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Abstract: Pakistan’s agriculture and food production account for 27% of its overall gross domestic 

product (GDP). Despite ongoing advances in technology and crop varieties, an imbalance between 

water availability and demand, combined with robust shifts in drought propagation has negatively 

affected the agro-ecosystem and environmental conditions. In this study, we examined hydro-me-

teorological drought propagation and its associated impacts on crop yield across natural and hu-

man-disturbed agro-ecological zones (AEZs) in Pakistan. Multisource datasets (i.e., ground obser-

vations, reanalysis, and satellites) were used to characterize the most extensive, intense drought 

episodes from 1981 to 2018 based on the standardized precipitation evaporation index (SPEI), stand-

ardized streamflow index (SSFI), standardized surface water storage index (SSWSI), and standard-

ized groundwater storage index (SGWI). The most common and intense drought episodes charac-

terized by SPEI, SSFI, SSWSI, and SGWI were observed in years 1981–1983, 2000–2003, 2005, and 

2018. SPEI yielded the maximum number of drought months (90) followed by SSFI (85), SSWSI (75), 

and SGWI (35). Droughts were frequently longer and had a slower termination rate in the human-

disturbed AEZs (e.g., North Irrigated Plain and South Irrigated Plain) compared to natural zones 

(e.g., Wet Mountains and Northern Dry Mountains). The historical droughts are likely caused by 

the anomalous large-scale patterns of geopotential height, near-surface air temperature, total pre-

cipitation, and prevailing soil moisture conditions. The negative values (<−2) of standardized 

drought severity index (DSI) observed during the drought episodes (1988, 2000, and 2002) indicated 

a decline in vegetation growth and yield of major crops such as sugarcane, maize, wheat, cotton, 

and rice. A large number of low-yield years (SYRI ≤ −1.5) were recorded for sugarcane and maize 

(10 years), followed by rice (9 years), wheat (8 years), and cotton (6 years). Maximum crop yield 

reductions relative to the historic mean (1981–2017) were recorded in 1983 (38% for cotton), 1985 
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(51% for maize), 1999 (15% for wheat), 2000 (29% for cotton), 2001 (37% for rice), 2002 (21% for rice), 

and 2004 (32% for maize). The percentage yield losses associated with shifts in SSFI and SSWSI were 

greater than those in SPEI, likely due to longer drought termination duration and a slower termina-

tion rate in the human-disturbed AEZs. The study’s findings will assist policymakers to adopt sus-

tainable agricultural and water management practices, and make climate change adaptation plans 

to mitigate drought impacts in the study region. 

Keywords: spatiotemporal droughts; termination; GRACE; crop yield sensitivity; atmospheric  

circulation; Pakistan 

 

1. Introduction 

Droughts are among the most prevalent hydro-meteorological hazards [1], affecting 

agricultural productivity [2,3], water resources [4], the ecosystem [5], and the environment 

[6], with significant impacts on the economy at local and global scales [7]. It is often chal-

lenging to detect and predict the start and areal extent of droughts because of their com-

plex nature and non-structural impacts [8,9]. An increase in drought events has been re-

ported worldwide [10–15] and droughts are expected to become more frequent and in-

tense in the near future [16]. The robust shifts in extreme high temperatures [17] make 

water-scarce regions of the world more vulnerable to drought risks [18]. 

Comprehensive and timely information about the spatiotemporal extent of droughts 

(i.e., intensity and frequency) is needed to mitigate drought impacts [19–21]. The signifi-

cant effects of extreme high temperatures on global agriculture are well documented in 

the literature [22]. Concurrent spells of heatwave and drought have caused considerable 

loss of food crops in Europe [23]. Prolonged growing seasons in a warming world increase 

the evapotranspiration rate and decrease soil moisture, which, in turn, contribute to a 

higher risk of flash droughts [24]. Famines related to hot (dry) weather extremes can result 

in vegetation die-off, negatively impacting agronomic practices [25]. A study reported a 

10% drop in rice yield due to a 1 °C increase in nighttime extreme temperatures [26]. Cli-

mate variability and trends were found to be uneven between the means and daytime 

(nighttime) extremes [27]. The warming signal is already evident with no uniform pattern 

throughout the globe [16,28]. For instance, the estimated global warming rate was 0.74 °C 

during 1906–2005, and regional warming reached from 0.4 to 0.8 °C [27]. 

