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Abstract: The magnitude of ecosystem services provided by winter cover crops is linked to their
performance (i.e., biomass and associated nitrogen content, forage quality, and fractional ground
cover), although few studies quantify these characteristics across the landscape. Remote sensing can
produce landscape-level assessments of cover crop performance. However, commonly employed
optical vegetation indices (VI) saturate, limiting their ability to measure high-biomass cover crops.
Contemporary VIs that employ red-edge bands have been shown to be more robust to saturation
issues. Additionally, synthetic aperture radar (SAR) data have been effective at estimating crop
biophysical characteristics, although this has not been demonstrated on winter cover crops. We
assessed the integration of optical (Sentinel-2) and SAR (Sentinel-1) imagery to estimate winter
cover crops biomass across 27 fields over three winter–spring seasons (2018–2021) in Maryland. We
used log-linear models to predict cover crop biomass as a function of 27 VIs and eight SAR metrics.
Our results suggest that the integration of the normalized difference red-edge vegetation index
(NDVI_RE1; employing Sentinel-2 bands 5 and 8A), combined with SAR interferometric (InSAR)
coherence, best estimated the biomass of cereal grass cover crops. However, these results were season-
and species-specific (R2 = 0.74, 0.81, and 0.34; RMSE = 1227, 793, and 776 kg ha−1, for wheat (Triticum
aestivum L.), triticale (Triticale hexaploide L.), and cereal rye (Secale cereale), respectively, in spring
(March–May)). Compared to the optical-only model, InSAR coherence improved biomass estimations
by 4% in wheat, 5% in triticale, and by 11% in cereal rye. Both optical-only and optical-SAR biomass
prediction models exhibited saturation occurring at ~1900 kg ha−1; thus, more work is needed to
enable accurate biomass estimations past the point of saturation. To address this continued concern,
future work could consider the use of weather and climate variables, machine learning models, the
integration of proximal sensing and satellite observations, and/or the integration of process-based
crop-soil simulation models and remote sensing observations.

Keywords: winter cover crops; biomass; optical synthetic aperture radar integration; remote sensing;
winter cover crop performance

1. Introduction

Planting cover crops is recognized as an important conservation practice to promote
agricultural sustainability via the provisioning of agro-ecosystem services [1]. Some of
these well-documented agro-ecosystem services include the protection of soil from erosion,
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increased nutrient retention, reduction in nutrient leaching losses, reduction in disease
and pest infestations, increased weed suppression, increased infiltration, reduced overland
water flow, soil health improvements via carbon sequestration, and developing resilient
cropping systems that better adapt and mitigate climate change [2–6]. Cover crop perfor-
mance estimations, such as percent ground cover and biomass accumulation, are directly
related to the magnitude of agro-ecosystem services that cover crops can provide [4,7,8].
Despite the well-recognized relationship between cover crop performance and the associ-
ated benefits to cropping systems, few studies to date have assessed the ability of remote
sensing to estimate cover crop performance, especially at the landscape scale.

Remote sensing is a powerful tool capable of producing landscape-level assessments
of cover crop presence and absence [9,10], emergence and termination [11,12], and perfor-
mance [13–15]. To date, remote sensing in cover crop research has primarily employed
optical sensing approaches using proximal (hand-held) sensors [14], unoccupied aerial
vehicles (UAVs) [16,17], high-resolution aerial images [18], and Earth-observing satel-
lites [8,10,13,19]. Optical vegetation indices (VIs) used to estimate plant biomass usually
exploit the relationship between visible light with low reflectance (linked to plant pigment
concentration) and high reflectance observed in near-infrared (NIR) light (influenced by
internal leaf structure) [20]. This visible-NIR reflectance difference is enhanced during
plant growth and manifests as increased fractional cover, which is linked to plant biomass.
Both the triangular vegetation index (TVI) [21] and the normalized difference vegetation
index (NDVI) [22] exploit the visible-NIR difference and have been used to successfully
estimate biomass in cereal grass cover crop species [13,14].

VIs derived from optical imagery, particularly NDVI, tend to saturate at a leaf area
index (LAI) greater than three in numerous plant species [23,24]. Similarly, previous
work observed NDVI saturation at approximately 1500 kg ha−1 biomass in cereal grass
species [14]. This substantially limits our ability to estimate biomass values at the higher
ranges (i.e., >1500 kg ha−1) that are frequently observed in the springtime, particularly in
late-terminated cover crop fields under warmer growing conditions. Although red-edge
bands were shown to be more resistant to saturation [17,24–26] they have only recently
been incorporated into earth-observing platforms such as the European Space Agency’s
(ESA) Sentinel-2 satellites (launched in June 2015 and March 2017). Sentinel-2 satellites
contain three red-edge bands and have a 20-m spatial resolution and a five-day revisit time,
resulting in a greater spatial and temporal resolution than Landsat satellites. Red-edge
indices such as the normalized difference red-edge index (NDVI_RE) and the simple ratio
red-edge (SR_RE) have shown strong relationships with chlorophyll A [27], which, in turn,
is closely linked with crop biophysical characteristics such as LAI and fractional ground
cover [28,29]. Additionally, previous work demonstrated that the visibly atmospherically
resistant index using a red-edge band (VARI_RE) was better able to predict the LAI of corn
(Zea mays L.) past the point of saturation (i.e., up to LAI values of six) [30]. In contrast,
other studies found that red-edge-based indices did not improve biomass estimation in
corn and soybeans (Glycine max L.) when compared to traditional VIs such as NDVI [31].
In addition to red-edge based indices, new VIs, such as the NIR reflectance of vegetation
index (NIRv) [32] and kernel NDVI (kNDVI) [33], have also been developed to address
saturation issues with optical remote sensing. NIRv has shown good agreement with
gross primary production (GPP) in corn and soybeans [32]. Finally, kNDVI is a nonlinear
generalization of NDVI that is more resistant to saturation [33] and, therefore, may also be
useful in estimating higher cover crop biomass levels beyond the point of saturation.

Active remote sensing approaches such as synthetic aperture radar (SAR) also have
emerged as a viable technique for monitoring and estimating crop biophysical character-
istics [34–36], although most studies focus on the use of SAR data in crop classification.
SARs operate at microwave wavelengths (0.18–30 cm), emit coherent signals, and measure
the backscattered intensity (backscatter) and phase of the return signals. The intensity and
phase of the return signal at a given frequency and polarization can be used to elucidate
the ‘polarimetric signatures’ of landscape features based on the type of scattering that is
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present [37]. Agricultural studies have most commonly utilized SAR imagery in either
the L-band (15–30 cm) or C-band (3.75–7.5 cm) wavelength ranges, often with two linear
polarizations (dual-pol) or four linear polarizations (quad-pol). The unique information
contained in SAR polarimetric channels, such as a change from transmitted horizontal (H)
to return vertical (V) backscatter or from V to H (i.e., cross-polarization), provides infor-
mation on the presence of volume scattering targets. Vegetation exhibits strong volume
scattering; thus, cross-polarization backscatter has been shown to be well correlated with
total biomass in wheat (Triticum aestivum L.) and soybeans [38,39]. Similarly, the radar
vegetation index (RVI), which is produced using co- and cross-polarization backscatter, has
been shown to be sensitive to vegetation water content and LAI [40].

