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Abstract: The Tucson metropolitan area, located in the Sonoran Desert of southeastern Arizona (USA),
is affected by both massive population growth and rapid climate change, resulting in important
land use and land cover (LULC) changes. As its fragile arid ecosystem and scarce resources are
increasingly under pressure, there is a crucial need to monitor such landscape transformations. For
such ends, we propose a method to compute yearly 30 m resolution LULC maps of the region from
1986 to 2020, using a combination of Landsat imagery, derived transformation and indices, texture
analysis and other ancillary data fed to a Random Forest classifier. The entire process was hosted in
the Google Earth Engine with tremendous computing capacities that allowed us to process a large
amount of data and to achieve high overall classification accuracy for each year, ranging from 86.7 to
96.3%. Conservative post-processing techniques were also used to mitigate the persistent confusions
between the numerous isolated houses in the region and their desert surroundings and to smooth
year-specific LULC changes in order to identify general trends. We then show that policies to lessen
urban sprawl in the area had little effects and we provide an automated tool to continue monitoring
such dynamics in the future.

Keywords: land use classification; Landsat; Random Forest (RF); Google Earth Engine (GEE); cloud
computing; urban sprawl; Arizona

1. Introduction

The city of Tucson and the upper Santa Cruz River valley are located in the southeast-
ern corner of Arizona, a region undergoing rapid land use and land cover (LULC) changes.
From an economy mostly based on agriculture and mining in the early 20th century, the
development of aeronautic industries and services (such as the University of Arizona,
Tucson, AZ, USA) in the 1960s and 1970s have led to a population boom in the area [1,2].
As the popularization of air conditioning allowed residents to tame the scorching climate
of the Sonoran Desert, people increasingly moved to work or retire in the area, attracted
by a sunny year-round climate and relatively affordable housing [1,3]. The result was an
exponential demographic rise with double-digit growth rates, which continues today: Pima
County’s population, where Tucson is located, grew from 141,216 in 1950 to 351,667 in 1970,
666,880 in 1990 and 1,043,433 in 2020 [4].

As a consequence, the Tucson region displays rapid urban [5] and exurban growth [6,7],
with most people coming to southeastern Arizona favoring individual houses with garden
in sprawling suburban areas over apartments in cities. This trend, associated with other
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human-driven LULC changes related to agriculture and mining, is putting greater pressure
on the already scarce water resources and is increasing habitat fragmentation, creating new
imbalances in the complex ecosystem of the Sonoran Desert [5,8–12]. Moreover, the region
is undergoing significant climate change at the same time, mainly manifested by a rise in
temperature, extended dry season and unpredictable rainfall patterns [13,14] with a greater
frequency of extreme events [15].

In this context, there is an urgent need to monitor the temporal and spatial patterns
of LULC changes and assess how the environment is responding to such transformations.
Remote sensing is a practical and cost-efficient tool for such ends, as demonstrated by the
growing number of studies on land cover monitoring. However, even when conducted over
the same area, the limited set of land cover classes used in generalized regional or national
scale approaches [16–18], coarse temporal resolution [19,20], limited time span [21,22]
and/or the focus on specific topics (such as impervious surfaces [23] or cropland [24])
may restrain the possible uses of their derived datasets for finer analysis on specific areas.
Still, this flourishing literature provides valuable insights for adapting methods and good
practices for conducting annual LULC quantification and change analysis over other
regions of interest with different needs. While focusing on the Tucson metropolitan area,
this research aims to provide a generic and adaptative tool for producing yearly LULC
maps over long time periods.

Achieving a multitemporal analysis over several decades requires overcoming nu-
merous technical challenges, such as rectifying the differences between multiple sensors
across different time periods, or addressing heterogeneous data quality and availability
due to various factors, notably cloud cover [25,26]. Recent cloud computing and big data
approaches [27,28] have brought new solutions to such problems, allowing researchers to
assemble and process very large datasets composed of collections of remote sensing images
and other ancillary data [29,30], thus potentially dramatically improving the performances
of image classification and LULC analyses [31,32]. Rather than hand-picking a set of images
with 5- to 10-year intervals, these new techniques now allow time-effective processing,
development and analysis of vast, virtually seamless and high-resolution annual land cover
map products [17,33] that can be updated each year.

Google Earth Engine (GEE) is an open access JavaScript Application Programming
Interface (API) providing for such cloud computing approaches with a multi-petabyte
catalog of remote sensing data allowing users to select and process enormous volumes of
data, and has already proven its capacities for land cover classification and change detec-
tion [26,28,30,34–40]. This paper builds on these approaches to present a GEE workflow for
generating annual land cover map products of the upper Santa Cruz watershed at 30 m
spatial resolution and over a 35-year-long period (1986–2020), rejoining and expanding
previous decadal LULC mapping efforts in the region [19]. The use of biannual Landsat
pre-processed composites and a large number of image transformations, indices, texture
analysis, ancillary data and post-processing techniques allowed us to achieve accurate
yearly land cover classifications (overall accuracy > 86.7%). As our script can be used for
automated classifications of oncoming years, this allows for precise monitoring of LULC
changes past and future, which will be illustrated with a succinct analysis of urban sprawl
dynamics in the region, i.e., the expansion of city footprints through the creation of new
low density urban areas on surrounding undeveloped lands [41].

The GEE scripts associated with this study, designed to be generic enough for easy
adaptation to other areas of interest with different needs, are openly accessible for re-use
and modification [42].

