boundaries (detected
using the marker-controlled watershed algorithm) integrated into the fuzzy map restricts
the growth of the GVF snake algorithm and prevents associating sections of spectrally
similar neighbouring crown sections to the considered crown, while the WS-ITD and the
BF-ITD rely on the Gaussian smoothing technique to minimize the undesirable effects of
nonuniform illumination/shadowing on crown delineation. However, such smoothing
results in loss of edge information in the optical data and causes delineation errors. It
is evident from Table 3 that the S3-ITD method delineates crowns with high IoU and
small CAD for all the eight reference plots, compared with the WS-ITD and the BF-ITD
methods. Despite the improved performance of the S3-ITD method over the WS-ITD and
the BF-ITD methods, the crown delineation performance of the S3-ITD method is found to
vary across the eight plots. This variance in performance is attributed to the difference in
forest complexity within these plots, largely in terms of crown proximity and tree density.
In particular, plots with a lower number of trees (Plots 1, 5, and 7) are shown to have higher
delineation errors compared with denser plots. This is because regions along the boundary
of individual tree crowns, which are defined by the ridge lines, becomes small when (a)
the trees’ crowns are further apart from one another and (b) there is a fewer number of
neighbouring trees. It is also worth noting that ridge lines act as good attractors of the GVF
snake contour (as they produce prominent edges in the edge map), and thereby reduce
both over and underestimation of crown span/boundary. For example, there are more
ridge lines in Plots 2, 3, 4, 6, and 8 (due to the presence of relatively more trees and high
crown proximity) and they are associated with higher performance in crown delineation.
The proposed S3-ITD approach resulted in the highest average IoU of 0.83, while the aver-
age IoU for the WS-ITD and the BF-ITD are only 0.73 and 0.77, respectively. In addition,
the lowest average CAD of 0.13 m2 proves the ability of the S3-ITD approach to minimize
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both the under and overestimation of crowns compared with the WS-ITD and the BF-ITD
approaches. In addition, it is a fact that the camera location and reprojection errors induce
geometric distortions in tree crowns, and consequently result in tree parameter estimation
errors. In our case, the average variance camera location and reprojection errors are as low
as 3 m and 0.35 pixels, respectively. This means that that the average distortion in crown
shape is also as low as 1.4 cm (for a GSD of 4 cm) and, hence, results in minimal or no
impact on the estimated crown parameters.

We also evaluated the potential of the S3-ITD method to estimate stem DBH. The
lowest mean error (ME), mean absolute error (MAE), and root mean squared error
(RMSE) accuracy of estimated DBH in Table 4 proves the potential of the S3-ITD method to
accurately estimate stem DBH over the state-of-the-art counterparts. The S3-ITD method
achieves accurate DBH estimation by minimizing the errors associated with the crown-span
and crown-height measurements. In forestry, low errors in the estimation of biophysical
parameters such as DBH is very advantageous for effective monitoring and analysis of
large forests. Most state-of-the-art ITD algorithms fail to maximally exploit spatial and
spectral information, resulting in parameter estimation errors. In this context, the S3-ITD
method has great potential to be used as a fully automatic parameter estimation approach
in operational forestry.

Nevertheless, it is also important to note that the proposed approach performs well
only with conifers where the crown shape is approximately symmetrical and, hence, it is
open to improvements. Thus, prospective future research directions include enabling the
method to be used for deciduous tree-crown delineation as well maximally exploiting the
textural and spatial information in tree point clouds.

6. Conclusions

An approach for spruce crown delineation was developed by exploiting spectral,
spatial-contextual, and structural information in very-high-resolution (VHR) photogram-
metric multispectral remote sensing data. We refer to this approach as the S3-ITD method.
Fractional images of the crown class are derived using the Markov random field based fuzzy
C-means classifier (FCM-MRF) to minimize the effect of intracrown spectral variance and
the crown illumination/shadowing. Region growing performed using the gradient Vector
field snake (GVF snake) algorithm on the ridge-integrated fractional map enabled precise
crown delineation by allowing the joint exploitation of the spectral, spatial-contextual,
and structural information in the photogrammetric VHR multispectral data. The improved
average intersection over union (IoU) of 0.1 and 0.05 and the lower average absolute
crown-area difference (CAD) of 0.8 m2 and 0.2 m2, respectively, compared with the marker-
controlled watershed segmentation (WS-ITD) and the bias-field segmentation algorithm
(BF-ITD) methods on the eight white-spruce forest plots proves the ability of the S3-ITD
approach to accurately delineate individual crowns in the VHR multispectral data. The S3-
ITD method reduces the overall RMSE in diameter at breast height (DBH) estimates by 2.95
cm and 1.5 cm over the WS-ITD and the BF-ITD methods. The DBH estimation accuracy
decreased with an increase in intracrown spectral variance and shadowing effects. How-
ever, the S3-ITD method minimizes the inaccuracies in crown delineation compared with
its WS-ITD and BF-ITD counterparts.
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