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Abstract: Valid multipath error model is the prerequisite for high-performance GNSS integrity
monitoring. It is indispensable to civil aviation and other Safety-of-Life (SoL) users. The model must
perfectly bound multipath error while preventing the constructed model from being too conservative.
Nevertheless, no sound methodologies to meet both the requirements have been introduced in
previous literatures, and subsequently, practices always require iterative manual trade-offs. To
improve the efficiency of multipath modeling, we propose a new automatic multipath error modeling
methodology. It quantifies the above requirements in the objective function of multiobjective genetic
algorithm (GA) so that multipath modeling can be managed automatically. Moreover, through
introducing a new model that is based on two inflation factors, conservatism of modeling results
can be significantly reduced. Experiments based on a 4-month dataset of BDS-3 Medium Earth
Orbit (MEO) satellites show that constructed multipath models effectively bound actual error in
each elevation bin. In addition, the new model form with two inflation factors brings average CDF
difference reduction of 67.4% at B1I and 50.6% at B3I, which means significantly mitigation in terms
of conservatism.

Keywords: multipath error modeling; Cumulative Distribution Function (CDF) overbounding; BDS-3;
multiobjective genetic algorithm

1. Introduction

Integrity of Global Navigation Satellite System (GNSS) service has been the primary
concern of GNSS users in the Safety-of-Life (SoL) domain. Models of each error source
are necessary inputs for integrity monitoring, especially for protection level calculation.
Multipath error is the ranging error caused by reflected GNSS signal that distorts correlation
peaks of receiver. It remains one of the dominant error sources for GNSS applications.
Therefore, it is essential to include multipath error in error budget of GNSS integrity.

In recent years, multipath modeling has been a hotspot in GNSS integrity monitoring
research. Systematic research of multipath error modeling was implemented in the United
States and Europe to promote GNSS application in civil aviation. For example, researchers
from the Boeing Company and the Collins Aerospace performed multipath modeling tests
with flight test data collected at a prototype Collins Dual-Frequency Multi-Constellation
(DFMC) receiver [1]. Moreover, the European Commission, combined with renowned
institutes and companies, e.g., German Aerospace Center (DLR) and Airbus, started the
Dual-Frequency Multipath Model for Aviation (DUFMAN) project. Researchers of the
project aimed at developing new multipath error models recommended for aviation users
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of GPS L5 and Galileo E1, E5a [2–4] and is promoting standardization of their modeling
methodology [5].

Some independent research has focused on multipath error modeling according to
physical analysis. For instance, Refs [6,7] aimed at handling the multipath obstacles faced by
automatic airport surface operation. They modeled all possible reflection sources in region
and simulated multipath error for modeling with a receiver model. Others committed
to multipath error modeling via mass observation data analysis. For example, Ref [8]
proposed a piecewise multipath error model for BDS-2 satellites, which bounds multipath
samples from satellites whose elevation is less than 15◦ while fitting samples in other
elevation bins to maximize availability of integrity monitoring. Ref [9] proposed dedicated
time parameters to the existing error model to enable multipath model applicable before
convergence of smoothing filter.

In summary, the algorithm for data processing and error bounding is mature and
widely accepted. Similar methodologies are well-recognized in available literatures. These
studies usually obtain multipath data from the method of MP (MultiPath) combination
at first [10], and then sort out multipath samples according to elevation. After that, the
strategy of Cumulative Distribution Function (CDF) overbounding is widely used to bound
error and derive model parameters. Nevertheless, it is strange to find out that how the
CDF overbounding strategy is managed was hardly involved. Since multipath effect is
elevation-dependent, it is challenging to effectively bound multipath error while limiting
the model’s conservatism at each elevation bin manually. Notably, this problem remains a
challenge, which is also raised in Ref [1].

Focusing on the above question, we proposed a new automatic multipath error model-
ing methodology utilizing the CDF overbounding strategy and the multiobjective genetic
algorithm (GA). Primary contribution of this study is twofold. At first, we proposed
quantifying considerations of bounding error and avoiding modeling results from being
too conservative in the objective function of GA. Therefore, iterative weighing between
effectiveness and conservatism can be managed automatically. Second, we introduced a
new model form with two inflation factors to generate less-conservative models, which
means tighter boundaries and thus less availability loss of integrity monitoring. Moreover,
it is worth mentioning that our method is not designed for specific dataset. Therefore, it is
independent of data source and data smoothing.

