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Abstract: Although the existing deep-learning-based hyperspectral image (HSI) denoising methods
have achieved tremendous success, recovering high-quality HSIs in complex scenes that contain
mixed noise is still challenging. Besides, these methods have not fully explored the local and global
spatial–spectral information of HSIs. To address the above issues, a novel HSI mixed noise removal
network called subspace projection attention and residual channel attention network (SPARCA-Net)
is proposed. Specifically, we propose an orthogonal subspace projection attention (OSPA) module
to adaptively learn to generate bases of the signal subspace and project the input into such space to
remove noise. By leveraging the local and global spatial relations, OSPA is able to reconstruct the local
structure of the feature maps more precisely. We further propose a residual channel attention (RCA)
module to emphasize the interdependence between feature maps and exploit the global channel
correlation of them, which could enhance the channel-wise adaptive learning. In addition, multiscale
joint spatial–spectral input and residual learning strategies are employed to capture multiscale
spatial–spectral features and reduce the degradation problem, respectively. Synthetic and real HSI
data experiments demonstrated that the proposed HSI denoising network outperforms many of the
advanced methods in both quantitative and qualitative assessments.

Keywords: hyperspectral image; denoising; attention network; deep learning

1. Introduction

Hyperspectral remote sensing is a technology that acquires multidimensional informa-
tion, which combines imaging and spectroscopy technologies, and its data contain both
two-dimensional geometric spatial information and one-dimensional spectral information
of ground objects. Hyperspectral imaging typically records the spectral information in
a series of continuous channels, which generally have a narrow spectral bandwidth (for
example, usually below 10 nm); therefore, hyperspectral images (HSIs) contain the fine
spectral characteristics of the targets [1–3]. With the high-dimensional and distinguishing
spectral features, HSIs have been widely used in many applications [4–8].

HSI is a three-dimensional data cube, generally including hundreds of bands. With the
decrease in the width of spectral bands, the detector imaging system receives fewer photons
per band, thus introducing complex noise, such as random noise and structural stripe noise
and deadlines; the existence of mixed noise not only significantly affects the images’ signal-
to-noise ratio (SNR) but also degrades the spectral signature quality, thus affecting the
subsequent information extraction [9,10]. Therefore, denoising is a crucial preprocessing
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step before HSIs can be further applied [11,12], and researchers have presented many HSI
denoising methods in the past few decades.

Spatial-Domain-Based Methods. The spatial-domain-based denoising method usu-
ally regards the three-dimensional hyperspectral image as an extension of the RGB image
and applies the traditional two-dimensional denoising algorithms to denoise the hyper-
spectral image band by band. Such methods can be categorized into pixel-space-based
methods and transform-domain-space-based methods. The former one does not perform
any transformation on the pixel value, and it directly performs the denoising operation.
The typical algorithms are the non-local mean (NLM) algorithm [13], Bayes algorithm [14],
bilateral filtering [15] and denoising methods based on sparse and redundant representa-
tions [16], etc. These types of methods are easy to operate and implement, but there are
limitations in practical applications, and the effect of removing severe noise is not good.
The method based on the transform domain uses the difference in a specific transform
domain between the original image and the noise to separate the main signal and the noise.
Commonly used specific transform domains are wavelet transform domain and Fourier
transform domain. Representative examples of this methodology include adaptive wavelet
thresholding [17], block-matching and 3D filtering (BM3D) [18], the extending of BM3D to
multiband image denoising and block-matching and 4D filtering (BM4D) [19]. However,
the spatial-domain-based denoising methods ignore the correlation between the bands and
only have a certain effect for a specific type of noise and thus cannot deal with the mixed
noise problem.

Spectral-Domain-Based Methods. HSIs contain numerous information in hundreds
of bands. Therefore, in addition to the above spatial-domain-based denoising methods, the
spectral-domain information of HSIs can also be used for denoising. Green et al. [20] used
maximum noise fraction (MNF) transform to remove noise. Donoho et al. [21] proposed a
SureShrink algorithm via wavelet transform of the spectral domain signal. The spectral-
domain-based denoising methods were proposed from the perspective of signal processing
and ignore spatial structure information, which is likely to cause spatial pixel distortion,
resulting in limited image restoration effects.

Prior-Constraint-Based Methods. Denoising methods based on the spatial domain
and the spectral domain could remove certain specific noises, such as Gaussian noise, but
these two types of methods only use spatial or spectral information, making the effect
of removing mixed noises poor. The denoising method based on prior constraint could
make full use of the information in the spatial and spectral domains and has become one of
the hot topics and trends in the field of remote sensing images. This method transforms
the denoising problem into a prior constraint problem. The prior constraints of remote
sensing images directly determine the restoration effect. The low rankness of HSIs in the
spectral dimension is a widely used image prior in an HSI denoising task. Representative
low-rankness-based methods include, for example, PCA (principal components analy-
sis) [22], LRTA (low-rank tensor approximation) [23], LRTR (low-rank tensor recovery) [24],
LRMR (low-rank matrix recovery) [25], NAILRMA (noise-adjusted iterative low-rank ma-
trix approximation) [26], BLRMF (bilinear low-rank matrix factorization) [27], NLR-CPTD
(nonlocal low-rank regularized CP tensor decomposition) [28] and so on. Total variation
is also a widely used image prior in regard to a denoising problem. Some total-variation-
based methods are, for example, SSAHTV (spectral–spatial adaptive total variation) [29],
SSTV (spatio-spectral total variation) [30], E3DTV (enhanced-3DTV) [31], etc. Recently,
researchers combined low-rank constraints with total variation constraints and have pro-
posed many HSI denoising methods [32–35]. In summary, the HSI denoising methods
based on prior constraints exploit the low-rank and spatial–spectral structure information
of HSIs and achieve meaningful results. The subspace representation of spectral vectors in
HSIs has been successfully used to remove noise by regularizing the representation coeffi-
cients of HSIs, such as FastHyDe (fast hyperspectral denoising) [36], NGmeet (non-local
meets global) [37], L1HyMixDe [38], etc.
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Deep-Learning-Based Methods. Although the above methods can achieve good
results, the models of such are fixed and the parameters should be tuned precisely, so the
methods may be unstable and sensitive to the data [39]. In recent years, deep learning
(DL) has demonstrated better performance than traditional methods in many computer
vision tasks [40–43] and has also been introduced into HSI processing, including fusion [44],
unmixing [45–47], data enhancement [48] and so on. DL-based denoising methods usually
employ supervised models, which take clean and noisy image pairs as the inputs and
train the network to learn the prior distribution of clean images, thereby establishing an
end-to-end mapping from noisy images to clean images. For the HSI denoising task, the
exploration of the combination of spatial and spectral information, the extraction and
representation of the features of HSI are the focus of the researchers. For Gaussian noise,
Yuan et al. [49] used the spatial band and its adjacent bands as inputs for the model to extract
features while introducing multiscale convolution layers to extract multiscale features in
spatial and spectral dimensions. Chang et al. [48] proposed the HSI-DeNet, which applied
a residual learning strategy, dilated convolution and multichannel filtering and achieved
great performance for mixed noise denoising. Zhang et al. [50] proposed a spatial–spectral
gradient network (SSGN), which employed a spatial–spectral gradient learning strategy,
taking a single band, its horizontal/vertical spatial gradient images and its adjacent spectral
gradient as inputs considering that sparse noise is spatially directional and the spectral
gradient is used as additional supplementary information. Moreover, recently, some work
based on the attention mechanism [39,51,52] has been proposed. Although the existing DL-
based HSI denoising methods have achieved great success, recovering high-quality HSIs in
difficult scenes, such as severe noise and mixed noise, is still challenging. In addition, these
methods still do not fully exploit the local and global spatial–spectral prior information
of the HSI because, usually, the convolution operation only exploits the local spatial and
spectral prior information of the HSI.