Inconsistent monsoon patterns over the South Asian domain, including Pakistan, will 

negatively impact agroecosystems over the 21st century [29,30]. Pakistan is a predomi-

nantly arid/semi-arid country with an agriculture-dependent economy [31]. Climate ex-

tremes have adversely affected the region’s environmental conditions [17,32]. The south-

ern and central parts of Pakistan experienced more frequent dry spells due to stable higher 

temperature and interannual rainfall variability, in turn, affecting the agriculture and wa-

ter resources [18,33,34]. In the recent decade, groundwater has become the second largest 

source of water for irrigated agriculture in Pakistan, contributing 22% to gross domestic 

product (GDP) and helping meet 45% of crop water requirements [33,35,36]. The water 

table in the Baluchistan and Sindh provinces has declined substantially due to groundwa-

ter overdraft [37]. The surface water storage capacity of Mangla, Tarbela, and Chashma 

reservoirs decreased by 30% due to siltation and climate change [38], increasing the risk 

of water scarcity compared to the historical mean [39]. The region has experienced mod-

erate to severe water shortages, driven mainly by drought and intensive irrigation [40]. 

The historic dry spells (1999–2002) is resulted in the crop yield loss of rain-fed and irri-

gated crops by 80% and up to 20%, respectively, with extensive impacts on the GDP of 

Pakistan [41,42]. 

Previous efforts have investigated historical changes in droughts over South Asia 

(SA), including Pakistan, based on the standardized precipitation index (SPI) and the 
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standardized precipitation evapotranspiration index (SPEI) using precipitation, soil mois-

ture, land surface, and air temperature [18,43–49]. However, research gaps remain in ac-

counting for the hydrological factors (e.g., surface water storage (SWS), groundwater stor-

age (GWS), and stream flow (SF)) directly influencing the surface and sub-surface water 

cycle. Further, the spatial variability of extreme hydro-climatic conditions over the natural 

and human-disturbed agro-ecological zones (AEZs) of Pakistan remains unknown. A de-

tailed description of AEZs and their salient features are given in [17]. Recent studies have 

demonstrated that surface and sub-surface water storage in the study region have de-

clined in recent years due to climate dynamics mainly induced by El Niño Southern Os-

cillation (ENSO), in addition to anthropogenic depletion to meet the growing water and 

food demands [50–53]. The standardized stream flow index (SSFI) [54], standardized 

groundwater storage index (SGWI) [55] and standardized surface water storage index 

(SWSI) [56] work similarly to traditional drought indices (e.g., standardized precipitation 

index (SPI)); however, these indicators provide a more in-depth understanding of the hy-

drological cycle. 

The objective of this study was to characterize the historic long-term variability of 

extreme hydro-climatic conditions and their influences on crop production over natural 

and human-disturbed AEZs of Pakistan through a variety of hydro-meteorological and 

agricultural drought indices (i.e., SPEI, SSFI, SGWI, SSWSI, and DSI). Drought events (e.g., 

duration, rate, and intensity) and termination (timing of the recovery of drought events) 

characteristics vary depending on natural (water transfer) and human-disturbed (water 

abstractions) regions [57], and affect the agro-system to different extents [58]. Drought 

termination is a point when a drought is said to have ended with a quantifiable event in 

a temporal profile [59]. Drought effects (e.g., duration, rate, and intensity) have been 

widely studied by different researchers in the study region [47–49]; however, feedback of 

drought termination through the hydro-meteorological cycle is still poorly understood in 

the study region. Therefore, an understanding of how and when a drought is likely to 

terminate and its ultimate influences on the agro-ecosystem is crucial for water manage-

ment and decision-making processes. In the present study, the influences of a series of 

hydro-climate indicators on crop production were explored through yield sensitivity anal-

ysis [60] and yield losses using the empirical relationships [58,61]. We discuss long-term 

changes in hydro-meteorological conditions using drought events and termination char-

acteristics. The paper improves understanding of the long-term historical changes in ma-

jor crop yields, providing insights into the sensitivity of each crop’s yield to changes in 

hydro-meteorological drought indices across different AEZs. 

