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Abstract: Grassland ecosystems can be hotspots of biodiversity and act as carbon sinks while at the
same time providing the basis of forage production for ruminants in dairy and meat production.
Annual grassland dry matter yield (DMY) is one of the most important agronomic parameters
reflecting differences in usage intensity such as number of harvests and fertilization. Current methods
for grassland DMY estimation are labor-intensive and prone to error due to small sample size. With
the advent of unmanned aerial vehicles (UAVs) and miniaturized hyperspectral sensors, a novel tool
for remote sensing of grassland with high spatial, temporal and radiometric resolution and coverage
is available. The present study aimed at developing a robust model capable of estimating grassland
biomass across a gradient of usage intensity throughout one growing season. Therefore, UAV-borne
hyperspectral data from eight grassland sites in North Hesse, Germany, originating from different
harvests, were utilized for the modeling of fresh matter yield (FMY) and DMY. Four machine learning
(ML) algorithms were compared for their modeling performance. Among them, the rule-based ML
method Cubist regression (CBR) performed best, delivering high prediction accuracies for both FMY
(nRMSEp 7.6%, R2

p 0.87) and DMY (nRMSEp 12.9%, R2
p 0.75). The model showed a high robustness

across sites and harvest dates. The best models were employed to produce maps for FMY and DMY,
enabling the detailed analysis of spatial patterns. Although the complexity of the approach still
restricts its practical application in agricultural management, the current study proved that biomass
of grassland sites being subject to different management intensities can be modeled from UAV-borne
hyperspectral data at high spatial resolution with high prediction accuracies.

Keywords: UAV; hyperspectral; grassland; biomass; multisite; multitemporal; predictive modeling

1. Introduction

The importance of grassland is manifold and comprises ecosystem services such as
carbon storage as well as agronomic values such as fodder for milk and meat produc-
tion [1]. Simultaneously, the global area of grasslands is shrinking continuously, which is
strongly linked to a loss of biodiversity. Grassland management can be classified based
on the intensity (e.g., application of fertilizer, number of harvests). While extensive grass-
land management in Central Europe can be found on marginal lands in the absence of
fertilization, intensive grassland management includes high inputs of fertilizers such as
manure. These different management strategies lead to a different number of harvests and
harvest dates. While extensive grasslands are harvested one to three times a year with a
focus on nature conservation (e.g., habitat for rare species, invasive species management),
intensively managed grasslands are harvested up to six times per year with a strong focus
on yield maximization [2].

Forage yield is traditionally estimated using labor-intensive clipping of sampling
areas within the field or using canopy height [3] or density measurements [4]. However,
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spatial continuity of the sampling and a reliable yield estimation along a whole growing
period is almost impossible to achieve. For more than a decade, remote-sensing-based
approaches have been tested for overcoming these limitations [5]. While some studies
used mobile robotic vehicles for collecting spectral information with the aim of biomass
estimation [6] on a limited number of grassland sites, others such as [7] utilized satellites
collecting spectral information with a reduced spatial resolution but at a more extensive
spatial coverage. While the first approach offers the advantage of high spatial resolution,
although constrained by limited spatial coverage, the second method’s abilities to analyze
within-field forage yield variability are restricted by low spatial resolution. Recent technical
developments made it possible that unmanned aerial vehicles (UAVs) equipped with
different sensors such as true color cameras [8], multispectral cameras [9] or hyperspectral
cameras [10] can be used for forage yield estimation. A frequent limitation of the studies
using UAVs is the low number of sampling intervals or limited representativeness as only
a low number of sites and management intensities can be assessed [11–13].

Various statistical approaches have been evaluated to exploit the full potential of
spectral information to gain the optimal yield prediction accuracy. While some studies used
spectral indices (i.e., a combination of two or more spectral bands in simple mathematical
combinations) coupled with linear regression approaches [14,15], various machine learning
(ML) methods were applied for hyperspectral data analysis [9,16]. However, no single ML
method so far has proven superior and always performed best. Thus, an evaluation of
several ML methods is recommended [17].

Another difficulty with hyperspectral data is the redundancy of information among the
numerous bands. To reduce redundancy, feature selection has been shown to reduce model
complexity without degrading (and sometimes increasing) model accuracies [18]. There
are several methods available for feature selection, such as VSURF [19] and Boruta [20].