To address the above problems, a novel subspace projection attention and residual
channel attention network (SPARCA-Net) for HSI denoising is proposed. Specifically,
the proposed model takes a single band and its adjacent bands’ images as the inputs,
and two attention-based modules are proposed to exploit the global prior information
in spatial and spectral domains. Firstly, from the perspective of adaptive projection and
reconstruction, an orthogonal subspace projection attention (OSPA) module is proposed to
adaptively learn to generate a set of orthogonal subspace bases; the main signal of shallow
feature maps can be enhanced after projecting the shallow feature maps into subspace
for facilitating separation from noise. Secondly, the multilevel residual channel attention
(RCA) reconstruction module is proposed to emphasize the interdependence between
feature maps and explore the global channel correlation of them. More specifically, several
OSPA modules were used to connect multilevel shallow RCA outputs and the output of
the last RCA. Furthermore, the channel attention mechanism was utilized to enhance the
channel-wise adaptive learning in which the model could reallocate the weights along the
spectral dimension. Moreover, a residual learning strategy was employed in our model.

The contribution of this work can be summarized as follows:

1. We put forth a novel HSI mixed noise removal network, termed SPARCA-Net, that
is able to fully explore the local and global spatial–spectral information of HSIs other
than conventional CNN-based denoising frameworks.

2. We propose an OSPA module based on spatial attention to adaptively learn an orthog-
onal subspace projection that can be used to reconstruct the main feature maps from
its subspace, which is able to facilitate spatial structure recovery by utilization of both
local and global spatial correlations.

3. We design a channel-attention-based RCA module with a cascaded bottleneck structure
to progressively exploit the prior spectral information underlying HSIs and use it to
adjust the weights between feature maps.

The remainder of this paper is organized as follows: Section 2 introduces related work,
including problem formulation, subspace projection for HSIs and an attention mechanism.
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Section 3 introduces the details of the proposed SPARCA model. Section 4 evaluates the
performance of our method as well as other HSI denoisers. Finally, a conclusion is drawn
in Section 5.

2. Related Work

In this section, we briefly review and describe three related areas of work, which are
problem formulation, subspace projection for HSIs and attention mechanism.

2.1. Problem Formulation

We denote the three-dimensional matrix of the clean HSI as X ∈ RH×W×B; where B
indicates the band number, H and W are the height and width of a single band image,
respectively. We assume that X is contaminated by additive noise. The observation model
of HSI can be expressed as

Y = X + N (1)

where N ∈ RH×W×B indicates the additive noise, such as Gaussian noise, sparse noise
(impulse noise, stripes, deadlines) or mixed noise of all above. The object of HSI denoising
is to restore X from the observed noisy image Y as much as possible. Figure 1 shows
the HSIs corrupted by Gaussian noise and impulse noise (shown in (a)) and noisy HSI
contaminated by stripe noise (shown in (b)).
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Figure 1. Observed HSIs contaminated by mixed noise. (a) The second band image of Pavia University
dataset; (b) the 139th band image of URBAN dataset.

2.2. Subspace Projection for HSIs

The observed HSI’s whole space S could be decomposed into the signal subspace Ss
and noise subspace Sn

S = Ss ⊕ Sn (2)

where ⊕ denotes the direct sum. For observed HSI, Y = X + N, X ∈ Ss and N ∈ Sn.
Let Ps denote the projection matrix on the signal subspace, and Pn denotes the projection
matrix on noise subspace. For additive noise, we assume that the main signal and noise
are independent of each other, so the signal subspace and noise subspace are orthogonal;
therefore, Ps + Pn = I, where I is the identity matrix.

(Ps + Pn)Y = X + N (3)

Therefore, the main signal can be estimated by Ps

X = PsY (4)

where the projection matrix Ps of the signal subspace can be expressed as

Ps = EE# (5)
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where E is the basis vectors of the signal subspace and E# is the generalized inverse matrix
of E [53]

E# = (ETE)
−1

ET (6)

We could preserve the dominant signal (“clean” images) and remove the remaining
low-energy signals (noise) by projecting HSI into the signal orthogonal subspace. The
adaptive learning and generation of orthogonal subspace bases can be achieved through a
spatial attention mechanism. Through the subspace projection process, we can obtain the
reconstructed image or feature map that removes most of the noise that is irrelevant to the
signal subspace.

2.3. Attention Mechanism

In recent years, attention mechanisms have been successfully applied to solve prob-
lems in computer vision tasks [39,51,52], natural language processing and other fields. Its
principle originates from the selective attention mechanism of the human visual system.
The human visual system can quickly scan the entire image and quickly locate the expected
areas, that is, first understanding the whole picture and then focusing on the key points.
The combination of focusing on whole area and points could identify things more accu-
rately and quickly. Two related works of channel attention and spatial attention will be
introduced below.

Channel Attention. The main idea of channel attention is to extract the feature map
of each channel; that is, the response information to different categories of features, and
different channels are related to each other and share information. By constructing a channel
attention mechanism to express the interaction between channels, the input feature maps
are compressed by pooling operation, and then the channel attention map is calculated by
sharing multi-layer perceptron. Hu et al. [54] proposed a squeeze-and-excitation network
to significantly improve the image classification accuracy. Dai et al. [55] proposed a second-
order attention network that explored the feature correlations of intermediate layers for
image super-resolution. Qin et al. [56] proposed novel multi-spectral channel attention
networks, which preprocess the channel attention mechanism in the frequency domain.