2. Materials and Methods 

2.1. Study Area 

The study area lies between the latitudes of 23–37° North and longitudes of 60–77° 

East, covering 10 different AEZs over a landmass of ~796, 100 km2 in Pakistan (Figure 1a). 

The Indus river and its main tributaries (Indus, Jhelum, Chenab, Ravi, Beas, and Sutlej) 

are the major source of surface water, which flows downstream towards the Arabian 

Ocean. The elevation in the study region changes from a minimum of 10 m in the south to 

a maximum of 8000 m in the northern high-mountain regions. The annual precipitation 

varies from a minimum of 50–600 mm/year in the downstream zones to a maximum of 

1800 mm/year in the upstream regions (Figure 1b). The Barani-Rainfed agricultural region 

receives higher precipitation compared to other zones. The average irrigation supply var-

ies, with downstream regions relying primarily on surface water and upstream regions 

relying primarily on groundwater irrigation (Figure 1c,d). The principal crops are wheat, 

sugarcane, cotton, rice, and maize, with different cropping calendars and two major crop-

ping seasons, namely Rabi and Kharif (Figure S1). Based on complex topographical, agri-

cultural, water transfer, and utilization characteristics, the AEZs in study region are fur-



Remote Sens. 2022, 14, 2152 4 of 27 
 

 

ther characterized into natural and human-disturbed regions (Table S1 in the Supplemen-

tary file). Most headwater zones are categorized as natural due to their water transfer 

characteristics, whereas mid and downstream zones are human-disturbed, which are reg-

ulated by human abstractions. Table S1 lists the geographic and hydrological information 

and dominant activities across each zone. 

 

Figure 1. Map of the study area showing (a) geographical location of stream gauges, river networks, 

and 10 different AEZs, (b) meteorological stations and precipitation isohyets, (c) % irrigation with 

surface water, and (d) % irrigation with groundwater. 

2.2. Data Collection and Preprocessing 

We used a combination of data sources, such as in situ observations, satellite datasets, 

a land surface model (LSM), and reanalysis. 

In situ observation data: Daily time series of temperature (Tmax, Tmin) and precipitation 

from 38 meteorological stations scattered over different AEZs were obtained from Paki-

stan Meteorological Department (PMD) from 1981 to 2019. Daily streamflow data from 14 

gauges were obtained from Pakistan Water and Power Development Authority 
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(WAPDA), of which 10 stations had data from 1981–2018, whereas the remaining four 

stations had a shorter streamflow record (1994–2018). Crop yield time-series data (1981–

2017) for five main crops (sugarcane, wheat, cotton, rice, and maize) were collected from 

Pakistan’s Agriculture Marketing Information Service (AMIS), which curates data across 

122 districts in the study region. In situ observation data of the depth to water table 

(DTWT) for 1674 observational wells were collected from Punjab Irrigation Department 

PID, Lahore, Pakistan (https://irrigation.punjab.gov.pk/, 13 March, 2021). 

Land surface model (LSM) and reanalysis output: High-resolution monthly actual 

evapotranspiration (ETa) data of the reanalysis product (Terra-Climate) at a spatial reso-

lution of 0.04° grid was collected from the Climatology Lab (http://www.climatolo-

gylab.org/terraclimate.html, 13 March, 2021) covering the period of 1981–2018. These data 

provide an important input for eco-hydrological and meteorological applications at a 

scale. Monthly terrestrial water storage (TWS) output data of the land surface model 

(LSM) were taken from GLDAS (Global Land Data Assimilation System) version 

CLSMv2.0 for the period 1981–2018 with a spatial resolution of 0.25° × 0.25° 

(https://disc.gsfc.nasa.gov/datasets, 13 March, 2021). GLDAS TWS comprises different 

surface storage compartments, such as soil moisture storage (SMS), surface runoff (Qs) 

canopy water storage (CWS), and snow water equivalent (SWE). GLDAS data have been 

widely applied by different researchers to investigate the water storage variations in the 

study region [50,62–64]. 