In addition to the backscatter intensity, SAR signals also contain phase information.
Combining polarimetric backscatter and polarimetric phase information provides additional
information, allowing for more refined classifications of ground targets with the use of
polarimetric decompositions [36]. For instance, the polarimetric parameters decomposed
from SAR data—such as entropy, anisotropy, and alpha angle—can successfully predict
crop biophysical characteristics such as biomass and height under certain conditions [41–43].
Finally, the cross-channel correlation coefficient known as the interferometric SAR (InSAR)
coherence compares the phase information from two repeat-pass SAR images. When phase
differences are similar for a neighborhood of pixels, InSAR coherence values will be high,
and when phase differences are random, InSAR coherence values will be low. Reductions
in InSAR coherence are often indicative of changes in target properties between two images,
such as changes in soil roughness, soil moisture, vegetation water content, and vegetation
structure [44,45]. However, InSAR coherence may also be useful in biomass estimation,
as it quantifies phase change between two images and can, therefore, be used to estimate
crop height [46,47] and growth [48]. Although the use of SAR to estimate crop biophysical
characteristics is on the rise, few studies to date have integrated both optical and SAR data [49].
Moreover, to our knowledge, none focus specifically on small-stature winter cover crops that
undergo a unique phenological development that includes fall establishment followed by a
winter dormancy period and later springtime growth.

The ESA’s publicly available multispectral (Sentinel-2) and SAR (Sentinel-1; dual po-
larization, C-band) satellite imagery provides a unique opportunity to assess the efficacy of
linking contemporary VIs using red-edge bands and SAR-derived metrics such as backscat-
ter intensities, polarimetric parameters, and InSAR coherence. When integrated, these two
data streams may enable a more accurate prediction of winter cover crop biomass beyond
the previously identified saturation points. Thus, our first objective was to determine
which optical index from Sentinel-2 was best-suited to estimating the cover crop biomass.
Secondly, we evaluated whether the addition of SAR backscatter intensities, polarimetric
parameters, and InSAR coherence to optical data increased our ability to estimate cover
crop biomass, especially over 1500 kg ha−1 [14]. We hypothesized that: (1) non-normalized,
red-edge indices would outperform other VIs for estimating winter cover crop biomass and
(2) that the integration of optical and SAR metrics would result in better biomass estimation
in winter cover crops. To test these hypotheses, we collected destructive biomass samples
over three winter–spring cover crop growing seasons from cover crop fields planted with
cereal grass species at the U.S. Department of Agriculture (USDA), Beltsville Agricul-
tural Research Center (BARC) facility located in Beltsville, Maryland, United States, and
regressed a suite of remote sensing measures to biomass.

2. Methods
2.1. Study Area and Sampling Plan

We sampled 27 cover crop fields (~5 sampling locations per field) over three winter-
to-spring seasons (2018–2019, 2019–2020, and 2020–2021) at the USDA-BARC research
facility (Figure 1). These fields were planted with one of the three cereal grass cover crop
species: wheat (n = 431 across 10 fields), ‘Aroostook’ cereal rye (Secale cereale; n = 153 across
14 fields), and triticale (Triticale hexaploide Lart.; n = 185 across six fields). Cover crops were
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planted between 26 September and 18 October of a given year, after harvest of the previous
summer crop (usually corn, soybeans, or alfalfa (Medicago sativa)). Some of the fields—those
in triticale and some wheat—were fertilized in the fall, as these fields were harvested later
in the spring of the following year (typically in April) for dairy silage production.

Figure 1. Overview of the study area located at the Beltsville Agricultural Research Center (BARC) in
Maryland (A,B). Study fields (2019–2021) are colored by species. Some fields (purple) were used by
wheat and triticale in different years of the study. Approximately five flagged locations were sampled
within each field at a given sampling time or event (C). (A) contains a Sentinel-2 satellite image from
1 May 2020; (B) uses a map of the United States, courtesy of the Federal Government.

During the 2019–2020 and 2020–2021 seasons, we sampled approximately five locations
per field at each sampling time. The sampling dates were distributed throughout the cover
crop growth period: once per month from October–February, twice per month from March–
April, and once in May. We performed more frequent sampling in the springtime due to
the faster cover crop growth and development. Sampling locations were kept consistent
within seasons. During the spring of 2019, we collected cover crop biomass twice (late
April–early May). We flagged five sampling locations per field with the goal of capturing
spatial variability in cover crop performance (i.e., capturing areas of low and high biomass).
Across all seasons, we selected sampling locations with locally uniform growth towards
the center of each field to avoid edge effects and mixed pixels. Samples were spaced at
least 30 m apart to avoid collections within the same pixel.

Destructive biomass samples were collected near flagged locations within each field.
At each flag, we sampled aboveground cover crop biomass from ~0.57 m−2 areas in paper
bags (i.e., harvested 1-m length cover crop from three adjacent drilled rows that were
19 cm apart). Paper bags containing fresh biomass samples were then dried in an oven for
approximately one week at 60 ◦C and the dry weights were recorded. We then scaled these
values from g m−2 to kg ha−1.

During the 2019–2020 and 2020–2021 growing seasons, we also collected a series of nadir
photographs from a red, green, blue (RGB) Canon PowerShot G16 camera (12.1 megapixels).
In previous work, nadir photographs were used to estimate fractional vegetative cover [14].
However, as we did not have complete time series photographs associated with every
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sampling event, we could not include fractional vegetative cover as a covariate in our
analysis. Instead, we used photographs and estimates of fractional vegetative cover where
possible to interpret the relationship between the remotely sensed data and the destruc-
tively sampled biomass. We calculated fractional vegetative cover for each photograph
by applying threshold values to the digital numbers for red/green ratio [50] and excess
green [51] VIs.

2.2. Growing Degree Days

We calculated growing degree days (GDD) to assess inter-annual weather differences
in cover crop growth across our study years. We used a combination of weather station
data from 2019 to 2020 at BARC and the daily Daymet [52,53] estimations from a local
weather station in Beltsville in 2021 to calculate GDD using the following equation:

GDD =

[
Tmax + Tmin

2

]
− Tbase

where Tmin and Tmax were the daily minimum and maximum temperatures. We used 4 ◦C
for Tbase, based on prior studies for small-grain crops [14,54].

2.3. Soil Moisture Collections and Analyses

Sentinel-1 transmits C-band signals, which do not penetrate deeply into the soil
column, and instead interact primarily with the soil surface. Because C-band signals
respond strongly to moisture content, we calculated the correlation coefficients of four
Sentinel-1 backscatter indices (VV, VH, VV/VH, and RVI) relative to measured values of soil
volumetric water content (VWC) collected using a handheld sensor. Handheld collections
were taken with an Acclima SDI-12 sensor in conjunction with Sentinel-1 overpasses at
each of the fields on five dates in 2021 (March: 2nd, 15th, 26th, and April: 19th and 29th).
Seven surface level measurements at 2 cm depth were taken near each plot, with six being
taken within a 0.5 m radius of the center of the plot and the seventh in the center.

2.4. Sentinel-2 Imagery Acquisition and Processing

We procured level 2A Sentinel-2 reflectance products from ESA’s Copernicus service
and extracted the band reflectance for nine bands at the 20-m pixel resolution, including
blue (B2), green (B3), red (B4), three red edge bands (B5, B6, B7), narrow band NIR (B8A),
and two shortwave infrared bands (SWIR, B11 and B12). We selected the image acquisition
that corresponded most closely to each destructive biomass sampling date. We applied
the provided 20-m resolution cloud mask at the strictest level (i.e., 0) to remove clouds
and cloud shadows. In total, we used 21 scenes and out of 769 plot-date measurements
180 samples were removed from the analysis due to the presence of clouds or cloud shad-
ows. We also removed 16 observations that had a gap of >6 days between destructive
sampling and the satellite image acquisition (mean image gap = ~3 days, standard devi-
ation of image gap = ~2 days). This resulted in a total of 573 observations [55] for three
cereal grass species (cereal rye: n = 94, triticale: n = 158, and wheat: n = 321). Next, we
extracted band reflectance data to calculate 27 VIs (Table 1). These VIs were selected with
a focus on (1) red-edge indices (n = 14) and (2) previously identified indices sensitive to
biomass or similar plant characteristics, such as LAI, height, or leaf/stem density (n = 13).
We processed the acquired images and extracted band reflectance using the ‘raster’ [56]
and ‘sf’ [57] packages in the R statistical environment [58].
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Table 1. List of optical vegetation indices (VIs) calculated from Sentinel-2 imagery where ρ indicates
reflectance of a given optical band, REx indicates a red-edge optical band (which can be either band
5, 6 or 7 depending on the index variant), and SWIRx indicates a shortwave infrared band (with band
11 or 12 depending on index variant).