Spatial Attention. The spatial attention mechanism can capture important feature
information in the spatial domain by paying attention to the parts that matter most in
feature maps, which could be used as a complement to channel attention mechanisms.
Hu et al. [57] proposed an object relation module for object detection tasks, the idea of
which is to process a set of objects by computing the reasoned relation between each
other simultaneously instead of individually. Chen et al. [58] proposed a graph-based
global reasoning network to capture global relations between relation-aware features. Liu
et al. [59] proposed a non-local operation to take the weighted sum of the features at
all positions as a response at one position of features. It is worth noting that the cross-
attention mechanism was introduced for hyperspectral super-resolution by Yao et al. [60] to
exploit the joint spatial and spectral information. For an HSI denoising task, Shi et al. [39]
proposed a 3-D convolution-based attention denoising network where the channel attention
modules were applied to explore the correlations between spectral channels, and the
position attention modules were designed to formulate the interdependencies between
pixels on the feature maps. Wang et al. [51] proposed a spatial–spectral cross attention
network for HSI denoising in which a spectral–spatial attention block (SSAB) was designed
to efficiently utilize the spatial–spectral information. Cao et al. [52] proposed a deep
spatial–spectral global reasoning network for HSI mixed noise removal with two novel
attention-mechanism-based modules to model and reason global relational information.

Although the current HSI denoising algorithms have used the attention mechanism
to enhance the performance of the models, these methods lack further optimization of
the spectral and spatial information extraction; the spatial attention-based approaches
fail to consider the mechanistic constraints in constructing the spatial correlation matrix.
To address this issue, we proposed a novel subspace projection attention and residual
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channel attention network, which is able to explore global spatial and spectral correlation
information of HSIs.

3. Proposed Method

Combined with the joint spatial–spectral strategy and attention-based module, we
proposed a novel SPARCA-Net for HSI denoising, which could explore the local and
global spatial–spectral information of HSIs. In this section, the overall network archi-
tecture will first be introduced, and then the proposed OSPA and RCA modules will be
presented detailly.

3.1. Overall Network Architecture

The architecture of SPARCA-Net is illustrated in Figure 2. Firstly, we refer to HSID
and SSGN [49,50] to take the multiscale joint spatial–spectral data as the input, which
includes the i-th single band and its adjacent bands. As shown in Figure 2, the spatial and
spectral data are, respectively, inputted into SpatialBlock and SpectralBlock, which have
three convolution layers with kernel sizes of 3 × 3, 5 × 5 and 7 × 7, respectively, to extract
multiscale features. Then, the extracted contextual feature information with different scales
will be concatenated together for follow-up processing. The advantages of multiscale joint
spatial–spectral input are two-fold: firstly, the ground objects in remote sensing HSI often
have different scales in different regions, so the contextual information in different scales
may help features to be better represented, and, in addition, multiscale convolutions could
obtain diverse receptive fields. Second, there is a strong correlation between spectral bands
of HSI, thus introducing redundant spectral information that can improve the effectiveness
of restoration.
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Figure 2. Flowchart showing the details of the proposed SPARCA-Net model for HSI denoising. 

The backbone of the network mainly consists of nine RCA blocks; all blocks are 
stacked, and all the strides of the convolutional layer are set to be 1 to maintain the size of 
the feature maps. The basic RCA follows the same residual-convolution structure depicted 
in Figure 2, including a channel attention (CA) module, which will be introduced detailly 
later. RCA could characterize global spectral correlation of input and quickly pass 

Figure 2. Flowchart showing the details of the proposed SPARCA-Net model for HSI denoising.

The backbone of the network mainly consists of nine RCA blocks; all blocks are
stacked, and all the strides of the convolutional layer are set to be 1 to maintain the size
of the feature maps. The basic RCA follows the same residual-convolution structure
depicted in Figure 2, including a channel attention (CA) module, which will be introduced
detailly later. RCA could characterize global spectral correlation of input and quickly pass
information from bottom to top through residual learning. At the same time, we referred to
the skip connections in U-net, taking the low-level feature maps (output from RCA 1, 3,
5, 7, separately) and high-level feature maps output by the last RCA block as the inputs
of OSPA module. As feature maps from different depth layers contain various levels of
feature information, here, we projected the low-level feature maps into the orthogonal
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subspace spanned by high-level feature maps through OSPA, and the main signal of the
feature maps can be enhanced; most of the signal-independent noise can be removed. This
process can also be viewed as a multilevel feature extraction. Another benefit of this is that
it allows the deep feature maps to contain more information from the low-level feature
maps, which promotes gradient backpropagation, helps network training and makes the
recovered image closer to the ground truth. The projection process can be defined as

f i
OSPA = Fospa( fi, f9), i = 1, 3, 5, 7 (7)

where Fospa is defined as the OSPA function, fi denotes output of the i-th RCA block
and f i

OSPA is the projected feature map of the i-th OSPA module. Then, f i
OSPA will be

input to a residual convolution block (ResConvBlock) to obtain f i
Final , which contains two

3 × 3 convolutions; the specific structure is illustrated in Figure 2. At last, we concatenate
four f i

Final , and let the output pass a linear 3 × 3 convolutional layer as the global residual
to the i-th noisy single band and output the denoised result.

It is suggested that using the L1 norm to constrain the loss function of network could
achieve a better balance between denoising and spatial detail reservation when dealing
with low-level tasks, such as noise removal [52]. Therefore, we utilize L1 loss as our loss
function, which can be defined as

L =
1
T

T

∑
i=1
‖ξ(Yi

spatial , Yi
spectral)− Xi

gt‖1
(8)

where T is the pairs number of training patch images, Yi
spatial and Yi

spectral represent the
i-th noisy single band and its corresponding adjacent bands, respectively. ξ() denotes our
proposed network, and Xi

gt is the i-th ground truth image.