The objectives of this study were the development and evaluation of UAV-based
models with the goal of forage yield estimation of eight grassland habitats along a gradient
of management intensities. The management intensity was categorized based on the
amount of fertilizer application as well as the number of harvests and the harvest dates.
The models should be stable among the habitats and throughout the phenological phases
of the grasslands. Therefore, several ML methods were tested and evaluated.

Specific aims were as follows:

1. Identification of the optimal ML approach for forage yield estimation of grassland
habitats characterized by different management intensities.

2. Evaluation of prediction performance stability of the ML approach throughout the
growing season and between different geographic regions.

2. Materials and Methods
2.1. Study Sites

Data acquisition took place in the vegetation period between May and July 2018 at
eight grassland sites differing in grassland composition and management intensity. Four
sites were located around Witzenhausen, Werra-Meißner District, North Hesse, Germany,
at a height between 136 to 718 m above mean sea level (MSL), while another four sites were
located at the Rhön Biosphere Reserve near Fulda (Hesse, Germany) at heights between
794 and 887 m MSL (Figure 1, Table 1). Central Europe faced a severe drought during
2018, with precipitation in Hesse from February to November at only 54% (356 mm) of the
long-term average (661 mm) [21].

For the present study, data from two study regions in Central Germany, namely Werra-
Meißner District (EPSG 4326: 9.9◦N, 51.3◦E) and Rhön Biosphere Reserve (EPSG 4326:
10.0◦N, 50.5◦E), were combined (Figure 1). Although the sampling design was slightly
different, the datasets from both regions could still be combined, as the sampling plot size,
the remote sensing data collection and the biomass sample treatment were similar. The
study sites near Witzenhausen, Werra-Meißner District, received one (MHM1, NSG1), two
(LHM) and three cuts (IMG) in 2018 (Figure 2). At each study site in Werra-Meißner District,
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a rectangular sampling area of 25 × 50 m (1250 m2) was established, and 20 randomly
distributed 1 m2 sampling plots were placed (Figure 1(b1)). For the sites in the Rhön
Biosphere Reserve, a 50 × 30 m (1500 m2) sampling area was established at all four
grasslands. Within each site, 15 subsampling areas (64 m2) were placed within an equally
spaced grid. In each subsampling area, three randomly distributed 1 m2 sampling plots
were placed (Figure 1(b2)). For biomass sampling at Rhön Biosphere Reserve, three cutting
dates were selected, representing the regular harvest date according to nature conservation
rules (15 June), an antedated harvest optimal for removing the invasive plant species
Lupinus polyphyllus (1 June) and a late harvest date that is common in the region, when the
weather does not allow earlier harvest (1 July). Biomass was harvested within the 1 m2

sampling plots of five subsampling areas per grassland site during every sampling date.
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Remote Sens. 2022, 14, 2068 4 of 17

Table 1. Overview of examined grassland sites. The number of cuts and number of sampling
campaigns differ, as at the sites in Rhön Biosphere Reserve, undisturbed grassland swards were
harvested at multiple dates, while at the sites in Werra-Meißner-District, the same grassland sward
received multiple cuts.

Sampling Region Grassland Site Vegetation Type
(Plant Community)

Elevation (m MSL),
Coordinates Intensity of Use Number of Cuts/Sampling

Campaigns/Sampling Plots

Werra-Meißner
district

MHM1 Mountain hay meadow
(Geranio-Trisetetum)

684,
51◦12′48.3”N
9◦50′31.5”E

Nature conservation
grassland, late

harvest, no
fertilization

1/1/20

NSG1
Soil-moist

Nardus grassland
(Juncetum squarrosi)

718,
51◦12′49.4”N
9◦50′57.3”E

1/1/20

LHM Lowland hay meadow
(Arrhenatheretum elatioris)

135,
51◦20′59.0”N
9◦52′16.5”E

Extensive alluvial
grassland, no
fertilization

2/2/20

IMG Fertilized pasture
(Lolio-Cynosuretum)

199,
51◦23′32.9”N
9◦55′51.2”E

Intensive grassland,
fertilized 3/3/20

Rhön Biosphere
Reserve

NSG2
Periodically wet
Nardus grassland

(Polygalo-Nardetum)

822,
50◦28′44.0”N
9◦58′17.1”E

Nature conservation
grassland, late

harvest, no
fertilization

1/3/15

NSGL

Former Nardus
grassland invaded by

Lupinus polyphyllus
(Polygalo-Nardetum)

846,
50◦29′17.1”N
10◦03′40.9”E

1/3/15

MHM2 Mountain hay meadow
(Geranio-Trisetetum)

739,
50◦28′58.4”N
9◦59′09.9”E

1/3/15

MHML

Mountain hay
meadow invaded by
Lupinus polyphyllus
(Geranio-Trisetetum)

839,
50◦28′45.0”N
10◦02′34.6”E
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Figure 2. Biomass sampling dates at probed grassland sites. At grassland sites NGS2, NSGL, MHM2
and MHML different plot areas were cut at three sampling dates, resulting in differing dates for the
1st cut.