To validate the effects, we initially demonstrated our methodology with a large ground-
based dataset of BDS-3 Medium Earth Orbit (MEO) satellites’ B1I and B3I observations. The
remainder of our paper is structured as follows. Section 2 introduces our data collection
and processing strategy. Next, we illustrate our methodology of multipath modeling in
Section 3. Section 4 displays constructed multipath models and verifications of modeling
results with multiple analyses in terms of error overbounding, and model conservatism.
Finally, the last section draws the conclusion.

2. Data Collection, Processing and Analysis
2.1. Data Collection and Processing

A large-scale dataset of multipath error was used for modeling in this work. The
period was DOY (Day Of Year) 70–190, 2020. To maximize dataset for modeling, we
collected the classical 30s-interval unsmoothed observations of the B1I and B3I signals
broadcast by BDS-3 MEO satellites. Observations were from 23 IGS MGEX stations that are
shown in Figure 1. These stations are all equipped with JAVAD TRE_3 DELTA receivers in
which data of all BDS-3 MEO working satellites are available.
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To improve data processing efficiency, we grouped and counted multipath error 
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reserving necessary redundancy for unexpected extreme cases. The mask angle is 5°, 
which is consistent with that of the error model for Galileo in ARAIM Interim Report An-
nex B [12]. Moreover, to precisely reflect the distribution characteristic of multipath error, 
small intervals of data value and elevation were chosen. They were 0.03 m and 1°, respec-
tively. After grouping and counting, the counts in each bin were generalized using the 
total number of samples in the corresponding elevation bin so that multipath CDFs were 
generated. 

Table 1. Details of data division. 
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Concerning the heavy-tail problem of multipath error, DeCleene of the Federal Avi-

ation Administration (FAA) proposed the CDF overbounding strategy to model error that 
is not strictly Gaussian. Nevertheless, as stressed by DeCleene, unimodality, zero mean 
value, and well symmetry of error distribution are the prerequisites for using CDF over-
bounding strategy [13]. As a consequence, this part focuses on analyzing unimodality, 
mean value, and symmetry of multipath error distribution. 

Figure 2 presents multipath error distribution for BDS-3 MEO satellites at B1I and 
B3I. The x-axis denotes amplitude whose unit is meter. The y-axis whose unit is one rep-
resents the product of Probability Density Function (PDF) and corresponding × coordi-
nate. In theory, unimodality and symmetry of our graphs are consistent with that of PDFs. 
Notably, subfigures below show that all distributions are unimodal and of good sym-
metry. 

Figure 3 shows averages of multipath error in different elevation bins. As shown in 
the figure, none of the mean value curves show pronounced characteristics related to 

Figure 1. Distribution of the 23 selected IGS MGEX stations.

Moreover, scholars of multipath modeling always mind the influence of antenna-
induced error on multipath data [11]. It is worth explaining that since the Phase Center
Variation (PCV) of users’ BeiDou antenna is not available in public files, the PCV was not
corrected in this study. And to obtain the multipath samples for modeling, we used the
widely adopted multipath combination to characterize multipath characteristics. Details of
the process can be referred in [10].

To improve data processing efficiency, we grouped and counted multipath error
samples according to value and elevation at the first step. The finite data value range
shown in Table 1 was selected according to the maximum data value in dataset while
reserving necessary redundancy for unexpected extreme cases. The mask angle is 5◦,
which is consistent with that of the error model for Galileo in ARAIM Interim Report
Annex B [12]. Moreover, to precisely reflect the distribution characteristic of multipath
error, small intervals of data value and elevation were chosen. They were 0.03 m and 1◦,
respectively. After grouping and counting, the counts in each bin were generalized using
the total number of samples in the corresponding elevation bin so that multipath CDFs
were generated.

Table 1. Details of data division.