3.2. Orthogonal Subplace Projection Attention Module

We proposed an orthogonal subspace projection attention (OSPA) module from the
perspective of adaptive projection and reconstruction. As HSIs usually lie in a low-rank
subspace [11], we can reconstruct the HSI by properly learning and generating the basis
vectors of the signal subspace and projecting the observed HSI into such subspace; the
obtained HSI would retain the main signal information and remove the signal-irrelevant
noise. The OSPA module could adaptively learn to generate the bases of the signal subspace,
the shallow feature maps can be reconstructed by projecting them into subspace and most
of the signal-irrelevant noise can be easily removed after reconstruction. We implemented
this projection process through the spatial attention mechanism. Limited by the size of
the receptive field, traditional CNNs use local filtering to extract local spatial or spectral
information, while OSPA characterizes the relationship between a pixel and all other pixels
in a feature map through a spatial attention mechanism, so it could simultaneously explore
the local and global spatial information.

As we mentioned in related work, the clean HSI X usually lies in a low-dimensional
signal subspace SP, with P � B. We can complete the matrix multiplication through
CNNs and implement the generation of signal subspace bases and projection matrices. The
specific projection operation is described as follows:

Bases Generation. Y1, Y2 ∈ RH×W×C denote two feature maps from the same HSI
outputted by CNNs in different layers; where C indicates the output channels of CNN, let
E = [e1, . . . , eP] ∈ Rn×P be the orthogonal base matrix of P-dimensional signal subspace of
Y1 and Y2, where ei ∈ Rn×1 are the basis vectors and n = H×W. The above process can be
implemented by CNNs; we can first concatenate Y1 and Y2 along the channel dimension
to obtain Y ∈ RH×W×2C, then pass Y through a CNN whose output channel number is
P and reshape the output to HW × P to obtain the orthogonal base matrix E, as shown
in Figure 3.
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Orthogonal Projection. As we mentioned above, ei ∈ Rn×1, i = 1, . . . , P are the basis
vectors of P-dimensional signal subspace SP. Then, the feature map Y1 can be projected
into SP by linear projection. Let P = E(ETE)−1ET be the orthogonal projection matrix [61].
To ensure the basis vectors are orthogonal, the normalization term (ETE)−1 is required.
Therefore, the feature map Y1 can be reconstructed by orthogonal subspace projection to
obtain the “clean” one:

X = PY1 (9)

The projection process is linear matrix manipulations with reshaping operations, which
means the whole process is differentiable and can be easily implemented by CNNs. We
implemented the above process using spatial attention mechanism; the proposed module
is called orthogonal subspace projection attention (OSPA) module, whose detail is shown
in Figure 3. The entire process can be expressed as follows:

Fospa = ProjectionP(Y1, Y2)⊗Y1 (10)

where ProjectionP(·) denotes the generation of projection matrix and P indicates the di-
mension of the orthogonal subspace spanned by Y1 and Y2, Y1 denotes the shallow layer
feature map and Y2 denotes the deep layer feature map.

3.3. Residual Channel Attention Module

There is a correlation between any two channels in a hyperspectral image. For example,
the adjacent channels images exhibit similarity. Therefore, we proposed a channel attention
module to emphasize the interdependence between feature map channels and explore
the global correlation of them. The architecture of the backbone network is illustrated
in Figure 2. To mitigate the gradient disappearance in deep networks, a global residual
connection is adopted. The overall network is stacked by a set of residual channel attention
(RCA) blocks to form the deep network for denoising.

As shown in Figure 4a, the RCA module consists of a local residual connection, two
convolutional layers with 3 × 3 kernel size and a channel attention (CA) sub-module. The
detail of the CA is depicted in Figure 4b. As we can see, in the CA, an average channel
attention was used to exploit the channel weight’s adaptive learning. Specifically, the aver-
age pooling layer calculates the average spatial statistics of channels to obtain the channel
weights set, and then it goes through a channel-downscaling layer with reduction ratio
1/2. After being activated by LeakyReLU, the low-dimension weights set is then increased
by a ratio of 2 through a channel-upscaling layer. Then, a simple gating mechanism with
sigmoid function is exploited to the channel weights set to obtain the final channel statistics
Sc, which will be used to rescale the input [62]. The whole process of CA is described
as follows:

Fca = Sc(input)� input (11)
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where Sc() is the channel scaling factor function, and � denotes element-wise product.
With channel attention, the RCA is able to adaptively characterize the interdependence
between feature maps and explore the global correlation of them.
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4. Experiments and Discussion

In this section, to verify the performance of the proposed HSI denoising model as well
as the comparison methods, we conducted synthetic and real data experiments. For the syn-
thetic Gaussian noise situation, nine different denoising algorithms, which are BM4D [19],
LRMR [25], NAILRMA [26], FastHyDe [36], L1HyMixDe [38], E3DTV [31], LRTDTV [35],
HSI-DeNet [48] and HSID-CNN [49], were selected as comparison algorithms. For the
synthetic complex noise cases, LRMR [25], NAILRMA [26], NGmeet [37], L1HyMixDe [38],
E3DTV [31], LRTDTV [35], HSI-DeNet [48] and HSID-CNN [49] were selected as compari-
son algorithms. The parameters of all the comparison traditional methods were as provided
in their original papers. For the DL-based methods, we retrained the comparison networks
with the same dataset settings of our model and finetuned the parameters to achieve their
best performance. Moreover, we performed a sensitivity analysis to investigate the effect of
hyperparameters on performance, and an ablation study was conducted to demonstrate
the effectiveness of the proposed OSPA and CA modules.

All the experiments were conducted on a PC with an Intel Core i7-6700 CPU (@ 3.40 GHz)
processor and 32-GB RAM. The traditional methods were implemented on MATLAB 2014b,
and the DL-based methods were implemented on PyTorch framework with NVIDIA Titan
Xp GPU [63].

4.1. Synthetic Experiments

We quantitatively evaluate the performance of the proposed model as well as other
competing HSI denoising algorithms by conducting synthetic data experiments on two
widely adopted HSI datasets: Washington DC Mall and Pavia Center.

(1) Washington DC Mall: These data were acquired by HYDICE sensor, the spatial
resolution of which is 2.8 m. The image size is 1280 × 307× 191, and it was divided into
two parts, 1080 × 307 ×191 and 200 × 200 × 191, for training and testing, respectively.