2. Materials and Methods
2.1. Study Area

Our study area covers 15,867 km2 of the binational Santa Cruz watershed in southern
Arizona, United States and northern Sonora, Mexico (Figure 1). Its climate is characterized
by mild winter and high summer temperatures, and a bimodal precipitation pattern with



Remote Sens. 2022, 14, 2127 3 of 22

a dry season in spring followed by the North American Monsoon. Climate change is
impacting the area, both by an overall rise in temperature with a higher frequency of
extreme heat and by less predictable rainfall patterns with extended droughts followed by
flood events [13–15].

Figure 1. Study Area, Upper Santa Cruz Watershed. Hill shade base map derived from [43], streams
and watershed boundaries from [44] and administrative division from [45].
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The watershed topography is characteristic of the Basin and Range Province. It is
composed of multiple mountain chains with steep and narrow canyons separated by vast,
flat and arid valleys. Elevation ranges from 525 to 2855 m above sea level and is one of the
main drivers influencing natural land cover, creating concentric belts of vegetation around
mountain summits. Ascending from the arid plains, largely dominated by shrublands
interrupted by mesquite and cottonwood trees along the riverbanks, natural land cover
evolves into grassland, followed by oak, juniper and pine woodlands, up to aspen and
mixed conifer forests [46].

Two major urbanized areas are present in the upper Santa Cruz watershed (Figure 1):
the rapidly growing Tucson metropolitan area and Ambos Nogales located on the United
States–Mexico border [3,9,10,19,47,48]. While this study aims at expanding the temporal
resolution of the decadal products by Villarreal et al. in 2011 [19], we also increased our
coverage to include the catchment area of the upper Santa Cruz River up to its confluence
with the Brawley Wash sub-basin which is also significantly affected by recent urban
sprawl. The watershed boundaries used to define our region of interest were derived from
the United States Geological Survey (USGS) National Hydrography Dataset Plus High
Resolution [44], and used to clip all data used during our overall yearly LULC classification
process (Figure 2).

Figure 2. Google Earth Engine workflow scheme for yearly LULC classification (Pre-processed yearly
biseasonal Landsat scenes were exported between each step not to overflow the server’s computing
capacities [42]).
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2.2. Image Data and Pre-Processing

We chose to work with Landsat data, which provides imagery of the Earth’s sur-
face for over 40 years at a medium/high spatial resolution of 30 m (60 m for the first
satellites and thermal bands), in spectral bands which are generally consistent across the
8 different sensors launched since 1972, and will be in the next decades with the recent
launch of Landsat 9. We used orthorectified and atmospherically corrected Landsat Sur-
face Reflectance Tier 1 imagery collections available in Google Earth Engine for Landsat
OLI/TIRS and TM sensors (Landsat ETM+ data were not used due to its Scan Line Cor-
rector error). Clouds and saturated pixels were detected and masked using the associated
quality band [49]. We expanded the cloud masks by 240 m to include possibly undetected
fuzzy cloud edges and pixels affected by “adjacency effect”, i.e., light scattering around
clouds disturbing the measurement of the surface reflectance [50]. Only scenes with cloud
cover <25% were considered.

The large extent of the study area means that multiple Landsat scenes had to be
used to get a full coverage, adding another point of complexity as these may be captured
at different times and dates, which means that illumination conditions can be different
(Landsat Path/Rows images needed to cover the entire study area are: 35/37, 35/38, 35/39,
36/37 and 36/38). To obtain seamless mosaics, we normalized reflectance values using
Nadir Bidirectional Reflectance Distribution Function (BRDF) adjustment [51]. Regarding
topographic corrections, we applied the well-performing Sun Canopy Sensor + C correction
model [52–54] to each scene. However, to avoid problematic under or over-correction
observed in steep slopes [55], we used a differentiated determination of the C parameter.
Rather than processing the image as a whole, we thus divided the images in 16 different
classes of slope (from 0◦ to 80◦ with 5◦ ranges) and computed a different C for each class.
We also averaged the values of the two Landsat OLI thermal bands into a single band to
ensure consistency with TM sensors.

These steps were applied on all available Landsat TM and OLI scenes over our study
area for two time periods per year: one representing the dry early summer (1 May to 30
June) and one from the “green-up” or growing season that follows the monsoon (15 August
to 31 October). For each, we composited the pre-processed Landsat scenes using the median
value of each unmasked pixels, a method which has proven accuracy in processing time
series data [26,30]. This allowed us to automatically get more than 99.3% coverage of our
study area for both periods of each year between 1986 and 2021. Due to rare meteorological
conditions, this percentage falls, however, to 97.6% in 1990. Additionally, no data allowing
a relevant coverage of the study area for both seasons was available for years previous
to 1986, nor for the year 2012 (because of Landsat 7 issues and the delayed launch of
Landsat 8 from July 2011 to February 2013), which was thus left out of our time series. In
summary, we used Landsat 5 TM imagery from 1986 to 2011 and Landsat 8 OLI imagery
from 2013 to 2021.

2.3. Image Transformation and Ancillary Data

In order to improve the accuracy of the classification, we calculated a number of
indices and gathered ancillary data. These derived datasets were subsequently included as
new predictor variables in the yearly land cover classifications (Table 1).
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Table 1. Names, formulas and references for indices, Landsat data transformations and ancillary data
used as predictor variables in land cover classifications.

Variable Formula Refs.