Items Description

Range of data value [−6 m, 6 m]
Range of elevation [5◦, 90◦]

Interval of value bins 0.03 m
Interval of elevation bins 1◦

Number of value bins 400
Number of elevation bins 85

2.2. Distribution of Multipath Error

Concerning the heavy-tail problem of multipath error, DeCleene of the Federal Avia-
tion Administration (FAA) proposed the CDF overbounding strategy to model error that is
not strictly Gaussian. Nevertheless, as stressed by DeCleene, unimodality, zero mean value,
and well symmetry of error distribution are the prerequisites for using CDF overbounding
strategy [13]. As a consequence, this part focuses on analyzing unimodality, mean value,
and symmetry of multipath error distribution.

Figure 2 presents multipath error distribution for BDS-3 MEO satellites at B1I and B3I.
The x-axis denotes amplitude whose unit is meter. The y-axis whose unit is one represents
the product of Probability Density Function (PDF) and corresponding × coordinate. In
theory, unimodality and symmetry of our graphs are consistent with that of PDFs. Notably,
subfigures below show that all distributions are unimodal and of good symmetry.
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elevation like BDS-2, and the maximum amplitude is two orders of magnitude smaller 
than that of BDS-2 found in Ref [14]. With the above analysis, we presumed the multipath 
data for modeling is zero-mean. Moreover, if our method is used for BDS-2 satellites, the 
satellite-induced bias can be modeled, which is referred in the work of Ref [15]. 
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butions of B1I and (b,d,f) are distributions of B3I, respectively. The symbol “*” means “multiply”. 

 
Figure 3. Averages of multipath error at B1I and B3I in each elevation bin. 

3. Methodology of Modeling 
Based on multipath dataset and analyses derived in the preceding section, we mod-

eled multipath error based on the CDF overbounding strategy. Two inflation factors ra-
ther than the previous single factor were used to produce a tighter boundary. Then, we 
estimated all of the model parameters with a global optimization process using multi-
objective GA. 

3.1. Model Form 
Considering the non-Gaussian tails and the near-Gaussian peaks of multipath error 

distribution [13], we follow the strategy introduced in Ref [8] (pp. 54–55) and assume that 
the multipath error comprises three stochastic components, which is to precisely express 
characteristics of multipath error. Namely, the elevation-independent Gaussian compo-
nent 1ε  ( 2

1 1 (0, )ε σN ), the elevation-dependent Gaussian component 2ε  (
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2 2(0, )Nε σ ) and an additional Gaussian component 3ε  that is used to overbound 
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Figure 2. Distribution of multipath error at three elevation bins. The sub-figures (a,c,e) are distribu-
tions of B1I and (b,d,f) are distributions of B3I, respectively. The symbol “*” means “multiply”.

Figure 3 shows averages of multipath error in different elevation bins. As shown
in the figure, none of the mean value curves show pronounced characteristics related to
elevation like BDS-2, and the maximum amplitude is two orders of magnitude smaller
than that of BDS-2 found in Ref [14]. With the above analysis, we presumed the multipath
data for modeling is zero-mean. Moreover, if our method is used for BDS-2 satellites, the
satellite-induced bias can be modeled, which is referred in the work of Ref [15].
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3. Methodology of Modeling

Based on multipath dataset and analyses derived in the preceding section, we modeled
multipath error based on the CDF overbounding strategy. Two inflation factors rather than
the previous single factor were used to produce a tighter boundary. Then, we estimated all
of the model parameters with a global optimization process using multiobjective GA.

3.1. Model Form

Considering the non-Gaussian tails and the near-Gaussian peaks of multipath error
distribution [13], we follow the strategy introduced in Ref [8] (pp. 54–55) and assume that
the multipath error comprises three stochastic components, which is to precisely express
characteristics of multipath error. Namely, the elevation-independent Gaussian component
ε1 (ε1 ∼ N (0, σ2

1 )), the elevation-dependent Gaussian component ε2 (ε2 ∼ N(0, σ2
2 )) and

an additional Gaussian component ε3 that is used to overbound heavy tail error:

ε = ε1 + ε2 + ε3 (1)
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As shown in (2), with two inflation factors α and β, ε3 is assumed to be a linear
combination of ε1 and ε2:

ε3 = α · ε1 + β · ε2 (2)

It should be mentioned that single inflation factor in (3) was widely used [16,17]. The
symbol η in (3) denotes inflation factor.