(2) Pavia Centre: This image was taken by ROSIS sensor during the flight in Pavia.
Its wavelength range is 430 to 860 nm with 115 spectral bands. For our synthetic ex-
periments, 80 bands remained and 35 bands were discarded due to the atmospheric ab-
sorption affection. The spatial resolution of this data is 1.3 m, and we chose an image
of size 200 × 200 × 80 in our experiments to further test the generalization ability of our
proposed network.
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The adjacent spectral band number of our model was set to 24 during all the training
procedures, referring to HSID-CNN. The dimension of orthogonal projection subspace P
was set to 10 for all the modules; we will discuss the effect of the value of P on the model
performance in subsequent sensitivity experiments. The proposed model was trained with
an Adam optimizer [64], which was set to its default parameters (β1 = 0.9, β2 = 0.999 and
ε = 10−8). The parameters of the network were initialized using the Kaiming initialization
method. The initial learning rate was set to 0.001, and a linear step decay schedule set from
1000 to 20,000 epochs was adopted. The training data were randomly cropped into 32 × 32,
and the batch size was set to 64. In order to increase the training samples, we utilized
image rotation (angles of 0◦, 90◦, 180◦, 270◦) and multiscale resizing (scales of 0.5, 1, 1.5, 2)
during the training. Before adding simulated noise, the HSI was normalized to [0, 1]. We
set up five cases for better comparison, fully considering Gaussian noise, stripes, deadlines,
impulse noise (salt and pepper noise) and a mixture of all the above; the setting details are
as follows:

Case 1 (Gaussian non-i.i.d. noise): We added zero-mean Gaussian noise with varying
intensities randomly selected from 25 to 75 to all bands of the image.

Case 2 (Gaussian + stripe noise): The images were added with the non-i.i.d Gaussian
noise mentioned in Case 1. In addition, we randomly selected 30% of the bands to add
stripe noise, and the number of stripes in each selected band was randomly set from 5% to
15% of the columns.

Case 3 (Gaussian + deadline noise): All bands in the image were corrupted by the
non-i.i.d Gaussian noise mentioned in Case 1. On top of this, 30% of the bands were
randomly selected to add deadline noise. The number of deadlines in each selected band
was randomly set from 5% to 15% of the columns.

Case 4 (Gaussian + impulse noise): All bands were corrupted by non-i.i.d Gaussian
noise mentioned in Case 1. Based on this, we randomly selected 30% of the bands to add
impulse noise with varying intensities, and the percentage of impulse range was set from
10% to 70% randomly.

Case 5 (Mixed noise): All bands were corrupted by Gaussian non-i.i.d noise (Case 1),
stripe noise (Case 2), deadline noise (Case 3) and impulse noise (Case 4).

We quantitatively evaluated the performance of the algorithms by calculating the peak
signal-to-noise ratio (PSNR), the structural similarity (SSIM) and the spectral angle mapper
(SAM) before and after image denoising. PSNR and SSIM are two spatial-based evaluation
metrics, while SAM is a spectral domain evaluation metric. The larger the PSNR and SSIM,
the better the denoising effect of the corresponding methods, while smaller values of SAM
imply better performance.

Table 1 shows the denoised quantitative results of different algorithms applied to
Washington DC Mall data with Gaussian i.i.d. noise, which means all the bands of HSI
were contaminated by zero-mean Gaussian noise with the same intensity (σ = 25, 50 and 75,
respectively). It can be seen from the denoised results of Table 1 that the performance of
our method is the best except for FastHyDe. Our method significantly outperformed some
typical denoising methods, such as LRMR, BM4D and NAILRMA. The FastHyDe method is
a representative method for the Gaussian noise removal; it can be observed that our method
achieved comparable performance in all the Gaussian noise cases compared to FastHyDe.
Specifically, our MPSNR is, on average, 0.5 dB smaller than FastHyDe, but, in some metrics,
such as MSSIM, our result is better than FastHyDe. For all three different Gaussian noise
levels, our model achieved an improvement in MPSNR by at least 0.7 dB compared with
the well-trained DL-based methods (HSID-CNN and HSI-DeNet). For visual evaluation,
the false color images synthesized with band 50, 70 and 112 of the Washington DC (noise
level σ = 75) were shown in Figure 5. It can be observed that our model and FastHyDe
yield the closest results to the original one compared with the other methods, preserving
the details while denoising.
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Table 1. Quantitative assessment of different algorithms applied to Washington DC Mall data with
Gaussian i.i.d. noise.

Index Noisy
HSI BM4D LRMR NAIL

RMA
FastHy

De
L1HyMix

De E3DTV LRTDTV HSI-
DeNet

HSID-
CNN Ours

σ=25

MPSNR 20.17 33.02 34.69 37.16 38.84 36.60 34.23 35.81 37.50 37.46 38.31
MSSIM 0.3560 0.8952 0.9175 0.9437 0.9629 0.9343 0.9284 0.9441 0.9608 0.9588 0.9652
MSAM 0.3383 0.0738 0.0608 0.0445 0.0357 0.0474 0.1058 0.0519 0.0446 0.0454 0.0403

σ=50

MPSNR 14.15 29.45 29.90 32.46 35.10 31.57 30.89 33.36 33.60 33.42 34.46
MSSIM 0.1498 0.7888 0.8035 0.8655 0.9254 0.8362 0.8594 0.8997 0.9065 0.9039 0.9206
MSAM 0.6080 0.1116 0.1045 0.0749 0.0536 0.0821 0.1326 0.0721 0.0702 0.0719 0.0614

σ=75

MPSNR 10.63 27.45 27.05 29.72 32.93 28.90 29.48 30.96 31.37 31.69 32.44
MSSIM 0.0780 0.6956 0.6945 0.7959 0.8929 0.7586 0.8241 0.8317 0.8558 0.8612 0.8790
MSAM 0.8022 0.1409 0.1440 0.1015 0.0679 0.1083 0.1596 0.0979 0.0893 0.0862 0.0775
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module, the former exploring the global correlation of the spectral domain, the latter re-
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mation, our approach yields better recovery results and higher spectral reconstruction fi-
delity than the other methods. The low-rank matrix-based methods, such as LRMR, NAIL-
RMA and E3DTV, lose part of the structure information in the process of low-rank matrix 
approximation; therefore, the denoising effect is relatively poor, as can be seen from the 
denoised images in Figure 6. LRTDTV’s results are the best except for the three DL-based 
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ture of HSIs and the characteristics of noise, but it can be observed from the enlarged view 
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Figure 5. False color images synthesized with band 50, 70 and 112 of denoised Washington DC
data in Gaussian noise case; σ = 75. (a) Clean; (b) noisy; (c) BM4D; (d) LRMR; (e) NAILRMA;
(f) FastHyDe; (g) L1HyMixDe; (h) E3DTV; (i) LRTDTV; (j) HSI-DeNet; (k) HSID-CNN; (l) ours.