Satellite Data: Normalized difference vegetation index (NDVI) data were prepared 

from Landsat data. Satellite imageries of RED and NIR bands were taken from Landsat 5 

Thematic Mapper (TM) and Landsat 8 (Operational Land Imager (OLI) at a spatial (tem-

poral) resolution of 30 m (16 days) for the period of 1985–2018 (http://earthex-

plorer.usgs.gov/, 13 March, 2021). Spectral reflectance of NIR and RED bands was used to 

compute the normalized difference vegetation index (NDVI), as follows (see details in 

Supplementary file); 

NDVI = 
NIR − RED

NIR+RED
 (1) 

NDVI values range between −1 and 1. The closer the values of the NDVI index to 1, 

the higher the density of green vegetation. NDVI values near 0 indicate non-vegetated 

areas and negative values indicate water. 

Gravity Recovery and Climate Experiments (GRACE) satellites provided the terres-

trial water storage anomalies (TWSA) data, which comprise surface and sub-surface stor-

age compartments, such as surface water, soil moisture, snow, ice, groundwater, and bio-

mass [65]. Monthly GRACE-based terrestrial water storage anomalies (TWSA) of the Mas-

con solution were obtained from 2002–2018 at a 0.5° × 0.5° resolution 

(http://www2.csr.utexas.edu/grace/, 13 March, 2021). GLDAS-based surface water storage 

compartments (soil moisture storage (SMS), surface runoff (Qs) canopy water storage 

(CWS), and snow water equivalent (SWE)) were subtracted from the GRACE-based 

TWSA data to obtain the groundwater storage anomalies (GWSAs) using the following 

expression: 

GWSA = TWSA GRACE − (ΔSMS + ΔQs + ΔCWS + ΔSWE) GLDAS (2) 

where ΔSMS, ΔQs, ΔCWS, and ΔSWE represent the anomalies of SMS, Qs, CWS, and 

SWE, respectively, which were obtained by subtracting the long-term mean (2004–2009) 

from the monthly data, in the same manner as for the GRACE-based TWSA [62]. GRACE-

based GWSAs were validated with observational data. Groundwater data from observa-

tional wells are available in the form of the depth to water table (DTWT), which was con-

verted into groundwater storage anomalies (GWSAs) using the following expression: 

GWS = (DTB − DTWT) × Sy (3) 
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where GWS represents the groundwater storage (GWS), DTB is the depth to bedrock (av-

erage DTB for study area = 400 m [50]), and Sy is the specific yield of aquifer (average 

specific yield for the study area is 0.12 [50,66]). Finally, GWS was converted to anomalies 

(GWSAs) by subtracting the long-term mean (2004–2009, as for the GRACE data). 

GRACE-based GWSAs show a similar change as estimated from ground-based observa-

tion data with reasonable accuracy (R2 range: 0.68–81) (see Figure S2 in Supplementary 

file). Previous studies have also found that GRACE-based GWSAs provide reasonable ac-

curacy to track water storage variations when compared with observational data in the 

study area [50,63,64,67]. 

2.3. Quantification of Hydro-Meteorological and Agricultural Droughts 

We evaluated the extreme hydro-meteorological conditions based on several drought 

characteristics, such as drought events (months, duration, frequency, intensity) and 

drought termination (termination duration and rate) (Table 1). The quantification of each 

drought indicator is described below. 

Table 1. Summary of drought event and termination characteristics. 

Characteristics Description 

Drought event 

Duration (D) 
The sum of durations (d) for all drought events divided by the 

number of drought events (n): D =
∑ dn

j=1

n
 

Frequency (Dfreq) 
The ratio between the number of drought months (nm) and the total 

number of drought months (Nm) in the time series: Dfreq = (nm/Nm) × 100 

Drought Magnitude (DM) The sum of values for all drought spells is referred to as DM. 