2.2. Biomass Sampling

In all sampling plots (n = 320), the grassland biomass was cut 5 cm above ground level
(AGL), and the fresh matter yield (FMY) was weighted directly in the field. A representative
biomass subsample was subsequently dried for 48 h at 105 ◦C, with the dry matter yield
(DMY) being calculated subsequently. The biomass sampling was conducted at different
dates throughout the growing season in 2018 (Figure 2).

2.3. Hyperspectral Imaging

Hyperspectral image acquisition was conducted using a UAV-borne Cubert FireflEYE
S185 (Cubert GmbH, Ulm, Germany) hyperspectral snapshot camera at every grassland
site before biomass samples were taken. The sensor is a 2D imaging spectrometer that can
detect radiation within a spectral range from 450 to 998 nm. It has 138 spectral bands with a
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4 nm sampling interval for each band at 8 nm spectral resolution [22]. The spatial resolution
of the sensor is 50 × 50 pixels for each hyperspectral band and 1000 × 1000 pixels for the
panchromatic band, while the radiometric resolution is 8 bit.

A Copter Squad RTK-X8 (Copter Squad GmbH, Ulm, Germany) coaxial octocopter
UAV was utilized as a platform to carry the hyperspectral sensor. With the sensor mounted
onto the stabilized gimbal, the platform provides a flight time of 20 min. The UAV was
equipped with a real-time kinematic (RTK) global navigation satellite system (GNSS),
allowing flights with centimeter-level accuracy. Flights were conducted at a flight height of
20 m AGL, resulting in a ground sampling distance (GSD) of 20 cm (hyperspectral). During
all flights, the heading of the sensor–platform combination was kept constant.

For radiometric calibration of the sensor, a 10× 10 cm SphereOptics Zenith Lite Diffuse
Reflectance Target (SphereOptics GmbH, Herrsching, Germany) was placed under the lens
before each flight. Dark calibration was achieved by closing the lens with the lens cap.
Georeferencing and orthorectification of the hyperspectral imagery were supported by
employing six 1 m2 wooden ground control point (GCP) targets, painted in a checkered
pattern, distributed at each sampling site. The GCPs were positioned outside the sampling
plots with one GCP placed on the short side and two GCPs placed on the long side of the
rectangularly shaped plots each. The position of the GCPs was determined with an RTK
GPS at a precision of 2 cm.

2.4. Data Processing

The creation of hyperspectral georeferenced orthomosaic image stacks from raw hyper-
spectral imagery can be divided into three processing steps utilizing different software. In
the first step, the raw hyperspectral image cubes were exported from the camera using the
software CubeExport DOS (Cubert GmbH, Germany). Afterward, all hyperspectral bands
(50 × 50 pixels) were stacked together with the panchromatic band (1000 × 1000 pixel).
Secondly, resampling of the 50 × 50 pixels hyperspectral images to 1000 × 1000 pixels ap-
plying nearest-neighbor interpolation was carried out using the statistics software R [23].
Resampling to a higher spatial resolution was necessary for precise placement of the mark-
ers during georeferencing and followed the procedure described in [17]. The third step
comprised stitching the single hyperspectral images to a georeferenced orthomosaic using
the software Agisoft PhotoScan Professional (Agisoft LLC, St. Petersburg, Russia). The
sparse point cloud generated from the hyperspectral imagery was optimized and georefer-
enced utilizing precise locational data of the GCPs. The final product was a georeferenced
orthomosaic of the study plot containing 138 hyperspectral bands as well as the panchro-
matic band with a spatial resolution of 20 cm. Subsequently, the pixel values of all spectral
bands of the 1 m2 subplots were clipped from the georeferenced orthomosaics, and the
mean reflectance value for every spectral band was calculated as input for the statistical
analysis. From the total of 138 bands, the wavelength portions of 450 to 478 nm (8 bands)
and 954 to 998 nm (12 bands) were not used due to noise in this spectral region originating
from the sensor’s technical characteristics. The resulting 118 bands ranging from 482 to 950
nm were utilized for data analysis.