Then, we evaluate the denoising effect of the proposed method and comparison meth-
ods in complex noise cases. The quantitative assessment results before and after denoising
are shown in Table 2, and the results for visual comparison are shown in Figure 6. It can be
easily seen from Table 2 that our method achieved better results than the other compared
denoising methods in all the cases. Benefiting from the CA module and OSPA module, the
former exploring the global correlation of the spectral domain, the latter reconstructing the
local structures by exploring the non-local spatial correlation information, our approach
yields better recovery results and higher spectral reconstruction fidelity than the other
methods. The low-rank matrix-based methods, such as LRMR, NAILRMA and E3DTV,
lose part of the structure information in the process of low-rank matrix approximation;
therefore, the denoising effect is relatively poor, as can be seen from the denoised images
in Figure 6. LRTDTV’s results are the best except for the three DL-based methods, mainly
because it is based on a low-rank tensor, which fully expresses the structure of HSIs and
the characteristics of noise, but it can be observed from the enlarged view in Figure 7h that
there is still slight stripe noise remaining. The band-wise PSNR and SSIM are depicted
in Figure 8 for further quantitative assessment; we can observe that our method obtained
better PSNR and SSIM in almost all the bands compared to the other comparison methods.
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Table 2. Quantitative assessment of different algorithms applied to Washington DC Mall data with
mixture noise cases.

Index Noisy
HSI LRMR NAILRMA NGmeet L1HyMix

De E3DTV LRTDTV HSI-
DeNet

HSID-
CNN Ours

Case 1 (Gaussian noise)

MPSNR 14.54 30.30 32.29 32.59 31.31 32.04 33.11 34.08 33.87 34.74
MSSIM 0.1725 0.8103 0.8684 0.8761 0.9029 0.8559 0.9063 0.9143 0.9108 0.9253
MSAM 0.6261 0.1025 0.0766 0.1027 0.0620 0.0892 0.0746 0.0661 0.0679 0.0601

Case 2 (Gaussian noise + Stripes)

MPSNR 14.45 30.62 32.11 32.48 31.00 31.89 33.05 33.16 33.42 34.45
MSSIM 0.1697 0.8296 0.8665 0.8744 0.8972 0. 8524 0.9055 0.8970 0.9036 0.9211
MSAM 0.6291 0.0970 0.0785 0.1033 0.0649 0. 0909 0.0784 0.0754 0.0717 0.0628

Case 3 (Gaussian noise + Deadlines)

MPSNR 14.36 29.19 31.11 31.49 29.00 31.00 32.31 34.01 33.22 34.39
MSSIM 0.1647 0.7926 0.8353 0.8689 0.8547 0.8434 0.8983 0.9143 0.9003 0.9213
MSAM 0.6431 0.1248 0.0944 0.1166 0.0927 0.1042 0.0869 0.0666 0.0742 0.0629

Case 4 (Gaussian noise + Impulse noise)

MPSNR 12.69 28.70 26.62 28.80 29.44 31.03 31.69 33.05 32.52 33.93
MSSIM 0.1256 0.7585 0.7423 0.8204 0.8787 0.8376 0.8815 0.8933 0.8853 0.9118
MSAM 0.7344 0.1571 0.2862 0.2825 0.0880 0.1092 0.1236 0.0755 0.0790 0.0668

Case 5 (Mixture noise)

MPSNR 12.38 27.11 25.07 26.71 26.41 29.44 30.22 32.47 31.83 33.56
MSSIM 0.1163 0.7253 0.7116 0.7923 0.8060 0.8065 0.8585 0.8804 0.8683 0.9050
MSAM 0.7634 0.1867 0.3175 0.3108 0.1417 0.1336 0.1337 0.0799 0.0854 0.0697
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To further verify the denoising performance of the proposed model for mixed noise,
we conducted synthetic noise experiments on the Pavia Center data. Noise from Case 1 to
Case 5 was added to the Pavia data for testing. Table 3 shows the quantitative assessment
results, and Figure 7 shows the vision comparison of the denoising results for Case 5. It
can be seen that our method achieved the best results, although the gains on the Pavia
data are not that large compared to those on the DC data shown in Table 2. It can be
easily observed from Figure 7 that the results of our model, LRTDTV, and two DL-based
methods, removing most of the mixed noise, are closest to the original reference images.
The band-wise PSNR and SSIM are depicted in Figure 9; for almost all the bands in
the Pavia data, our method achieves higher PSNR values and SSIM values compared
to other competing methods. The experiment results on the Pavia data proved that our
model has a certain generalization ability. If we need to further improve or maintain the
superior performance and generalization ability of our model on different test datasets, we



Remote Sens. 2022, 14, 2071 14 of 22

need to train the model on more datasets containing all these types of noise and finetune
the network.

Table 3. Quantitative assessment of different algorithms applied to Pavia Centre data with mixture
noise cases.

Index Noisy
HSI LRMR NAILRMA NGmeet L1HyMix

De E3DTV LRTDTV HSI-
DeNet

HSID-
CNN Ours

Case 1 (Gaussian noise)

MPSNR 14.45 27.59 30.70 29.22 31.53 28.63 31.98 31.37 31.56 31.98
MSSIM 0.1636 0.7413 0.8629 0.7962 0.8739 0.7678 0.8760 0.8956 0.9017 0.9099
MSAM 0.9154 0.3223 0.1559 0.3712 0.1483 0.2714 0.1760 0.1719 0.1488 0.1342

Case 2 (Gaussian noise + Stripes)

MPSNR 14.39 28.73 30.58 29.06 31.24 28.42 31.11 31.21 31.42 31.70
MSSIM 0.1619 0.7937 0.8610 0.7919 0.8660 0.7611 0.8588 0.8964 0.8963 0.9070
MSAM 0.9186 0.2579 0.1590 0.3794 0.1601 0.2771 0.1545 0.1656 0.1543 0.1333

Case 3 (Gaussian noise + Deadlines)

MPSNR 14.47 28.12 30.19 29.05 29.37 28.04 30.44 31.29 31.39 31.72
MSSIM 0.1607 0.7844 0.8591 0.8022 0.8157 0.7517 0.8507 0.8949 0.8952 0.9073
MSAM 0.9270 0.2832 0.1735 0.3712 0.2463 0.2954 0.1456 0.1645 0.1495 0.1323

Case 4 (Gaussian noise + Impulse noise)