Abbreviation Parameter Formula Citation

NDVI_RE1 Red-edge normalized difference vegetation index (B5)
(ρNIR−ρREx)
(ρNIR+ρREx)

[31,59]NDVI_RE2 Red-edge normalized difference vegetation index (B6)

NDVI_RE3 Red-edge normalized difference vegetation index (B7)

NDRE Normalized difference red-edge index
(
ρRE(B6)−ρRE(B5)

)
(
ρRE(B6)+ρRE(B5)

) [60,61]

SR_RE1 Simple ratio red-edge index (B5)
ρNIR
ρREx

[31]SR_RE2 Simple ratio red-edge index (B6)

SR_RE3 Simple ratio red-edge index (B7)

RER Red-edge ratio index
ρRE(B7)
ρRE(B6)

[29,62]

RTVI1 Red-edge triangular vegetation index (B5)

100 ∗
(
ρNIR − ρρREx

)
− 10 ∗ (ρNIR − ρGreen) [31,63]RTVI2 Red-edge triangular vegetation index (B6)

RTVI3 Red-edge triangular vegetation index (B7)

VARI_RE1 Visibly atmospherically resistant index red-edge (B5)
(ρREx−1.7 ∗ ρRed−0.7 ∗ ρBlue)
(ρREx+2.3 ∗ ρRed−1.3 ∗ ρBlue)

[30]VARI_RE2 Visibly atmospherically resistant index red-edge (B6)

VARI_RE3 Visibly atmospherically resistant index red-edge (B7)

VARI_green Visibly atmospherically resistant index green (ρGreen−ρRed)

(ρGreen+ρRed−ρBlue)
[30]

TVI Triangular Vegetation index 0.5 ∗ [120 ∗ (ρNIR − ρGreen)− 200 ∗ (ρRed − ρGreen)] [14,21,64]

MTVI2 Modified triangular vegetation index 2 1.5 ∗ [1.2 ∗ (ρNIR−ρGreen)−2.5 ∗ (ρRed−ρGreen)]
√(2 ∗ ρNIR+1)2−(6 ∗ ρNIR−5√ρRed)−0.5)

[65]

MCARI2 Modified Chlorophyll Absorption Ratio Index 2 1.5 ∗ [2.5 ∗ (ρNIR−ρRed)−1.3 ∗ (ρNIR−ρGreen)]
√(2 ∗ ρNIR+1)2−(6 ∗ ρNIR−5√ρRed)−0.5)

[65]

NDVI Normalized difference vegetation index (ρNIR−ρRed)

(ρNIR+ρRed)
[13,14,22]

kNDVI Kernel normalized difference vegetation index Tanh
(
NDVI2) [33]

NIRv [66] Near-infrared reflectance of vegetation index ρNIR ∗ NDVI [32]

SR Simple ratio vegetation index ρNIR
ρRed

[67]

SAVI Soil adjusted vegetation index (1 + 0.5) ∗ (ρNIR − ρRed)/(ρNIR + ρRed + 0.5) [64,68]

EVI Enhanced vegetation index 2.5 ∗ (ρNIR − ρRed)/(1 + ρNIR + 6 ∗ ρRed − 7.5 ∗ ρBlue) [64,68]

NDWI1 Normalized difference water index (B11) (ρNIR−ρSWIRx)
(ρNIR+ρSWIRx)

[69]
NDWI2 Normalized difference water index (B12)

SR_WI Simple ratio water index ρSWIR_B11
ρSWIR_B12

2.5. Sentinel-1 Data Acquisition and Processing

We used Google Earth Engine (GEE) [70] to process Sentinel-1 backscatter imagery
with VH and VV polarizations. The Sentinel-1 ground range detected (GRD) scenes on
GEE had previously been processed with ESA’s Sentinel Application Platform (SNAP)
toolbox (SNAP, 2021) using the processing sequence of: updating image orbit file, GRD
image border noise removal, thermal noise removal, radiometric calibration, and geometric
terrain correction (orthorectification). In addition to using the VH and VV backscatter
imagery, we also calculated RVI by modifying the original quad-pol equation [40] to be
suited for dual-pol as per [66]. We also further adapted the equation because the dual-pol
modifications described in [66] included polarizations that are not present in Sentinel-1
(Table 2).

To perform polarimetric decompositions on the same Sentinel-1 scenes that are pro-
cessed to backscatter in GEE, we downloaded these scenes in single-look-complex (SLC)
format from ESA to the calculate polarimetric parameters of entropy, anisotropy, and al-
pha. Polarimetric decompositions were performed in SNAP toolbox using the following
sequence: image calibration, C2 matrix computation, polarimetric speckle filtering (5 × 5
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Refined Lee), H-Alpha dual-pol decomposition (window size = 5), and geometric terrain
correction. To generate Sentinel-1 InSAR coherence imagery, we used the Alaska Satel-
lite Facility (ASF) Hybrid Pluggable Processing Pipeline (HyP3) tool [71], which contains
modified Copernicus Sentinel data 2021, processed by ESA). Sentinel-1 InSAR pairs were
selected using the ASF SAR baseline tool to maintain the shortest possible temporal and
perpendicular baselines (i.e., the greatest degree of temporal and spatial similarity between
image acquisitions). We developed a selection protocol for the InSAR pairs ordered through
HyP3, where the image with the later acquisition time in the InSAR pair was matched
most closely to ground biomass sampling. Once image pairs were selected, we used the
HyP3 tool to generate interferograms with embedded Gamma software, performing an
interferogram generation with a 10 × 2 window size (smallest possible window size). The
Sentinel-1 interferogram and associated InSAR coherence images output from this process
resulted in a pixel size of approximately 40 m, meaning that the destructive biomass sam-
pling of small plots (0.57 m−2) was unlikely to significantly impact coherence estimation.
As the backscatter imagery produced using GEE, polarimetric decomposition imagery, and
InSAR coherence imagery were derived from the same Sentinel-1 images, their incidence
angles were identical for a single image, and nearly identical for an InSAR pair. It is also
important to note that the incidence angle of observation for the Sentinel-1 image time
series was consistent over our study sites, exhibiting a spatiotemporal mean incidence
angle of 41.31 degrees, with temporal standard deviation of 0.08 degrees, and a spatial
standard deviation of 0.15 degrees.

Table 2. Sentinel-1 synthetic aperture radar (SAR) backscatter, polarimetric, and phase parameters
where σ

◦
indicates backscatter intensity per unit area, Pi represent the probabilities from the eigenval-

ues in the polarimetric decomposition, λ is the non-negative real eigenvalues of the diagonal matrix,
alpha is the alpha angle, entropy (H) and anisotropy (A) are additional output parameters from the
polarimetric decomposition, and InSAR coherence from an analysis in which the first and second
scene are denoted as S1 and S2, respectively.