ε = η · (ε1 + ε2) (3)

Nevertheless, we used two inflation factors in (2) to improve the fit of model to the
multipath error and thus reducing model’s conservatism. After that, the new model form
is shown in (4).

ε= (1+α) · ε1 + (1 + β) · ε2 (4)

It is worthwhile here to explain the reason why such intuitive improvement is not
available previously. Since the multipath model for integrity monitoring must bound real
error well, classical algorithms that solely fits samples, e.g., the least square, are not able to
generate qualified results. Moreover, the number of inflation factors should be based on
rational presumption. As a result, two rather than more inflation factors are used.

Then, the standard deviation of ε can be expressed as:

σ =

√
(1+α)2σ2

1+(1+ β
)2

σ2
2 (5)

With reference to the exponential form of current multipath error models, the form of
σ2 is set as follows in (6).

σ2 = a2 + b2 · exp(−c2 · El) (6)

where El is the elevation value in degrees. At this point, there are six unknown parameters,
namely, σ1, α, β, a2, b2, c2. Furthermore, the multiobjective GA will be used for estimating
these parameters.

3.2. Strategy of Model Parameter Estimation

Based on the proposed model, the strategy of CDF overbounding together with
multiobjective GA was used to derive model parameters. In this part, principle of the CDF
overbounding strategy and the multiobjective GA is introduced.

3.2.1. Principle of CDF Overbounding

For error modeling in the field of integrity monitoring, heavy tails of multipath error
should be bounded by a more conservative function whose characteristics are known a
priori. As a result, it can be ensured that multipath error in the worst case is still in the
integrity budget. In practice, these requirements are always managed with the strategy of
overbounding [13] or the extreme value theory [18].

To construct suitable multipath error models for integrity monitoring, we used the
strategy of CDF overbounding. It is worth noting that the strategy of CDF overbounding
was also recommended in Section 3.6.8.3.2 of ICAO Annex 10, Volume I [19]. The principle
is listed as follows:

Fo(x) ≥ Fa(x), ∀x ≤ 0 (7)

Fo(x) ≤ Fa(x), ∀x ≥ 0 (8)

F(x) =
∫ x

−∞
f (x)dx (9)

where the subscript “o” means “overbounding” and denotes constructed models. The
subscript “a” means “actual” and represents actual distribution of multipath error. In
(9), F(x) and f (x) respectively represent CDF and PDF. The distribution form of the
CDF model is not limited, and multipath error modeling in this work was implemented
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with a Gaussian distribution. Nevertheless, to validate the range-to-position conversion,
distribution of constructed CDF models must be unimodal, zero-mean, and symmetric [20],
which accounts for the analysis introduced in previous sections.

3.2.2. Overview of the Multiobjective Genetic Algorithm

In this work, the multiobjective GA was used for estimating multipath error model
parameters (σ1, α, β, a2, b2, c2). It simulates the evolution process in nature and derives a
better solution to the problem through generation evolution [21]. The GA is efficient in
handling global optimization problems and is much easier to implement compared to other
complex AI algorithms. In this work, our multiobjective GA is based on the random-weight
approach [22,23], which avoids fixed search direction of GA by assigning a random weight
value to each objective [24].

The multiobjective GA in our work aims at dealing with the multiple requirements for
multipath modeling, namely ensuring the integrity of constructed models while avoiding
modeling results from being too conservative. Specifically, the integrity performance of
modeling results is guaranteed by complying with the integrity requirements of CDF over-
bounding defined in (7) to (9). And the consideration of integrity monitoring conservatism
is managed by reducing the difference between the CDF of constructed model and actual
data. Since the increase of error model value would lead to increasing conservatism of
constructed protection level [25], establishing an error model that is as precise as possible
can effectively improve the availability of integrity monitoring.

Based on the above-mentioned strategy, configuration of GA is illustrated in Table 2.
Furthermore, a flowchart of our GA algorithm is summarized in Figure 4. Details of the
table will be further illustrated. As for coding, we abstracted each unknown parameter into
a chromosome of the individual and encoded it into a binary sequence then. Concerning
the distribution in Figure 2, variation range of B1I for unknown parameters was set to 0 to
1.5 m, and B3I was set to 0 to 1 m. The coding strategy can be summarized as follows:

CA =
ValueEnd −ValueStart

2N (10)

ValuePara = CA ·ValueBS + ValueStart (11)

where CA means Coding Accuracy, Value denotes decimal value. N is the length of binary
sequences. The subscripts End and Start correspond to the a priori search range of unknown
parameters. Para denotes an unknown parameter. BS means Binary Sequence. After coding,
every unknown parameter was transformed into a binary sequence and evolved with GA.