Normalized Difference Vegetation Index (NDVI) NIR − Red
NIR + Red [56]

Normalized Difference Water Index (NDWI) NIR − SWIR
NIR + SWIR [57]

Normalized Difference Built-up Index (NDBI) SWIR − NIR
SWIR + NIR [58]

Built-up Area Extraction Index (BAEI) Red + 0.3
Green + SWIR [58]

Normalized Difference Bareness Index (NDBai) SWIR − TIR
SWIR + TIR [58]

Dry Built-up Index (DBI) Blue − TIR
Blue + TIR − NDVI [59]

Dry Bare-Soil Index (DBSI) SWIR − Green
SWIR + Green − NDVI [59]

Topographic Position Index (TPI) Elevation—Mean
(Elevation in 15 pixel radius) [43,60–62]

Gray-Level Co-Occurrence Matrix (GLCM) Textural
Correlation ∑

i,j
p(i, j)

[
(i−µi)(j−µj)√

σ2
i σ2

j

]
[63]

Gray-Level Co-Occurrence Matrix (GLCM) Textural
Contrast ∑

i,j
| i− j |2 p(i, j) [63]

Multitemporal Kauth-Thomas (MKT) See references [64–66]

Multitemporal Kauth-Thomas (MKT) transformations between the two periods of each
year were computed using sensor-dependent coefficients found in the literature [64–66].
MKT transformation allows for a comparison between multidate datasets by producing
a 12 bands matrix which contains 6 standard coefficients (greenness, wetness, brightness,
and 3 “un-named” others) and their respective orthogonal change coefficients.

We derived Normalized Difference Vegetation Index (NDVI), Normalized Difference
Water Index (NDWI), and several built-up and bareness indices from Landsat bands of
both periods, namely the Normalized Difference Built-up Index (NDBI), the Built-up
Area Extraction Index (BAEI), the Normalized Difference Bareness Index (NDBai), as well
as the Dry Built-up and the Dry Bareness indices which are better performing in arid
climates [56–59].

Gray-Level Co-occurrence Matrix (GLCM) textural features were then generated for
every Landsat band, MKT transformation, and above-mentioned indices. Of the various
GLCM-based textural features available, we only selected correlation and contrast, as
recommended by Hall-Beyer [63] for simple texture analysis. As pointed out by the
literature [58,63], kernel size is a critical parameter for texture classification as it defines the
context around the reference pixel, and appropriate sizes must be based upon knowledge
of the local geographical context and trial and error attempts. Out of numerous tests with
various kernel sizes, alone or in combination, we found that a single 3 × 3 pixels window
performed best in detecting (semi-) isolated housing which is characteristic of urban sprawl
in the Tucson area. We used the average of 4 offset directions (0◦, 45◦, 90◦ and 135◦) in our
kernel to ensure directional independence of calculated texture features.

We also included other ancillary data as input for the classifier. Slope and a 15-pixel
radius Topographic Position Index (TPI) for each pixel were derived from the Shuttle Radar
Topography Mission (SRTM) 30 m resolution global digital elevation model [43]. TPI is a
method of terrain classification which compares the elevation value of each cell against
the mean elevation of its specified neighborhood [60–62]. We also used the USGS National
Hydrography Dataset Plus High Resolution [44] Flowline data to calculate a buffer area
around main streams proportional to the total drainage area (in km2) of each section with
the formula:

buffer = log10 (Drainage Area) × 30 m (1)

We extracted the main roads network (highways and trunk roads) from the Open-
StreetMap [67] dataset and buffered it by 30 m. All these ancillary data were included
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as new bands in each annual dataset, which then grew to 124 bands each (Figure 2).
This amount of data was only possible to handle using the supercomputer and parallel
processing capabilities of GEE.

2.4. Training and Validation Data

Inspired by previous studies [19] and based on the National Land Cover Database [68,69],
we defined a total of 14 major LULC classes. For classification purposes, some of these
classes were subdivided in order to catch local variations in land cover spectral signature
(Table 2). To ensure comparability with previous 1979 to 2009 decadal classifications [19],
these subclasses were merged back into their parent wider classes when statistics were
calculated (but detailed subclasses could be kept if need be).

Table 2. Land use and land cover classes description.

Class Description (Percentages Are Indicative)

11. Water Area dominated by open water (>50%).
21. Developed, Roads Mixture of constructed material (<20%) and vegetation.
22. Urban, Low Density Mixture of constructed material (20 to 50%) and vegetation.
23. Urban, Medium Density Mixture of constructed material (50 to 80%) and vegetation.
24. Urban, High Density Mostly constructed material (80 to 100%).
31. Barren, Washes Barren lands (vegetation < 15%) in intermittent streams washes (Arroyos).
32. Barren, Mines Barren lands (vegetation < 15%) in mines (pits, tailings, etc.).

41. Deciduous Forest Area dominated by mesquite (>20%) greater than 2 m tall and shedding their foliage. Mostly
along floodplains and arroyos.

42. Evergreen Forest Area dominated by trees (>20%) greater than 5 m tall with permanent foliage. Mostly oaks,
junipers and pine.

43. Rocky Outcrops 1 Occasional outcrops of bedrock in evergreen-dominated areas.
52. Shrubs Area dominated by shrubs and cacti (>20%) less than 5 m tall.
53. Shrubs, Dark 1 Shrubs on dark, volcanic ground influencing spectral signature.
54. Shrubs, Bright 1 Shrubs on bright, sandy ground influencing spectral signature.

71. Grassland Areas dominated by graminoid or herbaceous vegetation (>80%). Natural vegetation which can
be used for grazing.