2.5. Data Analysis

At first, the spectral reflectance curves of all subplots were normalized using the
function normalise.vector (Equation (1)) from statistics software R [23] package ppls [24] in
order to reduce the impact of differences in incident radiation between different sampling
dates and sites.

x̃i =
xi√

∑ ‖xi‖2
(1)

with xi being the spectral vector for i = 1, 2, . . . , n.
Secondly, a pre-selection of variables was conducted using the VSURF (variable selec-

tion using random forest) function from the VSURF package [19] to reduce data redundancy
and increase model parsimony. VSURF was selected as it has been identified as the su-
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perior feature selection method regarding performance measures for datasets with many
explanatory variables (i.e., wavebands) [25] as proven in multiple studies using ML for
modeling from UAV-borne imagery [10,26–28]. The VSURF function is a three-step variable
selection procedure using random forests (RFs). In the first step, all variables (n = 118) are
ranked according to the importance of 50 RF runs. The second step consists of nested RF
models (25 runs) involving the most important variables from the first step. The model
with the lowest OOB (out-of-bag) error was selected. The third step is a stepwise RF selec-
tion of the remaining variables, whereby additional variables are only included when the
OOB error decreases significantly compared to the average variation obtained by adding
noisy variables [19]. The selected spectral bands from the VSURF were utilized for model
building employing four different machine learning (ML) methods (Figure 3).
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ML methods were employed due to their ability to handle multicollinear data, such as
the contiguous bands of hyperspectral data. The following well established and frequently
used ML methods were evaluated for their modeling performance: partial least squares
regression (PLSR), support vector regression (SVR), random forest regression (RFR) and
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Cubist regression (CBR). PLSR is an algorithm searching for a set of latent variables, which
represent the covariance between the explanatory variables (i.e., selected waveband) and
the response variables (i.e., biomass) best. Latent variables are only added to the model if
the error is reduced. The maximum number of latent variables was limited to 20 to reduce
the effect of overfitting. SVR is a kernel-based statistical approach, which uses a radial basis
function to fit the data to a hyperplane [29]. SVR is beneficial for fitting complex non-linear
data. The optimal model was identified using a systematic grid search, tuning the cost
and sigma parameter [30]. RFR, a tree-based ensemble learning technique, combines the
information from many variables. In this study, the number of trees was kept at 500 [31]
independent decision trees [32]. For identifying the optimal model, the parameter mtry
(defining the number of randomly selected variables at each split in the regression tree)
was tuned. The minimum node size was kept at five [33]. CBR is a rule-based regression
technique that retrieves a set of rules with sets of multivariate models [34,35]. The best
model selection is based on rules that best fit an explicit set of predictors [36,37]. For tuning
the CBR model, the best combination of the parameter’s committees and neighbors were
searched. The model building process was carried out using the caret package (version
6.0.85) [38] in statistics software R. Spectral data and the target variables FMY and DMY
were utilized as input for the modeling process (Figure 3).

All samples were randomly split into two portions: 80% of the samples were used
for calibration, and 20% of the samples were used for validation, using grassland site
and sampling date as a stratum. The ratio of 80% to 20% was chosen to utilize a high
proportion of the samples in the calibration process to achieve a good model fit while
still retaining a considerable number of 64 samples in the validation. As a specific set
of calibration samples can alter the modeling result, a random split of calibration and
validation samples was repeated 100 times (Figure 3) to reduce the impact of particular
samples on model performance.

Model calibration was carried out by applying k-fold cross-validation with 10 folds and
5 repetitions. The best tuning parameters were chosen based on the model performance in
the cross-validation and were measured by the metric RMSE. As every model was repeated
100 times, 100 best tuning parameters were determined (Figure 3). The validation model
performance was measured by median values (median of 100 iterations) of the performance
metrics R2, RMSEp and nRMSEp (Equations (2)–(4)). Based on the best median model
performance, the best algorithm for FMY and DMY prediction from the hyperspectral
dataset was determined.

The most frequently identified best tuning parameters (i.e., median of 100 tuned
models) were identified for the best ML approach in the final step. The identified tuning
parameters were subsequently used to calibrate the final model with all 320 samples. The
normalized deviation (Equation (5)) was calculated for all samples to examine this final
model’s potential deviations regarding grassland type and sampling date. Values close to
zero indicate good prediction accuracies. Furthermore, a Wilcox test [39] was applied to
test whether the deviations from zero were statistically significant.