Sentinel-1 Synthetic Aperture Radar Metrics

VV Vertical Transmit—Vertical Return Backscatter Intensity σ
◦
VV

VH Vertical transmit—horizontal return backscatter intensity σ
◦
VH

VHVV Ratio of VH to VV σ
◦

VH
σ
◦VV

RVI Radar vegetation index
(

4σ
◦

VH
)

(σ
◦VH+σ

◦VV)
[40,66]

H Entropy −
i=3
∑

i=1
Pi log(Pi)

[72,73]A Anisotropy λ2+λ3
λ2−λ3

α Alpha i=3
∑

i=1
Piαi

InSar coherence Interferometric synthetic aperture radar coherence {S1+S∗2}
√{|S1 |}2{|S2 |}2 [44]

2.6. Statistical Analyses

All analyses were performed in the R statistical environment [58]. As the relationship
between cover crop biomass and VIs is often non-linear [14], we fit three regression models
to estimate cover crop biomass from optical data: (1) log-transformed, (2) polynomial,
and (3) segmented regression. Regression models were evaluated using various measures:
goodness-of-fit statistic (adjusted R2), error measures such as the root mean square error
(RMSE) and the mean absolute error (MAE), and model fit using Akaike’s Information
Criterion for small sample sizes (AICc) [74]. We opted to use AICc over the traditional
AIC to avoid overfitting our data, as the number of observations increases AICc and AIC
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converge, whereas, for smaller sample sizes, AICc are penalized more heavily. AICc were
calculated using the following equation:

AICc = 2k− 2ln
(

L̂
)
+

2k2 + 2k
n− k− 1

(1)

where k denotes the number of predictors in a model, L̂ represents the maximum likelihood,
and n is the sample size.

Finally, we calculated AIC weights (AICw) for the log-linear and polynomial mod-
els. AICw quantifies the probability that a given model was the best model in the set of
compared models—in our case, the best model among the 27 VIs compared for a given
model type (e.g., log-linear). Note that AICc and AICw cannot be used to compare dif-
ferent model sets (i.e., log-linear vs. polynomial). We also checked for the normality and
homoscedasticity of the residuals for each model. After identifying the best-performing
optical index using the above steps (objective 1), we assessed whether there were seasonal-
or species-level differences using analysis of variance (ANOVA) and slope and intercept
contrasts in the R ‘emmeans’ package [75].

To assess whether the integration of optical and SAR data could improve our esti-
mations of cover crop biomass (objective 2), we paired the best-performing optical index
with each SAR metric (n = 8) individually. As with objective 1, these models were then
evaluated using adjusted R2, RMSE, MAE, AICc, and AICw. If more than one SAR metric
improved model fit (i.e., ∆AICc < −2) and these metrics were not collinear (i.e., r < 0.7), we
evaluated combined models with the optical index identified in objective 1 and multiple
SAR variables. We used ANOVAs to assess whether models containing both optical and
SAR data were significantly better than models with only optical predictors. Finally, we
conducted cross-validation using a 70–30% train–test split iterated 100 times, and used
adjusted R2, RMSE, and MAE to summarize these results.

3. Results

Cumulative GDD did not vary substantially among study years (Figure 2). Despite
similarities in cumulative GDD during the cover crop growth period over the years, cover
crop biomass production varied substantially. Destructively sampled cover crop biomass
ranged from 141 to 4498 kg ha−1 in spring 2019, from 3.5 to 8770 kg ha−1 during 2019–2020,
and from 30 to 5675 kg ha−1 during 2020–2021.

We did find evidence of species-level differences in fractional vegetative cover at both
low, medium, and high biomass levels (Figure 3). However, we did not have sufficient
observations to conduct a formal analysis to determine whether these differences were
statistically significant. At low biomass levels (~1000 kg ha−1), triticale appears to have
a higher fractional vegetative cover than cereal rye and wheat. As no cereal rye biomass
levels exceeded 4000 kg ha−1, we were not able to compare the highest biomass ranges
between all three species. However, our in situ photographic data indicated that cereal
rye was patchier than wheat and triticale at all biomass levels, with the caveat that we
obtained limited cereal rye photographs and a gap of >7 days from photographs and
biomass harvests in 2019–2020.



Remote Sens. 2022, 14, 2077 9 of 27

Figure 2. Accumulated growing degree days (GDD, including negative values) for study years
(2018–2021) with sample dates (points).
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Figure 3. Monopole mounted (~3 m), nadir photographs of crop species at various biomass levels.
fractional vegetative cover estimates are displayed in the bottom right corner, and values with ‘*’
indicates a difference in >7 days from when a photograph was collected and when that sample was
harvested, dried, and weighed for biomass. Fractional vegetative cover was estimated empirically by
applying threshold values for red–green ration and excess green optical vegetation indices.



Remote Sens. 2022, 14, 2077 10 of 27

We also examined the spectral response from Sentinel-2 for each species at a low
and high biomass (Figure 4). As anticipated, we observed a greater NIR reflectance and
decreased red reflectance at high biomass (>3000 kg ha−1) compared to low biomass
(<1000 kg ha−1), which is, in part, related to the exposed soil present at low ground cover.
Similarly, the reflectance of the first red-edge band (B5) decreased, while the second and
third red-edge bands (B6 and B7) increased reflectance with increasing cover crop biomass
levels. Interestingly, in the SWIR portion of the spectrum, reflectance from low biomass
exceeded thoseof high biomass for all species, but the magnitude of this difference was
smallest in cereal rye.

Figure 4. Example of spectral reflectance of high (~3500 kg ha−1) and low (<1000 kg ha−1) biomass
for (A) wheat, (B) triticale, and (C) cereal rye. Sentinel-2 bands are labeled in each panel.
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Finally, we examined the relationship between handheld soil moisture collections and
SAR metrics. The results showed unexpectedly poor relationships (R2 = 0–0.08) between
soil moisture and backscatter intensities, polarimetric parameters, and InSAR coherence
(Appendix A). Hence, we did not further employ remote sensing estimates of soil moisture
in our analyses due to the high uncertainty in calibration.

3.1. Optical Index Results

Log-linear models best met regression assumptions and performed similarly to poly-
nomial and segmented models. Thus, we only present results from log-linear models in
the main text. Among all the considered VIs, NDVI_RE1 proved to be best at predicting
cover crop biomass (R2 = 0.61; RMSE = 1019; MAE = 639; AICw = 0.98; Table 3; Figure 5).
Although NDRE and NDWI1 had similar coefficients of determination and error values
(Table 3), their AICc were ≥ +8 when compared to NDVI_RE1. Our findings were fur-
ther supported by AICw values, where we found a 98% probability that the model using
NDVI_RE1 to predict cover crop biomass was the best when compared to the other VIs
included in our evaluation.

Table 3. Results of log-linear regression models predicting cover crop aboveground biomass, includ-
ing the coefficient of determination (adjusted R2), root mean square error (RMSE), and the mean
absolute error (MAE), and model fit statistics—Akaike’s information criterion for small sample sizes
(AICc) and AIC weights (AICw). Refer to Table 1 for optical index abbreviations. Log-linear models
best met parametric assumptions. The red-edge normalized difference vegetation index with band 5
(NDVI_RE1) best estimated winter cover crop biomass.