Table 2. Configuration of multiobjective genetic algorithm parameters.

Items Description

Size of population 150
Number of generations 1000

Number of ranks 30
Coding Binary; 14 bits

Number of elites per generation 5
Probability of crossover 0.6
Probability of mutation 0.01
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3.2.3. Determination of Objective Function

This section introduces the core of our GA. Through constructing objective function,
the multiobjective genetic algorithm was specified as a minimization problem in this
work. Namely, individuals with lower objective function values are considered to be more
competitive. These leading individuals will be assigned a larger fitness value in ranking,
which means their genes are more likely to survive into the next generation. Definition of
our objective function is illustrated with details as follows:

y =
1

p
∑

i=1
ωi +

p
∑

i=1
k · (1− sin(Eli))

·
[

p

∑
i=1

ωi · yi,min +
p

∑
i=1

k · (1− sin(Eli))·yi,ob

]
(12)

yi,min =
q

∑
j=1

(Fo,ij − Fa,ij)
2 (13)

yi,ob =

 1
q

q
∑

i=1
yi,min, success

0, f ail
(14)

where p and q are numbers of elevation and value bins, respectively. ωi, k and 1− sin(Eli)
are all weighting factors. ωi is a value between 0 and 1 that is randomly determined to
avoid single-direction search.



Remote Sens. 2022, 14, 2130 8 of 14

k is a constant that defines the weight of integrity requirements. The choice of k
determines the conservatism of modeling results. In this paper, a less conservative value of
1 is arranged for k. It means that the two modeling targets shown in (13) and (14) are equally
important in this case. Under extreme conditions where k equals 0, the multipath modeling
problem is essentially a least-square problem without considering integrity requirements.
The adaptive sine function of elevation is utilized to adjust the weight of different elevation
bins, namely, assigning a large weight value to low-elevation cases where “heavy tail
error” primarily occurs while reduces as elevation increases. The choice of the adaptive
function would affect shape of the constructed model. ymin and yob are objective functions
of minimization targets and integrity targets. Their definitions are given in (13) and (14).

For ymin, it measures the difference between the CDFs of constructed model and actual
data. yob is a penalty function. When the overbounding requirements depicted in (7) and
(8) are satisfied, it corresponds to “success” in (14) and vice versa to “fail”. As a result, genes
of individuals that fail to overbound the error are less likely to enter the next generation.

3.2.4. Ranking

Premature convergence is one of the most challenging problems for GA. The problem
brings the random search process of GA to an early end without converging to a satisfactory
solution. Ranking is one of the efficient methods to mitigate this problem. It works by
preventing the domination of a few individuals with strong competitiveness at early stages
of evolution so that genetic diversity is ensured [26,27].

Specifically, this strategy divides individuals with similar objective function values into
the same group. Each group is called a rank, and individuals within the same rank share a
same fitness value, i.e., the same probability of being selected into the next generation. In
practices, fitness value of each rank is determined according to a specified rule then. In this
work, we set the maximum fitness value to the number of individuals within a generation
and the minimal value to one. Then, the fitness of each rank is assigned linearly.

3.2.5. Selection, Crossover and Mutation Operators

In this part, we briefly illustrate our selection, crossover, and mutation operators.
Corresponding parameters are displayed in Table 2. The roulette selection operator was
adopted to select individuals for a new generation [21]. The process abstracts the population
of GA into a roulette wheel in which a sector denotes an individual. The area of each sector
is proportional to the fitness value. Every time the wheel stops spinning, an individual is
selected randomly to construct the next generation. As illustrated in (15), the probability of
an individual being selected into the next generation is proportional to the corresponding
fitness value.

pi =
fi

N
∑

i=1
fi

(15)

where N is the number of individuals. Besides, to retain competitive genotypes, a certain
number of elites with maximum fitness values are permitted to the next generation directly
without selection. The number of elites for each generation is specified in Table 2.