MPSNR 12.91 26.89 24.85 25.27 29.79 27.95 30.31 30.57 30.68 30.83
MSSIM 0.1323 0.7203 0.7007 0.7226 0.8267 0.7276 0.8349 0.8806 0.8766 0.8902
MSAM 0.9174 0.4354 0.3736 0.4967 0.1843 0.3098 0.1627 0.1660 0.1735 0.1419

Case 5 (Mixture noise)

MPSNR 12.72 25.71 23.80 24.31 27.75 27.01 29.05 30.19 29.79 30.35
MSSIM 0.1246 0.6933 0.6694 0.7025 0.7655 0.7038 0.8209 0.8742 0.8616 0.8777
MSAM 0.9313 0.4601 0.3985 0.5047 0.2764 0.3420 0.2912 0.1787 0.1844 0.1654
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Figure 9. Band-wise PSNR values in the first row and band-wise SSIM values in the second row
for denoised Pavia Center data. Subfigures in (a,f), (b,g), (c,h), (d,i) and (e,j) correspond to Case 1,
Case 2, Case 3, Case 4 and Case 5, respectively.
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4.2. Real HSI Denoising

In this section, two real HSI data, namely Indian Pines data and GF-5 (Gaofen-5) data,
were employed to further validate the effectiveness of the proposed model.

(1) Indian Pines: These data were recorded over north-western Indiana, contain-
ing 220 spectral channels, the GSD of which is 20 m. The selected scene is a size of
145 × 145 pixels, and a few bands were corrupted by heavy mixed noise (including Gaus-
sian noise and sparse noise, e.g., impulse and stripe noise).

(2) GF-5 Data: These data were acquired by the Advanced Hyperspectral Imager
(AHSI) loaded by the Chinese GF-5 satellite in January 2020 over an area of Fujian Province,
China. The image wavelength range is 400 to 2500 nm, including 330 bands. Due to
atmospheric absorption, 17 bands were removed, and 313 spectral bands were retained. In
our experiments, an image with a size of 200 × 200 pixels was selected.

The parameters of all the traditional comparison methods were the suggested ones
given in the original literature. For the DL-based methods, we used the trained network
from the synthetic experiment above. To visually compare the effect of restoration, we
show the second band image and the false color image synthesized with band 61, 34 and
1 in Figures 10 and 11, respectively. From Figure 10, we can observe that the proposed
method removed most of the noise, while other comparison methods did not completely
remove complex noise. From the zoomed image of Figure 11, it can be observed that our
method and LRTDTV removed most of the noise while preserving the spatial details. In
addition, the corresponding computational times of all the algorithms on the Indian dataset
(145 × 145 × 220) were given in Table 4. It can be seen that, although HSID-CNN and
HSI-DeNet yielded less runtime, our method acquired the best result in the third shortest
runtime. Considering the reason, it is mainly because matrix multiplication is used in the
OSPA module of our model, which is relatively time-consuming. Nevertheless, our method
is obviously much faster than all the traditional methods.
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Figure 10. The denoised results on band 2 of the Indian Pines data. (a) Original; (b) LRMR;
(c) NAILRMA; (d) NGmeet; (e) L1HyMixDe; (f) E3DTV; (g) LRTDTV; (h) HSI-DeNet; (i) HSID-CNN;
(j) ours.
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Figure 11. False color images synthesized with band 61, 34 and 1 of denoised Indian Pines data.
(a) Original; (b) LRMR; (c) NAILRMA; (d) NGmeet; (e) L1HyMixDe; (f) E3DTV; (g) LRTDTV;
(h) HSI-DeNet; (i) HSID-CNN; (j) ours.

Table 4. Average runtime comparisons for HSI denoising methods on Indian Pines (145 × 145 × 220).

Method LRMR NAILRMA NGmeet L1HyMixDe E3DTV LRTDTV HSI-
DeNet

HSID-
CNN Ours

Time (s) 127.8 116.5 33.9 37.4 44.4 170.1 6.1 3.3 17.0

To further verify the effectiveness of denoising, a random forest (RF) classifier [65] and
support vector machine (SVM) [66] were used to classify the Indian Pines data before and
after denoising. Sixteen ground truth classes were employed for testing the classification
accuracy. The training sets included 10% of the test samples randomly generated from
each class. The overall accuracy (OA) and the kappa coefficient were given as evaluation
indexes in Table 5. As can be seen, our method yields the highest classification accuracy
whether using RF or SVM; the OA and kappa values corresponding to RF are 0.8812 and
0.8587, respectively, and the OA and kappa corresponding to SVM are 0.8997 and 0.8174,
respectively. Figure 12 shows the results for Indian Pines using the RF classifier.

Table 5. Classification accuracy results for Indian Pines.

Index Original LRMR NAILRMA NGmeet L1HyMix
De E3DTV LRTDTV HSI-

DeNet
HSID-
CNN Ours

RF

OA 0.8065 0.8510 0.8520 0.8564 0.8370 0.8639 0.8068 0.8543 0.8414 0.8812
Kappa 0.7071 0.8150 0.8111 0.8134 0.7613 0.7921 0.7353 0.7701 0.7837 0.8587

SVM

OA 0.7606 0.8210 0.7926 0.5948 0.8008 0.7921 0.5912 0.8665 0.8862 0.8997
Kappa 0.6841 0.7800 0.7592 0.5661 0.7772 0.7457 0.5650 0.7857 0.8158 0.8174
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For the GF-5 data, the denoised results are shown in Figures 13 and 14. Figure 14 
plots second band denoised images for all the methods; it can be observed that our method 
exhibits the best result as most of the stripe noise was removed. Although NAILRMA also 
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nificantly different from the original image, probably because, in the process of low-rank 
matrix approximation, some structural information was removed as noise. Although the 
stripe noise was removed in E3DTV’s result, the image is obviously over-smoothed. 
LRTDTV shows a relatively better denoising effect than DL-based HSID-CNN and HSI-
DeNet.  
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Figure 12. Classification results for Indian Pines. (a) Original; (b) LRMR; (c) NAILRMA; (d) NGmeet;
(e) L1HyMixDe; (f) E3DTV; (g) LRTDTV; (h) HSI-DeNet; (i) HSID-CNN; (j) ours; (k) ground truth
and class labels.