R2
P =

[
1− ∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − yi)

2

]
(2)

RMSEP =

√
∑n

i=1(ŷi − yi)
2

n
(3)

nRMSE =
RMSEval

max(yi)−min(yi)
(4)

Normalized deviation = ŷi−yi
yi+ŷi

(5)

where yi is the measured biomass, ŷi is the predicted biomass, yi is the average measured
biomass and n is the number of samples.
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3. Results
3.1. Biomass Data

Aggregated data of FMY and DMY of the sampled grasslands were featured by an
extensive range of values (4.06 and 0.61 kg/m2 respectively, Table 2) and a high coefficient
of variation (105% and 72%). This was expected due to different management intensities
and grassland types. Additionally, the dry weather resulted in meagre biomass yields
during the second and third cuts (See Appendix A, Table A1). The highest FMY and DMY
was recorded at the most intensively managed, fertilized grassland (IMG). The extensive
nature of all other grasslands is evident from their low DMY yields ranging from 0.03 to
0.36 kg/m2 (See Appendix A, Table A1).

Table 2. Overview of aggregated FMY and DMY biomass (kg/m2) data (n = 320).

Statistic FMY (kg/m2) DMY (kg/m2)

Mean 0.69 0.19
Median 0.53 0.17

Min. 0.01 0.01
Max. 4.07 0.62

Standard deviation 0.73 0.14
Coefficient of variation 105% 72%

3.2. Spectral Data and Selected Spectral Bands

Normalized spectra depicted typical reflectance signatures of green vegetation (Figure 4).
Plots with high biomass values were featured by low reflectance in the red spectral region
and high reflectance in the near infrared (NIR) (Figure 4). Low reflectance in the red most
likely resulted from high absorption from leaf pigments, mainly chlorophyll, while high
reflectance in the NIR can be explained by strong reflectance in the spongy mesophyll of
plant leaves [40]. Both effects point to a high amount of leaf biomass per area and indicate
high FMY and DMY yield.

The band selection for FMY and DMY using VSURF reduced the number of spectral
bands. For FMY and DMY, 25 and 23 wavebands were selected. The identified most
important wavebands for FMY and DMY were in the same spectral regions and covered all
spectral regions (visible: 400–750 nm, red edge: 680–730 nm, and NIR: 780–950 nm) known
for being related to green biomass [40]. The most important wavelengths selected (Figure 5)
were centered around the red edge and the green spectral regions (530–590 nm). These
regions are especially sensible for changes in cell structure and leaf pigment concentrations
and, therefore, well known for their high importance in grassland biomass modeling. For
DMY modeling, wavelengths above 930 nm were of high importance, likely reflecting
the information on water content from a minor water absorption band in this spectral
region [41].
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3.3. Performance of Modeling Algorithms

The evaluation of median modeling performances of the ML algorithms revealed
that CBR performed best for FMY as well as for DMY modeling with the lowest median
relative error (nRMSEp) of 7.6% and 12.9%, respectively, as well as the lowest median
RMSEp (0.27 and 0.07 kg/m2) and the highest coefficient of determination (R2

p, 0.87 and
0.75). However, the differences in median modeling performance between RFR, SVR and
CBR were negligible. Only PLSR performed distinctly poorer than all other modeling
algorithms. All algorithms could predict both grassland FMY and DMY with a low relative
error, ranging from 7.6% to 11.9% and 12.9% to 18.9%, respectively (Table 3).

Table 3. Performance of different ML algorithms for FMY and DMY modeling. Performance figures
are median values of 100 iterations with different random sample splits for calibration and validation.
The best model is indicated by bold text.

Algorithm Median R2
p

Median RMSEp
(kg/m2)

SD RMSEp
(kg/m2)

Median
nRMSEp

FMY
(kg/m2)

PLSR 0.68 0.42 0.04 11.9%

RFR 0.85 0.29 0.04 8.0%

SVR 0.86 0.29 0.03 7.9%

CBR 0.87 0.27 0.05 7.6%

DMY
(kg/m2)

PLSR 0.45 0.10 0.01 18.9%

RFR 0.73 0.07 0.01 13.5%

SVR 0.74 0.07 0.01 13.0%

CBR 0.75 0.07 0.01 12.9%

The observed versus predicted plot of the CBR model for FMY (Figure 6a) revealed the
FMY yield difference between the intensively managed grassland (IMG) with high biomass
values and all other grasslands. The deviation of the values from the 1:1 line increased
for higher FMY yields. For DMY, higher variation could be found in the medium biomass
values between 0.3 and 0.4 kg/m2 (Figure 6b).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 6. Observed vs. predicted plot from CBR model for FMY (a) and DMY (b). A dashed black 

line represents the 1:1 line. A gray line represents the linear regression line. Duplicates of points in 

vertical direction result from 100 model runs (100 predictions). 