In terms of chromosome crossover, the principle of the two-point crossover strategy is
illustrated as follows in Figure 5. The location of cross points is determined randomly.

As for mutation, for each bit of binary gene sequence, we generated a random Boolean
number whose probability of being true equals the value specified in Table 2. Once the
random number is true, the corresponding binary digit shall be flipped, namely zero to one
or one to zero.
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4. Experiment and Analysis

After illustrating our methodology in previous sections, this part displays our model-
ing result. Then, their performance of bounding multipath error was evaluated using actual
data. We also compared conservatism of constructed model that was from our modeling
method and that with the classic one. All of our experiments were performed on a laptop
with Intel i7-8750H CPU, and the RAM was 16 GB. Calculation time of each generation
for GA can be managed within 1.4 s with no additional efficiency promotion. This fact
indicates the efficiency of the algorithm.

4.1. Validation of Constructed Models

This part validates our modeling results in terms of bounding error. Model parameters
for the two-inflation-factor and single-inflation-factor model form are shown in Tables 3
and 4, respectively. At first, we compared modeled standard deviation with that of actual
error at each elevation bin in Figure 6. The x-axis denotes elevation angle whose unit is
degree. It can be seen that our models successfully bound multipath error, and the standard
deviation differences between model and error reduces as elevation increases. This fact
demonstrates the utility of our modeling methodology in bounding multipath error as
well as in preserving integrity monitoring availability in high-elevation cases, which was
primarily managed by designating the sine function weight in (12).

Table 3. Parameters of constructed models with two inflation factors.

Orbit Signal σ1 a2 b2 c2 α β

BDS-3MEO
B1I 0.039 0.186 1.168 0.069 0.900 0.069
B3I 0.035 0.099 0.546 0.063 0.961 0.024

Table 4. Parameters of constructed models with single inflation factor.

Orbit Signal σ1 a2 b2 c2 η

BDS-
3MEO

B1I 0.043 0.259 1.444 0.049 1.018
B3I 0.112 0.182 1.481 0.055 0.972

As depicted in previous sections, meeting CDF overbounding requirements is our
direct modeling target to ensure model’s integrity performance. To validate our algorithm,
we also compared CDFs of constructed models and multipath error in Figure 7. The dashed
lines represent CDF model while red lines denote multipath error. As shown in the graphs,
the expected modeling targets of CDF overbounding were achieved and well reflected.
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Figure 7. CDF of constructed models and multipath error. The sub-figures (a,c,e) are results of B1I
and (b,d,f) are results of B3I, respectively. The red lines are CDF of actual multipath error, the dashed
blue lines are that of constructed models based on two inflation factors, and the dashed magenta
lines are that of constructed models based on single inflation factor.

4.2. Improvement Compared to Previous Methods

Effects of our multipath error modeling methodology are illustrated with comparison
of previous methods. Section 4.2.1 validates the effect of quantifying integrity requirements
in GA’s objective function. Section 4.2.2 demonstrates the contribution of the proposed
two-inflation-factor model form.
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4.2.1. Effective Boundary

As we know, it is the work of Ref [8,16] that first modeled multipath error for integrity
monitoring with GA. They estimated model parameters by minimizing the CDF difference
between model and actual error. Nevertheless, the requirement of bounding error was not
directly considered in their design. To illustrate effects of our method, we calculated a set
of models with the previous algorithm for comparison. Despite integrity considerations in
the objective function of GA, other conditions were all the same.

The following analysis is based on a method called Sigma Analysis. It plots con-
structed multipath standard deviation model of a certain multiple in time series. Then,
the performance of modeling result is evaluated by judging whether the Sigma series
tightly bound real multipath error time series. As the knowledge of statistics indicates that
the probability of Gaussian random variable value exceeding more than three times its
standard deviation is small, the overbounded Sigma series demonstrates to some extent
the performance of error model to bound multipath error.