Index Adj R2 RMSE MAE AICc AICw

NDVI_RE1 0.61 1018.88 639.17 1337 0.98
NDWI1 0.61 1023.94 633.8 1345 0.02
NDRE 0.59 1057.69 663.15 1377 0

NDWI2 0.58 2016.30 1365.50 1389 0
NDVI 0.56 1094.22 688.71 1417 0

kNDVI 0.55 1084.84 691.23 1423 0
EVI 0.55 1079.55 686.63 1430 0

VARI_RE3 0.54 1092.24 695.93 1435 0
RTVI1 0.53 1129.64 706.84 1444 0

SR_RE1 0.53 2188.32 899.93 1452 0
RER 0.52 1486.36 770.53 1456 0
TVI 0.52 1127.99 718.22 1459 0

VARI_RE2 0.51 1142.31 732.25 1472 0
MCARI2 0.51 1207.53 755.54 1473 0
MTVI2 0.51 1207.53 755.54 1473 0

VARI_G 0.51 1101.29 700.12 1476 0
SAVI 0.5 1181.99 760.99 1487 0
NIRv 0.47 1227.51 787.64 1517 0
RTVI2 0.46 1357.68 751.95 1531 0
SR_WI 0.39 1248.93 782.68 1597 0

SR 0.36 1404.49 1750.84 1625 0
SR_RE2 0.34 1151.29 745.82 1640 0

NDVI_RE2 0.34 1135.56 737.49 1644 0
VARI_RE1 0.23 1486.54 959.25 1729 0

RTVI3 0.19 1535.50 993.11 1759 0
SR_RE3 0.14 1560.12 997.26 1796 0

NDVI_RE3 0.14 1562.67 999.44 1797 0
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Figure 5. The natural log of cover crop biomass plotted against the normalized difference red-edge
index (NDVI_RE1), which is calculated as (B8A−B5)

(B8A+B5) , where B5 is the 5th band of the Sentinel-2
satellite (the first red edge band) and the narrow band near-infrared band (B8A). Only spring data
are displayed (March–May). Model fits and errors are supplied in the upper left for the entire dataset
(black) and by species. An untransformed biomass estimation is appended on the right of the figure
for reference.

After identifying NDVI_RE1 as most suitable for estimating cover crop biomass, we
evaluated whether seasonal- or species-level differences were present using ANOVAs
and slope and intercept contrasts. We found that significant effects (i.e., a relationship
between NDVI_RE1 vs. biomass) varied between winter (October–February) and spring
(March–May) samples (Appendix B; Table A1). Therefore, we opted to move forward
with modeling the relationship between cover crop biomass and NDVI_RE1 with only
spring data (n = 332; Figure 5), as there were only two observations in winter that ex-
ceeded 1500 kg ha−1, which is the existing saturation point identified for cereal grass cover
crops [14]. Furthermore, we found species-level differences between cereal rye, triticale,
and wheat (Appendix B; Table A2). In our study, cereal rye had lower observed biomass
ranges than triticale and wheat. Therefore, we further examined whether these species-level
differences remained when we limited our analysis to similar biomass ranges for these three
cereal grass species. Our results suggest that species-level differences were still present
within this sub-analysis (results not shown). Therefore, as we found significant differences
between species (primarily between cereal rye and the other two species) in our ANOVAs
and slope-intercept contrasts, we also modeled species separately (Figure 5). With these
season*species interactions, the results of our optical index selection (NDVI_RE1) showed
substantial increases in goodness-of-fit wheat (R2 = 0.70) and triticale (R2 = 0.76). However,
we observed that the relationship between NDVI_RE1 and cereal rye biomass performed
poorly (R2 = 0.23).

3.2. Optical—Synthetic Aperture Radar (SAR) Results

Results from objective 1 indicated that NDVI_RE1 was our best-performing optical
index, but also that seasonal and species level effects were present in our data. Therefore,
our analyses integrating optical and SAR data focused solely on spring samples (n = 332)
and modeled species separately in objective 2. Each SAR metric (backscatter intensities
and indices, polarimetric parameters, and InSAR coherence) was individually added to
NDVI_RE1 regression models to predict cover crop biomass and assess how model statistics
changed with each additional SAR metric.
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The addition of most SAR metrics did not substantially improve model fits or reduce
errors compared to models that had only NDVI_RE1 (Table 4) but were species-specific.
However, combining InSAR coherence and NDVI_RE1 did increase our ability to predict
the biomass of all three cereal grass species (Table 4), with improved model fits (i.e., R2

increased by 4 to 11% and AICc decreased by 15 to 24 among species). Wheat, triticale, and
cereal rye models with InSAR coherence also demonstrated reductions in error that ranged
from small to moderate: RMSE decreased by 42, 182, and 36 kg ha−1 and MAE decreased
by 95, 84, and 52 kg ha−1, respectively.

Table 4. Results of combined optical and synthetic aperture radar (SAR) species-specific regression
models. Models combined the optical normalized difference red-edge index using band 5 (NDVI_RE1)
with SAR backscatter indices (vertical-vertical (VV), vertical-horizontal (VH), VH/VV, and radar
vegetation index (RVI)) and polarimetric parameters (alpha, entropy (H), anisotropy (A), InSAR
coherence (Coh)), sequentially. Models were evaluated using goodness of fit (adjusted R2), root mean
square error (RMSE), mean absolute error (MAE), and model fit statistics—Akaike’s information
criterion for small samples (AICc ) and AIC weights (AICw).

Model Adj R2 RMSE MAE AICc AICw

Wheat

NDVI_RE1 + Coh + H 0.74 1223.24 770.73 258 0.63
NDVI_RE1 + Coh 0.74 1226.79 783.74 259 0.37

NDVI_RE1 + H 0.71 1263.33 848.04 280 0
NDVI_RE1 + VH 0.70 1285.51 872.42 281 0
NDVI_RE1 + A 0.70 1280.42 853.11 281 0

NDVI_RE1 + Alpha 0.70 1273.26 854.26 282 0
NDVI_RE1 0.70 1268.34 865.56 282 0

NDVI_RE1 + RVI 0.70 1278.49 870.41 282 0
NDVI_RE1 + VHVV 0.70 1273.13 866.04 283 0

NDVI_RE1 + VV 0.70 1267.58 865.75 284 0

Triticale

NDVI_RE1 + Coh 0.81 792.95 553.09 46 0.72
NDVI_RE1 + Coh + A 0.81 783.8 542.96 48 0.28

NDVI_RE1 + A 0.77 924.37 618.7 59 0
NDVI_RE1 + H 0.77 934.07 621.4 60 0

NDVI_RE1 + Alpha 0.77 933.43 623.29 61 0
NDVI_RE1 + VHVV 0.77 957.74 627.05 61 0

NDVI_RE1 0.76 974.67 637.5 61 0
NDVI_RE1 + RVI 0.76 904.44 618.24 62 0
NDVI_RE1 + VH 0.76 954.15 634.29 63 0
NDVI_RE1 + VV 0.76 980.84 638.24 63 0

Cereal Rye

NDVI_RE1 + VV + RVI + Coh 0.38 771.81 596.63 165 0.75
NDVI_RE1 + Coh 0.34 775.54 590.93 167 0.24
NDVI_RE1 + VV 0.28 803.22 636.09 175 0
NDVI_RE1 + RVI 0.25 836.67 653.54 178 0
NDVI_RE1 + VH 0.25 800.37 638.94 178 0

NDVI_RE1 0.23 811.92 643.24 180 0
NDVI_RE1 + H 0.22 811.37 637.39 181 0

NDVI_RE1 + VHVV 0.23 811.87 641.96 181 0
NDVI_RE1 + Alpha 0.22 815.53 641.43 182 0

NDVI_RE1 + A 0.22 813.57 640.74 182 0

Models including both NDVI_RE1 and InSAR coherence were significantly better than
the model using NDVI_RE1 alone in all three species (F = 15.75–26.86, p < 0.001; Table 5).
Similarly, models with both NDVI_RE1 and InSAR coherence demonstrated an increased
predictive ability in terms of cross-validation compared to models with just NDVI_RE1
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(∆R2 = +3–9%; Table 6). We also observed small-to-moderate reductions in errors in wheat,
triticale, and rye cross-validation (∆RMSE = 37, 188, and 23 kg ha−1; ∆MAE = 74, 92, and
37 kg ha−1, respectively).