3.4. Final Model 

The identified best ML approach (CBR) can subsequently be used for map creation 

and, thus, was finally calibrated using 10-fold cross-validation using the complete dataset 

(n = 320) and the tuning parameter derived from the median best models (committees = 

95 and 96, neighbors = 3 and 4 for FMY and DMY, respectively). The final model’s errors 

were close to the median error from the 100 model validation runs in the model tuning 

phase (RMSEP = 0.27 and 0.07 kg/m2, RP
2  = 0.85 and 0.76 for FMY and DMY, respectively). 

An analysis of the normalized deviation of the predicted from the observed biomass val-

ues (Figure 7) from zero revealed only significant deviations for the lupin-invaded grass-

land MHML at harvest two (FMY and DMY) and harvest three at grassland NSG2 (DMY). 

FMY estimation of the sites NSG1 and LHM at harvest two showed high normalized de-

viations of predicted from observed values, although these were not significant. The de-

viations likely result from the very low FMY values found at these sites during the respec-

tive harvest, which was influenced by severe drought. Thus, these values mark the lower 

end of FMY values and were difficult to predict with a model trained predominantly from 

hyperspectral reflectance data from fields with much higher FMY values. No systematic 

and significant deviations for any grassland site or harvest date were found, indicating 

the model’s robustness. 

Figure 6. Observed vs. predicted plot from CBR model for FMY (a) and DMY (b). A dashed black
line represents the 1:1 line. A gray line represents the linear regression line. Duplicates of points in
vertical direction result from 100 model runs (100 predictions).



Remote Sens. 2022, 14, 2068 11 of 17

3.4. Final Model

The identified best ML approach (CBR) can subsequently be used for map creation
and, thus, was finally calibrated using 10-fold cross-validation using the complete dataset
(n = 320) and the tuning parameter derived from the median best models (committees = 95
and 96, neighbors = 3 and 4 for FMY and DMY, respectively). The final model’s errors were
close to the median error from the 100 model validation runs in the model tuning phase
(RMSEP = 0.27 and 0.07 kg/m2, R2

P = 0.85 and 0.76 for FMY and DMY, respectively). An
analysis of the normalized deviation of the predicted from the observed biomass values
(Figure 7) from zero revealed only significant deviations for the lupin-invaded grassland
MHML at harvest two (FMY and DMY) and harvest three at grassland NSG2 (DMY). FMY
estimation of the sites NSG1 and LHM at harvest two showed high normalized deviations
of predicted from observed values, although these were not significant. The deviations
likely result from the very low FMY values found at these sites during the respective
harvest, which was influenced by severe drought. Thus, these values mark the lower end
of FMY values and were difficult to predict with a model trained predominantly from
hyperspectral reflectance data from fields with much higher FMY values. No systematic
and significant deviations for any grassland site or harvest date were found, indicating the
model’s robustness.
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Figure 7. Normalized deviations of predicted from observed values based on the final selected Cubist
model for (a) fresh and (b) dry biomass yield. Harvest numbers are given after the grassland suffix by
“H1–H3”. Different harvests of one grassland are arranged between dotted vertical lines. Significant
differences (α = 0.05) in the mean deviation for each grassland from zero based on the Wilcox-test are
indicated by a star (*).

The final model can map FMY and DMY values at a spatial resolution of 1 m2 (Figure 8).
These maps could finally be used for the spatiotemporal, explicit interpretation of biomass
distributions. For example, the most intensively used grassland (Figure 8a,b) showed
a more extensive range for FMY values, while DMY values varied more strongly at an
extensively managed grassland (MHM1) during the first sampling date (Figure 8c,d).
In both maps, areas with disturbed sward feature distinctly different FMY and DMY
values, enabling their remote detection. The maps for grassland site IMG reveal possible
management-related effects on DMY and FMY evident from a stripe pattern following the
main driving direction on the field from east to west (Figure 8a,b). At grassland site MHM1,
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the highest biomass yield was found in the northeastern part of the plot (Figure 8c,d) where
increasing terrain height on a southbound oriented slope could have led to increased sun
exposure and, thus, improved grassland growth conditions.
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Figure 8. Maps produced utilizing the best CBR model and the best tuning parameters (commit-
tees = 95 and 96, neighbors = 3 and 4 for FMY and DMY, respectively) for (a) FMY and (b) DMY
of an intensively used grassland (IMG, 1st harvest) and (c) FMY and (d) DMY of an extensively
used grassland (MHM1, 1st harvest). The scale bar was adjusted for each map to highlight the
spatial variability.