81. Pasture and Parks Perennial areas of grasses (>20%) planted for livestock grazing or for recreational areas (parks,
golfs, etc.).

82. Cultivated Crops Areas used for the production of annual crops (>20%).
83. Nut-Tree Plantations 1 Areas used for the production of nuts trees (>20%), mostly pecan.

91. Riparian Forest Areas dominated by woody vegetation (>20%) greater than or equal to 5 m in height. Mostly
cottonwoods in arroyos.

1 Subclasses to catch local variations of their parent class for the classification but merged after.

As our goal was to use supervised classification algorithms, we created a set of
1923 polygons spread across our study area, totaling 10,579 hectares and representing all
classes and subclasses (see Supplementary Materials Table S1 for detail). These polygons
were drawn using a self-made grid mimicking Landsat pixel to ensure their homogeneity in
composition, leading to heterogeneity in size. LULC class assignation for each polygon was
conducted by a single trained interpreter, based on human visual analysis of different high
resolution orthophoto sources, including National Agriculture Imagery Program (NAIP)
aerial imagery or Google Earth current and historic repositories. The latter were used to
ensure that these polygons had consistent LULC from 1986 to 2021, allowing us to use
the same sample for each year. These “ground-truth” polygons were then randomly and
equally split into training and validation datasets, later used to acquire a random stratified
sample of 4874 training and 4960 validation points evenly distributed between our LULC
classes and subclasses (about 277 points per class). Sampling was conducted at a minimum
resolution of 30 m to ensure that two points could not fall within the same Landsat pixel.
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2.5. Classification and Post-Processing

Each year’s 124 variable datasets and stratified sample training points were then
provided as inputs for a supervised 10 trees Random Forest (RF) classification. RF is
currently reported as one of the best classifiers, producing high accuracy while staying
relatively computationally light [70–73]. RF classifications operate by constructing multiple
decision trees and outputting for each pixel the mode of all predicted classes [74]. Thus, this
method is less sensible to overfitting training data than single decision tree predictors, which
they generally outperform [75]. This characteristic of RF classifiers and the tremendous
computing capacities of GEE allowed us to feed all 124 variable datasets for the computation
of LULC maps for each year, without the need for prior feature selection.

Yearly classified images produced by the RF classifier were cleaned using a majority
filter with a 3 × 3 moving window to eliminate “salt-pepper” noise in the classification
results and give it a smoother appearance. Remaining NoData pixels from each year’s
cloud and saturation masks were filled with the last observed class value, or, if unavailable,
with the next observable class value.

The whole 1986–2021 classification time series was then smoothed to reduce the effects
of inter-annual variability on the classification or obviously misclassified pixels (such as
unmasked cloud shadows), and to avoid false or minor change detections. Following [76],
we designed an algorithm analyzing the classified data in which a LULC class change for a
given pixel was only validated when it was maintained for at least two consecutive years,
otherwise the pixel class values were rolled back to their previous state.

Still, a specific problem had to be tackled in our study area, which is the very close
spectral signature between bright desert vegetation or soil (i.e., shrublands, barren lands
or mines) and built-up areas, especially very diffuse urban environments and spatially
heterogeneous landscapes. In order to solve this difficulty, we also applied a conservative
routine to urban pixels in the time series: as urbanization is unidirectional and built-up
areas are quite unlikely to revert back to other land covers [18,77], if a pixel previously
detected as urban was no longer urban in any of the following years (i.e., a much larger
time span than the previous filter), it was considered to be non-urban and its class value
was replaced with the last, or, if unavailable, with the next observable non-urban class
value. In other words, in case of doubts on the built-up nature of a pixel in our classification
time series, it was considered non-urban so that we focus on a conservative estimate of
urban expansion in our region of interest.

3. Results
3.1. Variable Importance

On average across the yearly models, the most important variables for the construction
of the RF classifier are Landsat thermal bands for both seasons, MKT greenness, slope,
early summer Landsat NIR band, NDMI and NDVI, MKT fifth and fourth components
and the BAEI Index for the dry season (Figure 3). While these bands are followed closely
in importance by many others which also contribute significantly to the model, they are
representative of the different aspects which directly influence LULC in the study area, such
as terrain through thermal bands (temperature lowers with elevation) and slope, vegetation
(NDVI and NDMI) and its seasonal persistence (greenness), buildings (BAEI), soil (NIR),
or a mixture of the above. While elevation is a major driver of vegetation distribution in
the study area, we did not use it as a direct input in our models as it tended to overfit
the classification over this variable and led to major misclassifications in the agricultural
lowlands in the northwestern region of the study area (Figure 1).
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Figure 3. Average variable importance over the 35 yearly Random Forest classification models. Top
40 variables are the ones with the highest mean contribution over our 35 yearly classifications.
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The least contributing variable is the mapped roads ancillary data, meaning it is
seldom used as a node in the model to differentiate classes, which is consistent with the fact
that it mostly aims at discriminating highways (class 21). The 40 least important variables
are dominated by GLCM correlation textural features, best used to identify homogeneous
patches, which is consistent with the complexity of semi-arid shrublands dominating
our study area. However, these variables still contribute significantly to the model, as
removing them lead to a drop in the classification’s accuracy. Using more and/or larger
texture kernels may increase statistical accuracy of the model, but result in a lower visual
performance of the mapped LULC classes as the very frequent isolated houses in the area
become undetected.