Table 5. Results of combined optical and synthetic aperture radar (SAR) species-specific analysis of
variance (ANOVA) models. Models combined the normalized difference red-edge index using band
5 (NDVI_RE1) optical index and SAR backscatter indices and polarimetric parameters. All models
are compared to the NDVI_RE1 model with no SAR metrics to evaluate statistically significant im-
provements when SAR metrics are included. Combined models varied by species, and all significant
combined models included InSAR coherence (Coh). Wheat also included entropy (H); triticale also
included anisotropy (A); and cereal rye included vertical–vertical polarization (VV) and the radar
vegetation index (RVI).

ANOVA F-Values

Model VV VH VHVV RVI Alpha A H Coh Combined

Wheat 0.08 2.59 0.92 1.99 1.9 2.51 3.64 * 26.86 *** 15.17 ***
Triticale 0.2 0.5 2.23 1.67 2.81 4.72 * 3.85 * 18.64 *** 9.43 ***

Cereal Rye 6.87 ** 3.46 1.22 4.00 * 0.23 0.3 0.75 15.75 *** 7.80 ***

* p < 0.05, ** p < 0.01, *** p < 0.001.

Table 6. Results of combined optical and synthetic aperture radar (SAR) analysis of variance cross-
validation. Models combined the normalized difference red-edge index using band 5 (NDVI_RE1)
optical index and the best SAR metrics—InSAR coherence (Coh), entropy (H), anisotropy (A), vertical-
vertical backscatter (VV), and the radar vegetation index (RVI). We split the data into 70% train and
30% test splits to estimate goodness of fit (adjusted R2) and error (RMSE, MAE). We iterated these
splits 100 times and reported the mean statistics.

Model Mean R2 Mean RMSE Mean MAE

Wheat

NDVI_RE1 0.71 1280.97 879.3
NDVI_RE1 + Coh 0.74 1243.94 805.26

NDVI_RE1 + Coh + H 0.74 1246.88 789.74

Triticale

NDVI_RE1 0.77 1013.39 686.37
NDVI_RE1 + Coh 0.82 825.34 593.98

NDVI_RE1 + Coh + A 0.81 827.47 591.86

Cereal Rye

NDVI_RE1 0.24 826.94 662.69
NDVI_RE1 + Coh 0.33 804.32 625.82
NDVI_RE1 + VV +

RVI + Coh 0.34 905.43 693.12

We observed that, as biomass increased, InSAR coherence decreased, a pattern that
results from increased volume scattering producing return signals with a random phase
(Figure 6). However, in 47 out of 573 datapoints (i.e., two April sampling dates: cereal
rye = 0, triticale = 26, wheat = 21), cover crop termination events occurred between the
acquisition of the InSAR image pairs. Termination events may result in additional InSAR
coherence decreases as they significantly alter the landscape structure between images
in the InSAR pair. For this reason, we performed a sensitivity analysis to assess whether
model statistics changed between models with or without including these 47 observations
and found no substantial differences (Appendix C).



Remote Sens. 2022, 14, 2077 15 of 27

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 29 
 

 

Table 4). Despite these gains in SAR metrics in the cereal rye models, they remained the 
poorest-performing models compared to wheat and triticale. Combined models for each 
of the three species were also statistically more significant than models with NDVI_RE1 
alone (Table 5), but not when compared to models that included only InSAR coherence 
and NDVI_RE1 except for cereal rye (not shown). Similarly, we found no substantial 
changes between combined models and those with NDVI_RE1 and InSAR coherence 
alone during cross-validation (Table 6). 

 
Figure 6. Examples of wheat (A), triticale (B), and cereal rye (C), biomass plotted against InSAR 
coherence. Lower InSAR coherence values are indicative of general changes in field conditions be-
tween two images forming an InSAR pair as well as general shifts from coherent surface scattering 

Figure 6. Examples of wheat (A), triticale (B), and cereal rye (C), biomass plotted against InSAR
coherence. Lower InSAR coherence values are indicative of general changes in field conditions
between two images forming an InSAR pair as well as general shifts from coherent surface scattering
to incoherent random scattering as cover crops mature comparing different InSAR pairs. For the
biomass sampling dates (included in the upper right of each panel) the following InSAR pairs were
matched: (1) 3-14-21 and 3-26-21, (2) 3-26-21 and 4-19-21, and (3) 4-19-21 and 5-1-21. For these
example fields, termination occurred on 5-27-21 for cereal rye, 4-29-21 for triticale, and 6-28-21
for wheat.

As the addition of multiple SAR metrics produced statistically improved biomass
predictions compared to models with NDVI_RE1 alone (Table 5), we also explored the
use of multiple SAR parameters in addition to NDVI_RE1 for each of the three cover crop
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species, which we refer to as “combined models.” All combined models were screened for
collinearity and no predictor variables correlated above the predefined threshold (r > 0.7).
For wheat and triticale, the best-performing combined model contained NDVI_RE1, InSAR
coherence, and entropy (wheat) or anisotropy (triticale) as predictor variables based on
a combination of R2, error measures, AICc and AICw (Tables 3 and 5). In contrast, the
best-performing model for the prediction of cereal rye biomass included NDVI_RE1, InSAR
coherence, as well as VV and RVI derived from backscatter intensities (∆R2 = +15%; Table 4).
Despite these gains in SAR metrics in the cereal rye models, they remained the poorest-
performing models compared to wheat and triticale. Combined models for each of the
three species were also statistically more significant than models with NDVI_RE1 alone
(Table 5), but not when compared to models that included only InSAR coherence and
NDVI_RE1 except for cereal rye (not shown). Similarly, we found no substantial changes
between combined models and those with NDVI_RE1 and InSAR coherence alone during
cross-validation (Table 6).

4. Discussion
4.1. Normalized Difference Red-Edge Index Best Predicts Cover Crop Biomass

Our results indicate that the best VI for measuring the aboveground biomass of ce-
real grass cover crop species is the normalized difference vegetation index calculated using
Sentinel-2 red-edge band 5 (NDVI_RE1), supporting our first hypothesis regarding the utility
of the red-edge region for the improved biomass estimation of winter cover crops. Our find-
ings are consistent with other studies that observed that the red-edge region was important
for estimating crop biophysical characteristics, including LAI, the fraction of absorbed photo-
synthetically active radiation, fraction of vegetation cover, and biomass [17,19,25,28,29]. The
red-edge region is a unique characteristic of healthy vegetation as it links the highly absorptive
red region, which is sensitive to chlorophyll, and the highly reflective NIR region, which is
linked to plant internal cellular structure [20,76]. We found that band 5 (centered at 704 nm,
690–720 nm in the red-edge region) was most important for cover crop biomass estimation;
the VIs containing band 5 consistently outperformed those from the middle red-edge (band 6,
733–747 nm) and the latter red-edge (band 7, 770–790 nm) region (Table 3). Despite this, we
still observed NDVI_RE saturation at ~1900 kg ha−1 (~27% of our samples), which is similar
to, although slightly higher than, previous thresholds observed for NDVI in cereal grass cover
crops [14]. This finding may, in part, be because the index is normalized and is, therefore,
bounded −1 to +1, or because a reflectance below 720 nm is not strongly influenced by leaf
layering when compared to a reflectance greater than 725 nm [76], indicating that shorter
red-edge wavelengths are more likely to experience a saturation effect compared to longer
red-edge wavelengths. Therefore, it appears that the shorter red-edge region is still sensitive
to chlorophyll concentrations (up to ~705 nm) [77] but not as absorptive as the red region and
is, therefore, slower to saturate as biomass increases. While our study focused on cover crops,
our findings regarding the utility of NDVI_RE1 may be useful for future work dealing with
the saturation of VIs in other contexts or for cereal grasses in other agricultural regions that
are grown as commodity crops, although recalibration would be required for different species
and regions.