4. Discussion

The primary aim of this study was to retrieve UAV-based models for estimation of
the forage yield of eight grassland sites along a gradient of management intensities. In
previous studies, grassland biomass could be predicted from UAV-borne RGB 3D point
cloud [8,42], multispectral [43] and hyperspectral data [11], as well as through fusion of
these sensors [10,26] with good accuracies. However, the majority of these studies were
carried out at experimental plots incorporating few different grassland plant communities
and management regimes, limiting their practical significance. The present study, thus,
aimed at the development of a robust model that can be applied to a wide range of grassland
usage intensities as found in practical farming in Central Germany.

The workflow proposed and the applied optimization procedure based on waveband
selection, ML model identification and ML tuning led to low prediction errors and, thus,
high model accuracies for FMY and DMY prediction (nRMSEp 7.6% and 12.9% for FMY and
DMY). In the first step, the wavebands most important for predicting FMY and DMY were
selected using the VSURF method. The number of wavebands could be reduced by around
80% for both biomass parameters, increasing the model simplicity and reducing the risk
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of overfitting when used in conjunction with ML methods known for their ability to deal
with multicollinear data with a small number of samples. Although the remaining number
of variables remained high (25 and 23 for FMY and DMY, respectively), the workflow of
100 model iterations with different samples from all sites and sampling dates selected for
calibration and validation likely reduced the impact of single samples from the dataset.
Model performance was given as median values of 100 model runs, thus reducing the
risk of overoptimistic results. Further research could identify possible improvements
in variable reduction, i.e., model simplification, through the employment of different
reduction methods such as filtering variables by a variable importance in the projection
(VIP) threshold. However, that method delivered unsatisfactory results in a study on
estimation of the quality parameter starch content of the grassland species red clover
from hyperspectral data [44]. Another promising method for variable reduction in ML
approaches previously employed on grassland data is the Boruta algorithm [45]. Due to
its high computational intensity [46], however, Boruta was ruled out for the present study.
With the aim of simplification and increased practical applicability, in a separate approach,
the number of wavebands could be downsampled to 5–10 bands (multispectral) to compare
the modeling accuracy with reduced variables available.

For both FMY and DMY, the selected wavebands were in similar regions of the
electromagnetic spectrum (Figure 4). While for FMY prediction, more wavebands were
selected in the red edge region (750–780 nm), known for being related to LAI, biomass and
leaf internal structure [47], more wavebands in the NIR region beyond 920 nm were selected
for DMY prediction. This spectral region is related to the water content of biomass [40,48].
Overall, the identified wavebands coincide with current knowledge about relationships
between vegetation biomass and spectral reflectance [40,49]. Model accuracy for FMY
prediction was higher than for DMY, likely depicting the closer relationship of FMY to
measured reflectance above the canopy of plants containing considerable amounts of water.
During the dry weather in 2018, high amounts of dry plant material might have obscured
the relationship between reflectance and DMY more than with FMY. In dry plots, e.g.,
some portion of DMY may not have been detectable from UAV-borne imagery due to
low reflectance from dried plant material. Additionally, a higher variation of values for
FMY (Table 2) could have improved the ability of ML algorithms to model FMY from
hyperspectral reflectance.

Four ML algorithms were evaluated to identify the one most suitable for predicting
FMY and DMY. Testing multiple ML algorithms has been identified as helpful and was
recommended by several studies as no ML approach always performs best [50–52]. In
the present study, CBR showed the best performance for FMY and DMY prediction from
hyperspectral data (Table 3). However, the differences in comparison to RFR and SVR were
minor. PLSR was outperformed by the three other approaches coinciding with the results
of previous studies [9,50]. The advantage of CBR, RFR and SVR is the ability to model
non-linear relationships between the response (i.e., FMY, DMY) and explanatory variables
(i.e., wavebands) [53,54]. Overall, the model accuracies received in the present study are
in the upper range of recent grassland biomass prediction models using remote sensing
data [5,55]. Psomas et al. [55], for example, also examined four grassland types and one
complete growing season. The best model, similarly, based on band selection but linear
regression approaches, was feature a relative prediction error of 8.5%, which is slightly
worse than in the present study. However, the reflectance information was collected using
a field spectrometer. In comparison to UAV-borne data, field spectrometer data are less
affected by external factors such as light incidence angle or wind, but on the other hand
also less applicable to large areas.