Figure 8 plots a three-day time series of multipath error and the corresponding 3.29-
Sigma series of our constructed models. The value 3.29 is the standard Gaussian quantile
corresponding to 99.9%. To verify the effectiveness of the model for various satellites, three
satellites from different platforms (http://en.beidou.gov.cn/SYSTEMS/Officialdocument/,
accessed on 20 April 2022) were selected. The period without observation was removed
in the figure. Since the B3I signal has a larger code rate [28], it suffers obviously less from
multipath effect [29] than B1I.
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of B1I and (b,d,f) are results of B3I, respectively. The red curves are multipath time series. The blue
boundaries are from models based on two-inflation factors. And the green boundaries are from
models based on single inflation factor.

It can be seen in Figure 8 that raw models from the previous algorithm cannot bound
multipath error well. As we mentioned in Section 3.2.3, although GA’s output is random,
modeling without considering integrity requirement is essentially a least-square problem.
Under such cases, additional method may be required to further inflat the modeling result,
which would limit the effect of algorithm. This fact indicates the advantage of our algorithm
in producing effective boundaries.

http://en.beidou.gov.cn/SYSTEMS/Officialdocument/
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4.2.2. Less Conservative Models

With the support of GA, the effect of a new model form is utilized to obtain a better fit of
multipath error and thus generate tighter boundaries. In this section, effect of the proposed
two-inflation-factor model is evaluated through the average CDF difference comparison
with the commonly-used single-inflation-factor model. Definition of the average CDF
difference is presented as follows. The smaller the converged CDF difference, the tighter
the boundary.

AveDi f =
1

N · p · q

p

∑
i

q

∑
j=1

(Fo,ij − Fa,ij)
2 (16)

where N is the number of individuals in each generation. p and q are numbers of elevation
bins and value bins, respectively. F denotes the CDF. The subscript “o” denotes modeling
result and “a” denotes actual data.

Figure 9 plots average CDF difference after taking logarithm. The x-axis denotes the
number of generations. And the converged CDF difference value without taking logarithm
is given in legend. It is worth explaining that the converged CDF difference is set as the
average CDF difference of GA’s last 100 generation. For B1I, the converged values are 0.193
and 0.063 for the classic single-inflation-factor model and our two-inflation-factor model,
respectively. And for B3I, the values are 0.081 and 0.040, respectively. Compared to the
previous one, our new model brings a 67.4% improvement to the B1I signal and a 50.6%
improvement to the B3I signal. This fact validates the effect of our two-inflation-factor
model in producing a less-conservative multipath model.
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5. Discussion

With the promotion of dual-frequency and even multi-frequency applications, the
ionospheric residual is no longer the primary concern of GNSS integrity monitoring. This
fact results in the growing popularity of multipath error modeling research. Nevertheless,
rare literature provides valid solution to producing effective boundary while reducing
the conservatism. The proposed strategy utilizes the random search characteristic of
multiobjective GA. It quantifies considerations of bounding error and avoiding modeling
result being too conservative in the objective function of GA. Therefore, manual iterative
weighing can be replaced and multipath modeling for GNSS integrity monitoring can be
managed automatically. Moreover, a new model form based on two inflation factors is
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proposed to improve the fitting and thus reducing the conservatism. Experiments have
validated its effect.

6. Conclusions

In this work, a new automatic multipath error modeling methodology based on the
CDF overbounding strategy and multiobjective GA is proposed. We generated multipath
data for modeling with the widely-used method of MP combination for demonstration.
The raw data was from a 4-month dataset of ground-based BDS-3 MEO observations.
Since the cruise phase at high altitude takes up the majority of the flight time, and surface
surrounding the runway and taxiway is open and unobstructed, it is rational to believe
ground-based BDS-3 observations from IGS stations suffers no less multipath effect than
actual airborne cases and our initial demonstration with ground measurement is acceptable.

The new methodology quantifies considerations of bounding error and avoiding
modeling result being too conservative in the objective function of GA. Therefore, multipath
modeling for GNSS integrity monitoring can be managed automatically. Multiple analysis
on the performance of bounding multipath error indicates that modeling results based on
our methodology are of good quality. Moreover, we introduced a new two-inflation-factor
model form to reduce conservatism of modeling results. Experiments on the average
CDF difference show that compared to the previous single-inflation-factor model, our
two-inflation-factor model improves average CDF difference of B1I model by 67.4% and
that of B3I model by 50.6%.
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