We also examined whether biomass–VI relationships varied seasonally (winter-spring)
and relative to species. As expected, winter and spring relationships varied significantly
(Appendix B), in accordance with other studies [14,78]. Biologically, we anticipated this
finding because cover crop growth is halted during the winter dormancy and plants
experience chlorosis or yellowing of leaves due to frost damage. This results in biomass
that is less detectable by vegetation indices, and the plants later recover their reflectance
following spring green-up.

We also observed significant species-level differences (Appendix B). Previous work
on cash crops has shown that the relationship between VIs and biophysical characteristics,
including chlorophyll content, LAI, and leaf inclination angle, are species-specific [79,80].
Previous work also noted that the performance of VIs (NDVI and a red-edge index) to
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predict cover crop biomass estimations were species-dependent [17]. It should be noted
that our cereal rye samples—which showed the most pronounced difference in slope
and intercept from the other two species—may not be entirely representative of cereal
rye broadly, because we observed patchy growth in several cereal rye fields included in
this study. While we acknowledge the limitations of the present study, our results were
consistent with other studies that have observed significant species-level differences in
the NDVI biomass relationships among cereal grass species on a larger scale [78], possibly
due to differences in growth form and leaf angle distribution. Species-level differences in
growth pattern among cereal rye, wheat, and triticale were somewhat visually evident in
nadir photographs (Figure 3). For instance, triticale appeared to have more ground cover
earlier than wheat and cereal rye, due to a more prostrate growth habit, while cereal rye
appeared to be taller and possess a more erect leaf angle distribution in the spring. Based
on these findings, future research could investigate whether species-level differences in
canopy architecture, such as leaf angle distribution, are truly present among cereal grass
cover crops and how this may influence the remote sensing of biomass. Such parameters
may play an important role in light scattering [81] and will, therefore, influence optical
remote sensing observations.

4.2. Interferometric Synthetic Aperture Radar (InSAR) Coherence Improved Cover Crop Biomass
Estimates, but Did Not Improve Issues with Saturation at High Biomass Levels

We assessed whether the integration of optical and SAR metrics would improve our
ability to estimate cover crop biomass, specifically past optical saturation. We consistently
observed improved fits and predictive ability in our models when both InSAR coherence
and NDVI_RE1 were included as predictors (Tables 4–6), but the magnitude of improve-
ment varied by species (R2 increase of 4–11%). Despite the improved model performance
found with the addition of InSAR coherence, we did not observe improved predictions of
cover crop biomass at high biomass levels (>2000 kg ha−1). Although InSAR coherence
has not previously been used to predict biomass, other studies demonstrated the utility of
InSAR coherence for estimating cash crop height [46,47] and growth [48]. InSAR coherence
remains moderate to high (~0.5–1) when crop growth is slow or otherwise limited—such
as during the winter dormancy period for cover crops—but will decrease as crop growth
continues [82]—such as during the spring growth period when cover crops rapidly accu-
mulate large quantities of biomass (Figure 6). However, InSAR coherence is also sensitive
to other changes in scene texture and composition for agricultural regions such as tillage,
soil moisture variations, and harvesting, as these events also cause a significant change in
return signal phase. The use of InSAR coherence for the biomass estimation of cereal grass
cover crops, in combination with the NDVI_RE1 optical index, performed best in this study,
provided that one is aware of management activities such as cover crop termination, as
such events will also show similarly low coherence values to those of growing vegetation. If
management information is not easily obtainable from growers, future work could consider
pairing VIs to differentiate termination from a green field, or employing the within-season
termination (WIST) algorithm, which has shown a strong ability to estimate cover crop
termination dates [11].

In addition to InSAR coherence, we also found species-specific differences between
other SAR metrics. Incorporating polarimetric parameters such as entropy and anisotropy,
respectively, along with NDVI_RE1 and InSAR coherence, resulted in better wheat and
triticale biomass predictive models compared to use of the optical model alone. However,
neither entropy nor anisotropy aided in better predictions past the point of saturation and
also appeared to saturate at a similar biomass level to NDVI_RE1 (~1900 kg ha−1). This
may be, in part, because we performed polarimetric decompositions on Sentinel-1 dual-pol
imagery with VV and VH channels only, as opposed to quad-pol imagery. Previous work
demonstrated that alpha, entropy, and anisotropy estimated winter wheat biomass moder-
ately well (R2 = 0.51, 0.42, and 0.44, respectively) using RADARSAT-2 quad-pol imagery,
which more effectively resolves target-scattering mechanisms when compared to dual-pol
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SAR imagery [83]. Despite the noted model improvements in wheat and triticale biomass
predictive models with the inclusion of entropy and anisotropy in this study, we observed
no substantial differences when compared to the model with only InSAR coherence and
NDVI_RE1 for both wheat (∆R2 = 0; ∆RMSE = +3 kg ha−1; ∆MAE = −15 kg ha−1) and
triticale (∆R2 = 0%; ∆RMSE = +2 kg ha−1; ∆MAE = +2 kg ha−1) during cross-validation.
Future work could investigate the efficacy of cover crop biomass estimations using the
quad-pol polarimetric decompositions applied to imagery acquired from satellites such as
RADARSAT-2, although the data are not publicly available as with Sentinel-1. Improve-
ments in polarimetric decompositions could also be achieved by using dual-pol imagery
with both linear co-polarizations (HH and VV) [83]. The compact polarimetry operating
modes of RADARSAT-2 and the RADARSAT Constellation Mission (RCM)—with a circular
polarization transmitted signal and V and H linear receivers—would likely lead to substan-
tial improvements in the accuracy of polarimetric decomposition parameters compared to
linear dual-pol operating modes. The compact polarimetry mode is similarly effective as a
quad-pol for crop classifications [84], indicating potential performance similarities for crop
biomass estimation.

Optical-SAR models for cereal rye differed from wheat and triticale in that model
performance improved when backscatter intensities (VV, VH, and RVI) were included
(Tables 3 and 4). Previous work demonstrated a significant relationship between cross-
polarization (VH) backscatter and biomass [39], as complex canopies are more likely to
volume scatter SAR signals, leading to higher VH backscatter values. However, others
found that the VV and HH backscatter were correlated with the biomass of canola (Brassica
napus) and corn, respectively, which is likely indicative of non-volume (i.e., single bounce,
double bounce) scattering interactions with well-defined crop structures (horizontal and
broad canola leaves (Brassica napus), and vertical corn stalks) [43]. In this study, however,
we would expect a greater volume scattering (VH) response for cereal grass canopies with
smaller and less geometrically well-defined structures, but with potential for variability
between species with slightly different canopy structures. If our supposition regarding
species-level canopy geometry differences is accurate, and cereal rye shows a more erect
leaf angle distribution, we would expect cereal rye to exhibit a relatively higher VV than VH
when compared to the other species, which exhibit more volume scattering in canopies with
less well-defined structures. These differences in canopy-scattering mechanisms between
species may indeed be present in our results, as indicated by the fact that including
RVI (fundamentally a VV and VH comparison metric) only improved the performance
of the cereal rye biomass predictive model, which is consistent with previous work on
cash crops [85]. The best-performing biomass predictive model for cereal rye included
NDVI_RE1, InSAR coherence, VV backscatter, and RVI. This combined model provided the
largest increase in its predictive ability and the highest AICw (∆R2 = +15%; AICw = 0.75).
However, as with wheat and triticale, cross-validation indicated that the combined cereal
rye model does not outperform the optical model with InSAR coherence alone (Table 6).