For the GF-5 data, the denoised results are shown in Figures 13 and 14. Figure 14
plots second band denoised images for all the methods; it can be observed that our method
exhibits the best result as most of the stripe noise was removed. Although NAILRMA
also removed most of the noise and shows a relatively clean image, many structures
are significantly different from the original image, probably because, in the process of
low-rank matrix approximation, some structural information was removed as noise. Al-
though the stripe noise was removed in E3DTV’s result, the image is obviously over-
smoothed. LRTDTV shows a relatively better denoising effect than DL-based HSID-CNN
and HSI-DeNet.
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Figure 13. The denoised results on band 2 of the GF-5 data. (a) Original; (b) LRMR; (c) NAILRMA;
(d) NGmeet; (e) L1HyMixDe; (f) E3DTV; (g) LRTDTV; (h) HSI-DeNet; (i) HSID-CNN; (j) ours.
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Figure 14 shows the false color images synthesized with band 1, 34 and 61 of the 
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were almost removed. As we mentioned above, the denoised image of NAILRMA is very 
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still shows over-smoothing. LRTDTV also exhibits a relatively good denoising effect, but, 
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Figure 14 shows the false color images synthesized with band 1, 34 and 61 of the
denoised GF-5 data. It can be observed that the proposed method achieved relatively good
denoising results, and the zoomed area shows that the stripe noise and dots pattern noise
were almost removed. As we mentioned above, the denoised image of NAILRMA is very
clean and sharp but has obvious differences from the original image. The E3DTV result
still shows over-smoothing. LRTDTV also exhibits a relatively good denoising effect, but,
in the area of the blue box, there is still obvious stripe noise.

4.3. Sensitivity and Ablation Study

We examined three major determinants of our model: (a) the dimension of the or-
thogonal subspace, P; (b) the performance of the OSPA module; (c) the performance of the
CA module.

Table 6 provides the results of the experiment on DC Mall data with different P values;
a mixture noise setting in Case 5 was applied to this experiment. As we can see, when
P = 30, the model was unstable and did not converge; the OSPA module cannot work
effectively as a subspace projection since P is greater than the dimension size of the input.
In addition to this, a lager P value also increased the difficulty of training. When P = 1,
the dimension of the subspace is too small, the learning ability of the network decreased
and less information would be retained, resulting in unsatisfactory training results. When
P = 10 and 20, the trained model has comparable denoising performance, with MSPNRs of
33.56 and 33.45, respectively, so it can be seen that the value of P selected in our model is a
robust hyperparameter within a reasonable range.

Table 6. Effect of orthogonal subspace dimension P on Washington DC data with mixture noise.

P 1 10 20 30

MPSNR 33.04 33.56 33.45 -
MSSIM 0.8952 0.9050 0.9026 -
MSAM 0.0742 0.0697 0.0710 -

Next, to demonstrate the necessity and effectiveness of the two core modules in the
proposed model, OSPA and CA, we conducted the ablation study on the effects of the
OSPA and CA modules. Specifically, the ablation experiments were conducted on the
Washington DC data, and the same training strategy and parameter settings as in the
synthetic experiments were used. The test experiment was carried out under the condition
of mixed noise (Case 5). The results are reported in Table 7.
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Table 7. Results of the ablation study on the effect of OSPA and CA modules.

Component Modules Accuracy Indicators
OSPA CA MPSNR MSSIM MSAM

8 8 32.04 0.8736 0.0832
X 8 32.55 0.8865 0.0771
8 X 32.89 0.8931 0.0742
X X 33.56 0.9050 0.0697

As seen from Table 7, the original network without the OSPA and CA modules
obtained the PSNR = 32.04 and SSIM = 0.8736, with slightly lower performance than
HSI-DeNet. By including the OSPA modules to the model, the improvements of 0.51 and
0.0066 were achieved in MPSNR and MSSIM, respectively, while MSAM decreased by
0.0061. This is because OSPA considers the global spatial correlation, which removed
spatial-related noise and recovered the original structures of images more precisely. Then,
by integrating the CA modules to the model, we achieved an improvement of 0.85 and
0.0195 on MPSNR and MSSIM, respectively, and the MSAM decreased by 0.0090. This
is because the CA could explore the correlations between the feature maps so that more
global spectral information can be utilized. Overall, compared to the model without OSPA
and CA, our original proposed model improved the MPSNR by 1.52, MSSIM by 0.0314,
and decreased MSAM by 0.0135.

One insight of our work lies in the orthogonal subspace projection based on the
spatial attention mechanism. To further understand how it works, we took the DC data
as an example and examined the subspace generated by the OSPA module. We chose the
experimental settings of Case 5 (complex noise) and zoomed into the lower left corner of
the image for better visual observation. Figure 15a shows the visualization of the 10 basis
vectors; it can be obviously seen that basically all the vectors contain the dots pattern
(corresponding to Gaussian noise) that evenly spans the whole image, some vectors contain
a slight stripe pattern (corresponding to stripe noise) and some vectors contain a clear
spatial structure consistent with the ground truth image. Figure 15b plots band 70 of
the ground truth and the denoised results with and without OSPA, respectively. We can
conclude that a more detailed spatial structure is recovered in the denoised image with the
virtue of OSPA.
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It could be speculated that such an improvement in detailed spatial structure recov-
ery should be attributed to the non-local and global spatial correlations explored by the
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OSPA module, which means that the recovered structure information can be supported by
similar structures in other parts of the image. The OSPA module could effectively sepa-
rate structural noise and original data by learning subspace bases and selectively remove
noise through the projection process, thus yielding a restoration result with more faithful
texture structure.

5. Conclusions

In this work, a novel HSI denoising network for mixed noise removal called subspace
projection attention and channel attention network (SPARCA) was proposed, in which the
proposed OSPA and RCA module could fully explore the local and global spatial–spectral
information of the HSIs to promote a reasonable denoising effect. The proposed model
takes the single band and its adjacent bands as inputs of the model, and a residual learning
strategy is adopted. The RCA module is able to adaptively characterize the interdependence
between channels and explore the global correlation of the spectral domain. The OSPA
module could adaptively learn an orthogonal subspace projection that can be used to
reconstruct the main feature maps from its subspace, which is able to facilitate spatial
structure recovery by using both the local and global spatial correlations. Benefiting from
this, our network could remove the mixed noise while preserving the detailed structure
information. Extensive experiments conducted on two synthetic datasets and two real
datasets have demonstrated the effectiveness of the proposed method and its ability to
remove the mixed noise of HSIs. Moreover, an ablation study has verified the effectiveness
of the proposed OSPA and CA modules.

Although the proposed network could efficiently remove mixed noise, there is still
room for improvement in Gaussian noise removal compared with the traditional methods,
which is also a common problem for most deep-learning-based HSI denoising methods. In
the future, we may focus on further improving the model’s performance on both Gaussian
noise and mixed noise removal.
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