3.2. Classification Accuracy Assessment

Accuracy assessment is critical to evaluate the quality of a LULC map generated
from remote sensing data. The most common way to assess accuracy it is to rely on both
visual assessment and on the error matrix of the classification results. In this case, we
measured the overall accuracy of each yearly LULC maps using the Kappa statistic, which
evaluates the agreement between classification results and reference data after removing
the proportion of agreement that could be expected to occur by chance [78]. Kappa values
range from−1 (complete disagreement) to 1 (perfect match). In depth analysis of the yearly
confusion matrix and derived statistics (overall, user’s and producer’s accuracies) were
also used to identify class performances and misclassifications.

The LULC maps generated over the 34 years between 1986 and 2020 (excluding 2012)
show good classification results, with overall accuracy (OA) and Kappa (KA) statistics rang-
ing, respectively, from 86.7% and 0.85 in 1986 to 96.3% and 0.96 in 2020 (Supplementary Table S2).
While accuracy remains good, classification quality tends to decrease further back in time.
The following sections will discuss general trends in the classification results and accuracy
statistics for all classes over the entire time period, noting that some variations can occur
from year to year.

Water (11), roads (21), evergreen forest (42) and cultivated crops (82) are the most
accurately classified classes with >95% producer accuracy (PA) and user accuracy (UA) for
every year (but 89.7% PA for cultivated crops in 1986). Grasslands (71), pastures/parks (81)
and riparian forests (91) are also well identified, with UA >90% for all years (but 1986),
although they only achieve PA > 90% from 1994, 2002, and 1991, respectively. Developed
medium and high-density (23 and 24) and barren washes (31) show a similar pattern, but
with a lower PA > 80% from 1993, 1996 and 1986, respectively. Shrubs (52) show an opposite
pattern, with a generally higher PA (>95%) than UA (>80%) for all years. Developed
low-density (22) and barren mines (32) are also relatively well identified, although their
performance is a bit lower with UA and PA > 80% (but in early years). Deciduous forests
(41) show a decent PA (>80%) but a UA ranging from 60.9 to 84.2%.

The relatively lower classification accuracy of deciduous forests is mostly caused by
commission errors over other land covers, notably shrubs, grassland or barren washes,
which are often present in the same areas. Such mixed land cover pixels can easily be
affected by interannual variations, giving the lead to one or the other LULC classes depend-
ing on the climate conditions. Altogether, such shifts between natural vegetation represent
34.5% of pixels misclassifications over the entire time period. Other sources of inaccuracies
are confusions within urban land cover classes but with different densities (14.1% of all
misclassifications) or with other bright land covers with close spectral signatures, especially
barren mines (11.0%) or shrubs (8.5%). Additionally, some isolated houses may remain
undetected as they sometimes do not sharply contrast with the shrubland they replace
and most buildings are smaller in size than the 30 m Landsat pixel resolution. Confusions
between barren mining lands and shrubs (14.2% of misclassifications) can also be noted,
inherent to mining cycles with the creation of new tailings and revegetation of older tailings,
while our training and validation polygons remained the same over the entire time period.
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3.3. Trends in LULC Changes in the Upper Santa Cruz Watershed

Our yearly classification results provide a clear view of the spatial distribution
of LULC types across the study area, from which we can monitor and quantify the
important landscape transformations that occurred from 1986 to 2020 (Figure 4 and
Supplementary Figure S1). Almost half (48.8%) of the study area witnessed land cover
transformations during this time period, most often multiple times (only 9.4% of the region
of interest changed only once).

Figure 4. LULC change dynamics showing (a) land cover in 1986, (b) land cover in 2020, (c) major
changes between 1986 and 2020 and (d) the intensity of change during the 1986–2020 period, which
refers to the number of times the pixel changed major classes.
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Natural land covers (i.e., shrubs, grasslands, forests and barren washes) are highly
dominant in the region, although their share slightly decreases over the 1986–2020 period
that we considered, from 92.5% to 88.8% of our overall area of interest (Figure 4). Shifts
among natural LULC classes also make up the vast majority of all identified changes
(86.8%). Although the respective share of each land cover class can significantly evolve
from year to year (Figure 5), natural land covers still maintain a rough balance over the
entire time period and at the watershed scale, as most transformations are compensated by
opposite trends (Table 3). The most commonly observed dynamics are switches between
shrubs and mesquite forests (29.1% of all observed changes), shrubs and grassland (21.1%),
deciduous forests and grassland (15.2%), deciduous and evergreen forests (9.6%) and
shrubs and evergreen forests (4.6%). These fluctuations can be explained by various factors,
notably climatic variations from one year to another as well as prolonged and persistent
drought [79,80]. Mesquite encroachment into grasslands is also happening in the south
of our study area, but campaigns to mitigate this trend are also in place [81], so that the
yearly evolution of their respective total area at the watershed scale appear symmetric
(Figure 5). Still, while 27,000 hectares of grassland have been overtaken by mesquite cover,
it has only been compensated over 18,000 hectares (about two thirds) by opposite dynamics.
While mesquite cover remained constant (albeit fluctuations) at the watershed scale over
the 35-year period, grassland cover dropped by 24.5%, mostly replaced by shrublands,
which may be a sign of desertification (Figure 5). Evergreen forest covers also show some
dramatic decrease which seems to be associated with wildfires [82,83], though forest cover
appears to regenerate over the years (Figure 5).