Although we found species-specific responses to Sentinel-1 C-band SAR backscatter
and polarimetric parameters, InSAR coherence consistently improved models for all species
both during model evaluation (Table 4) and cross-validation (Table 6). Therefore, for
Sentinel-1 C-band SAR operating in dual-pol mode, we conclude InSAR coherence layers
were the most effective in improving cover crop biomass predictions when combined with
NDVI_RE1. InSAR coherence layers generated using Gamma software are now also present
in ASF’s more generalized VERTEX platform (in addition to the HyP3 tool used in this
study) [71]. ASF’s cloud-based SAR processing tools were critical to this study, as InSAR
processing would likely be prohibitively cost-, time-, and computer resource-intensive
for a local machine. ASF capabilities will likely be critical to the processing of imagery
from the upcoming NASA-ISRO SAR (NISAR) mission operating at L-band and S-band
wavelengths which is slated to acquire an unprecedented volume of satellite imagery on
a daily basis. With relevance to the NISAR mission, the suitability of L-band SAR data
to estimate cover crop biomass could be evaluated, as previous work demonstrated their
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efficacy in estimating crop biomass and LAI [40,43]. Further the dual-frequency and greater
polarimetric capabilities of NISAR will likely provide opportunities for cover crop biomass
characterization with SAR imagery that are well beyond what was possible in this study.

4.3. Soil Moisture and Biomass Were Poorly Related to Synthetic Aperture Radar (SAR) Metrics

We examined the relationship between Sentinel-1 SAR metrics and soil VWC, as SAR
signals are sensitive to soil moisture, but found no significant relationship between VWC
and all SAR metrics examined in this analysis (Appendix A). This may be because Sentinel-1
operates at a C-band frequency, which may be more responsive to crop conditions than
soil moisture, with two notable studies finding that C-band SAR VV backscatter decreases
in response to increasing winter wheat stem height, while soil moisture has less of an
impact on backscatter [86,87]. However, when examined independently, both VV and
VH backscatter intensities also showed very poor relationships with cover crop biomass
(Appendix D), which is surprising, as shallower incident angles (further off nadir) have been
associated with the effective estimation of wheat biomass [41,88]. Others also demonstrated
that C-band SAR failed to detect soil moisture when NDVI exceeded 0.7 [88]. In our study,
the use of SAR metrics focused on the spring period (March–May), when we observed
high biomass levels, and approximately half of our spring observations had NDVI values
greater than 0.7 which likely influenced the relationship between in situ soil moisture
measurements and SAR metrics. For samples with an NDVI less than 0.70, it was likely
that the combined influence of background soil variability and variability in attenuating
structures (small diameter vertical stem growth) [86,89] culminated in combined backscatter
values that could not be related back to either factor in isolation. The ability to interpret and
statistically isolate these factors becomes even more challenging when considering factors
such as surface roughness, crop residue presence, and crop residue moisture content, all of
which influence total backscatter intensity in a given image pixel.

5. Conclusions

Estimating cover crop performance is important in quantifying ecosystem services,
yet few works to date have evaluated remote sensing approaches to characterize cover
crop performance across the landscape. The results from our study demonstrated that
estimating cover crop biomass is feasible using VIs alone, as well as by integrating optical
and SAR remote sensing, but that season- and species-level effects were also present. We
found that the normalized difference red-edge index Sentinel-2 with band five (NDVI_RE1)
and Sentinel-1 InSAR coherence provided the best predictions of cereal grass cover crop
biomass. These findings may broadly support conservation efforts in the Chesapeake
Bay region, which focus on incentivizing cereal grass cover crops and mixes as they
decrease nutrient flow into local waterways, which may help to address the 2030 United
Nations Sustainable Development Goal to “ensure availability and sustainable management
of water and sanitation for all.” However, further research is needed to enhance the
prediction of higher biomass levels (>1900 kg ha−1), which SAR metrics were ineffective at
improving based on the predictive capacity of NDVI_RE1 alone. To address this continued
concern, future work could consider the combination of weather and climate variables,
machine learning algorithms, integration of proximal sensing and satellite observations, as
well as the integration of process-based crop-soil simulation models and remote sensing
observations.
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Appendix A

Soil Moisture relationships over time and with synthetic aperture radar (SAR) backscat-
ter intensities, polarimetric parameters, and interferometric SAR (InSAR) coherence.

Figure A1. Volumetric water content (VWC) as a function of synthetic aperture radar linear backscat-
ter intensities—vertical-vertical (VV; (A)), vertical horizontal (VH, (B)), VV/VH ratio (C) and the
radar vegetation index (RVI; (D))—from five handheld soil moisture data collections in March and
April adjacent to plot locations and across the seven study fields. VWC collections were timed with
Sentinel-1 overpasses.
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Figure A2. Volumetric water content (VWC) as a function of synthetic aperture radar polarimetric
decompositions (alpha angle—(A); anisotropy—(B); entropy—(C)) and interferometric (InSAR) co-
herence (D) from five soil moisture data collections in March and April adjacent to plot locations and
across the seven study fields. VWC collections were timed with Sentinel-1 overpasses.

Appendix B

Results of analysis of variance (ANOVA), slope and intercept contrasts with the
normalized difference red-edge index with band 5 (NDVI_RE1) and season (A.) and species
(B.) in spring.

Table A1. Season contrast.

ANOVA

DF Sum
Squares

Mean
Square F Value

NDVI_RE1 1 544.10 544.10 1294.70 ***
Season 1 102.80 102.80 244.60 ***

Residuals 570 239.50 0.4

Slope and Intercept Contrasts

DF Estimate SE T Ratio

Spring v. Winter (slope) 569 −1.07 0.26 −2.31 *
0 Spring v. 0 Winter

(intercept) 569 1.36 0.18 7.56 ***

p < 0.05 *, p < 0.001 ***.
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Table A2. Species contrasts in spring.

ANOVA

DF Sum Squares Mean Square F Value

NDVI_RE1 1 153.98 153.98 510.25 ***
Species 2 15.71 7.85 26.02 ***

Residuals 328 98.98 0.30

Slope and Intercept Contrasts

DF Estimate SE T Ratio

Rye v. Triticale (slope) 326 −1.73 0.96 −1.81
Rye v. Wheat (slope) 326 −1.71 0.78 −2.18 *

Triticale v. Wheat (slope) 326 0.02 0.71 0.03
0 Rye v. 0 Triticale (intercept) 326 1.43 0.46 3.12 **
0 Rye v. 0 Wheat (intercept) 326 1.02 0.31 3.32 **

0 Triticale v. 0 Wheat (intercept) 326 −0.41 0.40 −1.03
p < 0.10, p < 0.05 *, p < 0.01 **, p < 0.001 ***.

Appendix C

Table A3. Optical SAR results by species that removed 47 observations that experienced a termina-
tion event between InSAR pairs. Results do not vary substantially from original model re-sults. No
cereal rye models are presented because all termination dates occurred after In-SAR pairs. Species
contrasts in spring.

Model Adj R2 RMSE MAE

Wheat

NDVI_RE1+ Coh + H 0.74 1180.84 745.22
NDVI_RE1+ Coh 0.74 1189.03 758.38

Triticale

NDVI_RE1+ Coh 0.82 876.14 611.33
NDVI_RE1+ Coh + A 0.82 862.59 603.02

Appendix D

Biomass relationships with synthetic aperture radar (SAR) backscatter intensities,
polarimetric parameters, and interferometric SAR (InSAR) coherence.
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Figure A3. Cover crop biomass as a function of synthetic aperture radar linear backscatter intensities—
vertical-vertical (VV; (A)), vertical horizontal (VH; (B)), VV/VH ratio (C) and the radar vegetation
index (RVI; (D)).

Figure A4. Biomass as a function of synthetic aperture radar polarimetric decompositions (alpha
angle—(A); anisotropy—(B); entropy—(C)) and interferometric (InSAR) coherence (D).
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