Intensity (I) The ratio between drought magnitude and duration: I =
DM

D
  

Drought 

termination 

Maximum Intensity (MI) Difference between peak values of drought and threshold value 

Drought termination start 

(DTstart) 

Onset of the drought termination phase, or the month in which the 

maximum intensity (MI) is reached. 

Drought termination end 

(DTend) 
Last month of the drought termination phase 

Drought termination 

duration (DTdur) 
Number of months between DTstart and DTend for each drought event. 

Meteorological droughts: The standardized precipitation and evaporation index 

(SPEI) was used to investigate changes in meteorological extremes. The SPEI uses precip-

itation (𝑃𝑖) and potential evapotranspiration (𝑃𝐸𝑇𝑖) in drought characterization. 𝑃𝑖 and 

𝑃𝐸𝑇𝑖 were used to calculate the monthly water deficit (𝑊𝐷𝑖 ): 

𝑊𝐷𝑖   =  𝑃𝑖 − 𝑃𝐸𝑇𝑖   (4) 

Due to the limitations of climate parameters, PET was computed using the Har-

greaves method [68], which uses 𝑇𝑚𝑎𝑥, 𝑇𝑚𝑖𝑛, and 𝑅𝑎 (altitude dependent extraterrestrial 

radiation). PET is calculated as follows: 

𝑃𝐸𝑇 = 0.0023 × 𝑅𝑎 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5 (𝑇𝑚𝑒𝑎𝑛 + 0.5) (5) 

𝑊𝐷𝑖  results were fed into the SPEI R-package to calculate the SPEI at different time-

scales (http://cran.r-project.org/web/packages/SPEI, 13 March, 2021). The SPEI time series 

was derived using Equation (6): 

𝑓(𝑥) =  [1 + (
𝛼

𝑥 −  𝛾
)

𝛽

]

−1

 (6) 

where α, β, and γ are the scale, shape, and origin parameters, respectively. 
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SPEI = 𝑊 −
𝑐𝑜 + 𝑐1𝑊 + 𝑐2𝑊2 

1 + 𝑑1𝑊 + 𝑑2𝑊2 + 𝑑3𝑊3
  (7) 

𝑊 =  √−2 ln(𝑃) (8) 

when P ≤ 0.5, P = 1 − f(x); when P > 0.5, P = 1 − P, and the sign of the SPEI is inverted. 𝑐𝑜 = 

2.515517, 𝑐1 = 0.802853, 𝑐2 = 0.010328, 𝑑1 = 1.432788, 𝑑2 = 0.189269, and 𝑑3 = 0.001308 

are constants. The regional SPEI in each AEZ was obtained by averaging climate data of 

all stations located in that zone. The SPEI time series provides positive and negative val-

ues, which represent the wet and dry conditions, respectively. The detailed criteria of var-

ious drought classes (i.e., mild, moderate, severe, and extreme droughts) are given in [69]. 

The threshold value of −1 (SPEI ≤ −1) was used to determine the drought condition. 

Hydrological droughts: The standardized streamflow index (SSFI), standardized sur-

face water storage index (SSWSI), and standardized groundwater storage index (SGWI) 

were used to capture the hydrological conditions in natural and human-disturbed AEZs. 

SSFI is based on the long-term time-series record of streamflow observations. SSFI for a 

given period is calculated as the difference in the streamflow from the mean divided by 

the standard deviation (Equation (9)). 

SSFI = 
yi  −  μ

σ
 (9) 

where yi is the original times series values of streamflow at time i, μ is the long-term 

mean of streamflow, and σ is the standard deviation. SSWSI and SGWI indicators were 

statistically calculated similarly to SSFI. However, the SSWSI time series comprises soil 

moisture storage (SM), canopy water storage (CWS), snow water equivalent (SWE), and 

runoff as input parameters, and SGWI involves the GRACE-based groundwater storage 

anomaly (GWSA) as the input parameter. The time series of hydrological droughts (SSFI, 

SSWSI, and SGWI) exhibits positive and negative values representing the wet and dry 

conditions. SSFI, SSWSI, and SGWI time series were computed at different timescales, 

similar to SPEI. The use of a shorter timeframe, such as six months, is recommended for 

agricultural drought monitoring [70,71]. Recent studies on the linkage between drought 

indices and agricultural impacts also indicate that the six-month (i.e., SPEI-6) index is ad-

equate for evaluating drought impacts on agriculture [71–73]. Therefore, SPEI and other 

drought indices spanning six months were adopted for further analysis. 