In turn, human-induced land cover changes appear statistically less frequent, as they
are most often permanent especially when converting to built-up areas. Such dynamics is
the most prominent source of anthropic LULC transformation in the watershed, as newly
built urban areas (including roads) account for 2.9% of all observed changes over from
1986 to 2020 (Table 3). Although the area tagged as urban by our model is conservative
and thus likely to be an underestimate, it has been steadily increasing in the last three
decades and is now largely dominated by low-density residential areas or isolated houses
(Figures 4 and 6). Urban development has demonstrated a steady increase and has more
than doubled (+118.7%) over the last 35 years (Figure 6). Accommodation of the population
immigrating from other parts of the USA to the Tucson metropolitan area is clearly oriented
towards building on new lands, mostly shrubs, rather than increasing density in existing
urban areas: the expansion rate of low-density urban areas has almost been twice as high
as the densification dynamics (+143.2% vs. +79.1%). On average, about 2100 hectares a
year have been converted to urban areas since 1986. The urbanization rate has gained
steam when the effects of the 2008 crisis did level off, as it increased to 2900 hectares a
year after 2010.

Table 3. 1986–2020 cumulative yearly identified changes matrix (initial land cover in lines, final land
cover in columns, values are percentages of all detected changes totaling 27,318,648 pixel counts).

Classes 11 21 22 23 24 31 32 41 42 52 71 81 82 91 Total

11. Water 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.01% 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06%
21. Developed. Roads 0.11% 0.01% 0.05% 0.17%
22. Urban. Low Density 0.16% 1.38% 0.35% 1.89%
23. Urban. Med. Density 0.02% 1.43% 0.43% 1.88%
24. Urban. High Density 0.05% 0.26% 0.50% 0.81%
31. Barren. Washes 0.00% 0.02% 0.10% 0.02% 0.03% 0.13% 1.00% 0.06% 1.93% 0.10% 0.04% 0.04% 0.07% 3.55%
32. Barren. Mines 0.03% 0.01% 0.20% 0.26% 0.17% 0.10% 0.03% 0.03% 1.13% 0.00% 0.01% 0.01% 0.00% 1.98%
41. Deciduous Forest 0.01% 0.09% 0.14% 0.00% 0.01% 0.73% 0.04% 5.16% 14.43% 7.49% 0.08% 0.19% 0.37% 28.75%
42. Evergreen Forest 0.01% 0.01% 0.04% 0.01% 0.00% 0.06% 0.02% 4.47% 2.41% 0.02% 0.00% 0.01% 0.07% 7.13%
52. Shrubs 0.01% 0.19% 1.14% 0.22% 0.14% 1.71% 1.37% 14.63% 2.18% 9.91% 0.13% 0.49% 0.00% 32.13%
71. Grassland 0.00% 0.00% 0.01% 0.00% 0.00% 0.09% 0.01% 7.74% 0.02% 11.33% 0.01% 0.03% 0.00% 19.23%
81. Pasture and Parks 0.00% 0.00% 0.05% 0.01% 0.01% 0.03% 0.01% 0.09% 0.00% 0.04% 0.00% 0.17% 0.01% 0.42%
82. Cultivated Crops 0.00% 0.00% 0.02% 0.00% 0.00% 0.04% 0.01% 0.26% 0.01% 0.57% 0.04% 0.18% 0.04% 1.17%
91. Riparian Forest 0.00% 0.00% 0.01% 0.00% 0.00% 0.10% 0.00% 0.53% 0.12% 0.02% 0.00% 0.01% 0.04% 0.84%
Total 0.06% 0.55% 3.51% 2.42% 1.20% 2.87% 1.61% 28.75% 7.60% 31.86% 17.57% 0.46% 0.98% 0.57%
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Figure 5. Natural land cover changes (1986–2020); note that the gap in the figure corresponds to
the year 2012 which was not mapped. Wildfire extent is represented here [83], may be of various
burn severity.

Figure 6. Human-driven land cover changes (1986–2020); note that the gap in the figure corresponds
to the year 2012 which was not mapped.

The strong pressure this suburbanization puts on the environment in the Tucson
region is accompanied by the development of green recreational areas associated with new
housing communities. While our pastures and parks class of our model cannot distinguish
golf courses from grazing areas due to their very close spectral signature, both are great
consumers of water, a scarce resource in the Sonoran Desert. Overall, the total area of
the pastures and parks class increased by 16.0% between 1986 and 2020, representing
0.5% of all observed LULC changes across the watershed, replacing mostly shrubs and
cultivated crops.

The total area of agriculture over the study area has significantly dropped by 25%,
or 4800 hectares, between 1986 and 2020 (Figure 6). Despite this general trend, the re-
placement of crops by other land covers (mostly shrubs) is highly compensated by the
opposite dynamic, accounting, respectively, for 1.2% and 1.0% of all identified changes.
While it includes the conversion of never cropped lands to agriculture, this phenomenon
is characteristic of the complex rotation of cultures and fallows in irrigated perimeters.
According to our LULC classifications, 28% (1350 hectares) of abandoned cultivated lands
between 1986 and 2020 have been permanently converted to urban areas, which represent
about 7% of the initial cropland cover.
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Regarding mining activities, the total area of barren land decreased over the last
35 years (Figure 6). Still, 1.6% of all identified changes over the time period are associated
with new mining areas, but which is compensated by the conversion of old tailings (2.0%),
mostly revegetated by shrubs. This reflects a slow decrease in mining in the region, where
some mines were closed, and no major new pits were open.