The final models showed no systematic deviation of the predicted from the observed
values related to grassland site or sampling date (Figures 6 and 7). However, the values
should not be over-interpreted as the stability of the prediction results is based on the final
calibration model only, and a validation with an external dataset should be the next step to
examine limitations of the prediction capabilities of the models.
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Overall, the study showed that it is possible to calibrate remote sensing models for
estimating grassland biomass along a gradient of management intensities. To the best
knowledge of the authors, this is the first study covering multiple sites with different
management intensities along a whole growing period using hyperspectral UAV-borne data.
Thus, the study may contribute to closing the gap between grassland biomass estimation on
agricultural plot trials and application on practical grassland sites, although the workflow
established in this study far from being suitable for practical farming. However, the
stability of the prediction models in this study showed, as for every empirical model, that
limitations arose when biomass should be predicted for grasslands with biomass values
far away from the mean (in this study, high biomass values: 4.0 and 0.62 kg/m2 for FMY
and DMY). These limitations could be reduced by the inclusion of additional data from
other grassland sites in the model calibration. Additional data could only be used in
the model calibration process if they originated from a hyperspectral sensor with similar
technical characteristics such as spectral bandwidth and number of wavebands, though. In
a following step, the model should be validated across multiple years to test its stability
under changing growing conditions. Nevertheless, the aim of the study was not to develop
a generalized model applicable on all conditions and grasslands but rather to examine the
potential of hyperspectral UAV-borne data to successfully predict biomass for grasslands
with different management intensities. For improved practical applicability, models similar
to the one developed in this study should be validated on a range of grassland sites from
different regions and years. This could be supported by using data from other experiments,
as well as practice research networks. Although hyperspectral sensors offer advantages
for the modeling of grassland traits through their high spectral resolution, their cost and
difficult operation restrict them from widespread application in grassland monitoring for
practical farming. Future studies, thus, should test whether results similar to the estimation
of grassland biomass from hyperspectral imagery can be retrieved from multispectral
sensors under the same practical circumstances (i.e., usage intensities, plant communities).
Apart from restrictions regarding sensor technology and data processing, low profits from
extensive grassland farming (reducing demand) coupled with the requirement to operate
UAVs only within one’s line of sight (increasing cost per area) remain obstacles for the
application of UAV-borne data in practical grassland biomass estimation.

In future, empirical models similar to the one developed could be coupled with me-
chanical models such as APSIM [56] to compensate for the limitations of both modeling
approaches (i.e., generalizability for empirical models and temporally and spatially contin-
uous reference data for mechanical models). In order to improve model accuracies, fusion
approaches with, e.g., structural information derived from point clouds [10,26] could be
used. Additionally, new statistical approaches such as deep learning show great potential
for improving the prediction of vegetation parameters [57].

In conclusion, the present study has shown the great potential of hyperspectral UAV-
borne data for retrieving information on biomass yield of grassland in a spatially continuous
way throughout the whole growing period. Although not ready for practical application in
grassland management, the accuracies of the models indicate that it is possible to map the
biomass yield of grasslands over a wide range of management intensities.
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Appendix A

Table A1. Median FMY and DMY biomass yield per cutting date. At grassland sites NGS2, NSGL,
MHM2 and MHML different areas of the plot were cut at three sampling dates, resulting in differing
dates for the first cut.

Grassland Site Number of Cuts Median FMY (kg/m2) Median DMY (kg/m2)

MHM1 1st 0.36 0.14

NSG1 1st 0.05 0.03

LHM 1st 0.89 0.27
2nd 0.09 0.04

IMG 1st 2.95 0.47
2nd 0.22 0.05
3rd 0.17 0.06

NSG2 1st 0.13 0.06
1st 0.13 0.05
1st 0.28 0.11

NSGL 1st 0.84 0.24
1st 0.73 0.23
1st 0.72 0.29

MHM2 1st 1.06 0.29
1st 1.04 0.33
1st 1.13 0.36

MHML 1st 0.72 0.21
1st 0.61 0.19
1st 0.98 0.33
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