The annual time series of LULC maps resulting from this study allows for the mon-
itoring of spatio-temporal processes that would be difficult to observe using sparser or
bi-temporal imagery. The combination of visual and statistical analysis of these maps
reflects both sudden transformations of the watershed landscapes, such as the aftereffects
of the 2005 Florida wildfire south of Tucson (Figures 5 and 7), or gradual changes spanning
several years, such as vegetation regrowth or the spread of built-up areas.

Figure 7. Monitoring sudden and gradual land cover changes following the Florida wildfire (2005)
south of Tucson. Burn boundaries extracted from [83], hillshade basemap derived from [43].

4. Discussion
4.1. Urbanization Patterns in the Upper Santa Cruz Watershed

Urban sprawl is a major driver of persistent LULC changes in our study area. To
further analyze its spatial distribution, we overlapped our classification results with the
legal and statistical entities of United States census designated places [84] while expanding
the Ambos Nogales area south to include its Mexican part. This revealed that more than
60% of observed urban sprawl between 1986 and 2020 is located away from cities (Figure 8).
Tucson and its directly adjacent statistical areas account for only about a third (34.4%) of
the urban extension, mostly in its periphery. While the already significantly developed
northern suburbs (Casas Adobes, Catalina Foothills and Tanque Verde) show an urban
cover increase of 42.8 to 63.2%, the city is significantly expanding south and west in newly
built neighborhoods (Summit, Tucson Estate, Tucson Mountains or Valencia West) where
urban cover increased by two to five times its original area in the last 35 years. Nogales was
less dynamic, as it only includes 4.0% of the observed urban extension in the watershed.
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Figure 8. Urban extension in the upper Santa Cruz watershed from 1986 to 2020. Hillshade derived
from [43], census designated places from [84] and United States–Mexico border from [45].

Already existing small towns have shown massive expansion, such as Oro Valley
(+236.8%), Marana (+578.6%) or Sahuarita (+498.9%), located, respectively, north, north-
west and south of Tucson, AZ, USA. Altogether, these three towns account for 17.2% of the
1986–2020 urban expansion in the upper Santa Cruz watershed. A number of settlements
and recently formed communities have also appeared or are rapidly growing, farther
from Tucson while remaining close to the highways, such as Vail in the east (+1251.5%),
Saddlebrooke in the north (+1196.4%) or Corona de Tucson in the south (+1106.3%). While
these are now significant enough to be included in census designated places, it has to be
noted that 20.6% of all urban expansion observed by our study happens away from all
statistical areas, composed mostly of isolated houses or newly built communities.

Such leapfrog urbanization is not new in the region and is putting an increasing
pressure on a fragile ecosystem with scarce resources [85,86]. Water is the main concern,
since the region is arid. Heavy groundwater pumping led to a declining water table in the
1990s, when plans and legislative acts reorganized some of the withdrawal of groundwater
resources and provided a new supply through the Central Arizona Project Canal [87–89].
Even if the average consumption of water by person dropped significantly in cities [5],
availability is still a concern in the face of climate change and continuing expansion of
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urban areas [12], although the Arizona Groundwater Management Act of 1980 requires
developers to prove access to a one-hundred-year water supply in order to tackle this issue.

Habitat fragmentation of the typical open-space landscape of the Sonoran Desert is
also a concern. The Pima County, which has been sensible to environmental preservation
as early as the 1930s [90], adopted in response its Sonoran Desert Conservation Plan in
1999 and subsequently made attempts to purchase ranchland to slow the conversion of
agricultural land to urban use [91] and maintain “open spaces”. While protected areas
have mostly been preserved from new settlements, such political interventions have not
significantly changed the model of urban growth around Tucson in the last decade.

4.2. Main Drivers of Inaccuracies in Our Yearly Classifications

As noted before, inaccuracies in our model are strongly correlated with time, LULC
classification being less performant as we go back in past years. This is most likely due to
the fact that we favored an automated process over the entire 1986–2020 period, thus using
the same training and validation polygons for the entire time series. While high-resolution
satellite imagery can be used as “ground truth” in recent years, available aerial imagery in
the 1970s and 1980s is scarcer and of much coarser resolution. Our training and validation
datasets are less accurate back then, as they may contain uncorrected errors for the LULC
classes they actually cover on the ground at these times.

While Landsat data provide opportunities for consistent time series of satellite im-
ageries spanning several decades, its medium-high resolution of 30 m can complicate the
identification of smaller targets, such as the isolated houses characteristic of some urbaniza-
tion dynamics in the Tucson area. This issue is compensated to some extent by the use of
3 × 3 pixel GLCM texture kernels allowing for the better detection of spatial variations in
the spectral signature of pixels that may include single houses (i.e., bright built-up areas
surrounded by green vegetation). As a result, our yearly classifications are highly sensitive
to such patterns, with a good detection of low-density urban areas, at the cost of some
commission errors in other bright areas of heterogeneous composition, such as washes or
mine tailings.

One of the solutions used to mitigate these trends was to use our conservative routine
on urban pixels. It is based on the hypothesis that urban extent is expanding in the
area, so that built-up areas are unlikely to revert back to other LULC classes, and thus
corrects any pixel identified as urban for one year and non-urban for later years. This
allowed us to greatly reduce their occurrence and to gain significant visual accuracy, while
statistical accuracy (Kappa and OA) remained roughly the same on average over the yearly
classification results. We were thus able to better identify urbanization dynamics. However,
while our model had the tendency to mix up dense urban pixels and barren mining lands
in its detection capacities, this routine had the side effect to lower its ability to detect some
types of urban areas. In the south of Nogales, for instance, some dense urban areas are
mapped as barren mining areas, probably because of the type of construction material and
geometry of urbanization in Mexico, which differs from urban and suburban areas in the
United States, where most of our training samples are located.

Still, we should also underline that a major source of inaccuracies in our model
is happening between classes of natural vegetation (34.5% between 1986 and 2020) or
within different urban classes (14.1%). For example, mesquite trees (class 41) are often
misidentified over arroyos, herbaceous cover and riverine or evergreen forests, mainly in
areas presenting a mixture of these different land covers. Thus, these can be considered
“relative” errors rather than “absolute” errors, as they related to the proportional share
of these mixed land covers within a pixel, which can also change over the years while
our training and validation polygons remain the same. While shrubs (class 52) may be
mapped over barren mine pits (due to their revegetation) and low-density urban areas,
they may also be mapped over other low-vegetation classes, such as drying-up grassland
and pastures. These misclassifications may be related to climate variations across the years,
disregarded by our static training and validation data. To corroborate this assumption,
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we already noted that LULC changes over the analyzed period are highly dominated by
shifts within natural vegetation classes (see Figure 4c,d). This can also be caused by slight
variations of the land cover within mixed pixels, thus leading to biased estimates of land
cover transformations in the watershed. Hence, integrating sub-pixel analysis [92–94] may
be useful to overcome the impact of mixed pixels in yearly classification inaccuracies and
derived change analysis.

4.3. Paths for Expanding and Improving the Model

The yearly LULC classifications we have produced between 1986 and 2020 rely pri-
marily on Landsat 5 and Landsat 8 images. The code which was elaborated can already
process all forthcoming years as long as Landsat 8 and now Landsat 9 continue to operate
and could be adapted to also process other data sources in the future, such as Sentinel-2
imagery. For now, as the current year is used in post-processing, only LULC maps of the
preceding year can be computed (if imagery is available for both needed seasons in a year
to compute MKT transformations, which is by the end of November). However, if the
35-year period covered in this study can be expanded towards future years, expanding it in
the past could also be interesting in order to better document the history of urban growth
and environmental change in the area.

Such an extension backwards in time is, however, a complex task. In effect, our study
is based on the use of pre-processed Tier 1 Landsat SR products, which are less readily
available before 1986. We could extend the coverage of our analysis to July 1982 and the
launch of Landsat 4 TM, but this would require a custom raw data pre-processing which
could lead in incompatibility with further data. Additionally, the use of Landsat MSS data
would be necessary to go back farther than 1982, but those images are not available as SR
products, and both spectral bands and resolution are not really the same as Landsat TM, so
consistency over the classification process and results are not guaranteed when using these.
Use of MSS would potentially allow one to go back as far as 1972, but it is to be expected
that accuracy will be much lower, also because image availability and quality would be
lower than for MSS, leading to more misclassified pixels for each year.

One way to further improve the accuracy of our model would be to manually refine
our training and validation datasets, as well as Landsat scene selection, for each year. So
far, we accepted images with a rather high cloud cover, and we selected rather large time
windows for each of the two seasons we considered. This was necessary in order to not have
too many NoData pixels—i.e., areas masked out by our image pre-processing technique
removing clouds, cloud edges and saturated pixels. Raw image quality or season-specific
spectral signature detection might be improved by manually picking Landsat scenes and
thus lowering both these filters, but without the confidence to gain full coverage images for
each year. However, this would drastically increase human intervention while we favored
an automated process which allows us to rapidly process long time series. Moreover,
selecting images manually with different characteristics and editing training and validation
data for each year would make the whole methodology more time consuming, with the
additional cost of being less reproducible over the entire time series.

Lastly, as one goal of this research is to provide a generic and adaptative GEE script
for computing annual LULC time series over different regions of interests, the robustness
of our method shall be tested not only in comparable areas with similar issues (such as the US
Southwest as a whole), but also beyond desert landscapes with adjusted land cover indicators.

5. Conclusions

We propose in this study an automated multi-temporal and multi-sensor classification
method to extract yearly LULC data for the Tucson area since the mid-80s. Hosting the
entire workflow in the GEE platform allowed us to quickly process very large datasets and
to maintain a consistent methodology for the entire 1986–2020 period and on to oncoming
years. We used a number of post-processing techniques to mitigate inevitable issues in
temporal LULC change monitoring, such as smoothing the influence of interannual climate
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variations or addressing possible misclassifications associated with the lack of availability
of robust ground truth imagery to build our model training datasets as we go further back
in time. For most years, we achieved very satisfying classification accuracy (over 90 to
95%), allowing us to monitor landscape transformations in southern Arizona from then
and in the future. While this analysis focused on the production of a long time series of
annual LULC maps, future lines of research shall focus on detected change verification, as
well as identification of their mechanisms and their driving forces (e.g., climate change or
land use policies) in the upper Santa Cruz watershed.

Our methodology demonstrates the potential of the enormous cloud calculation
capabilities offered by GEE. This server-sided technology allowed us to not only save
a considerable amount of time in comparison with the traditional desktop computing
techniques, but also assures our scripts are adaptable for any other project with similar
needs over different regions of interest, in order to provide critical and timely information
with high temporal depth to decision makers.
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https://www.mdpi.com/article/10.3390/rs14092127/s1, Figure S1: Maps of yearly land cover classi-
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matrix for years 1986–2020.
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