Agricultural droughts: We also computed the Landsat-based drought severity index 

(DSI) using NDVI and ET/PET to quantify agricultural droughts as a proxy for vegetation 

and biomass changes. Computation of the DSI was undertaken in three steps: (1) stand-

ardization of the NDVI and ET/PET, (2) summation of the standardized NDVI and ET/PET 

to obtain the Z value, and (3) standardization of the Z value to obtain the DSI [74] as fol-

lows: 

𝑍𝑁𝐷𝑉𝐼  = 
NDVI − NDVI̅̅ ̅̅ ̅̅ ̅̅

σ
 (10) 

𝑍 ET

PET

 = 
ET

 PET
 − 

ET

PET

̅̅ ̅̅ ̅̅

σ
 (11) 

Z = 𝑍𝑁𝐷𝑉𝐼   + 𝑍 ET

PET

 (12) 

DSI = 
Z − Z̅

σ
 (13) 

Positive DSI values indicate wet/favorable conditions for vegetation growth, whereas 

negative values indicate dry/drought conditions, i.e., vegetation stress. 
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2.4. Composite Analysis 

The relationships between large scale circulation patterns and historic drought epi-

sodes were explored using composite analysis. This approach has been widely used to 

determine the response of a variable to particular event [47]. The ERA5 monthly reanalysis 

data (1981–2018) with a horizontal resolution of 0.25° grid were used for compositing. The 

single and multi-level meteorological fields chosen as possible drivers of historic droughts 

were two-meter air temperature, total precipitation, 850 mb relative humidity, 500 hPa 

geopotential height, soil moisture, and soil temperature. 

2.5. Standardized Crop Yield Estimation 

Crop production in the region has an overall increasing trend due to advances in 

technology and adaptation practices in agricultural sectors [58,75]. Therefore, we used a 

linear regression method to remove the technological effect from the yield [76]. The resid-

ual yield yi
(T)

 was calculated using Equation (14). 

yi
(T)

=  𝑦𝑖
0 − 𝑦𝑖

(𝜏)
 (14) 

where 𝑦𝑖
0 is the observed crop yield and 𝑦𝑖

(𝜏)
 is the value of the detrended yield. The ef-

fects of climate on crop yield are expressed by the residuals [58,77]. We subsequently de-

rived the standardized yield residual index (SYRI): 

SYRI = 
yi

(T) 
− μ

σ
 (15) 

where yi
(T)

 is the residual of the detrended yield, μ is the mean of the detrended yield 

residuals, and σ is the standard deviation. Negative values in the SYRI time series reflect 

a decrease in crop yield compared to the long-term average. 

2.6. Calculation of Crop Yield Sensitivity and Yield Losses 

We calculated the yield sensitivity of each crop by establishing a statistical relation-

ship between crop production and seasonal anomalies of hydro-meteorological indicators 

(streamflow, groundwater storage (GWS), surface water storage (SWS), and precipita-

tion). For a given year, anomalies for each indicator were calculated by dividing each in-

dicator’s long-term average value in the growing season by the actual amount of water in 

the same period. Similarly, the yield anomaly index was calculated as a measure of the 

yield’s deviation from the normal. Finally, the yield sensitivity index for each crop was 

calculated by dividing the yield anomaly index by the anomalies of hydro-meteorological 

indicators [60]. The sensitivity index value becomes larger if there is a high yield value 

change with a small change in hydro-meteorological indicators, and vice versa. Further-

more, we used empirical relationships among crop yields and hydro-meteorological 

drought indices to estimate the yield losses (%) of wheat, cotton, sugarcane, maize, and 

rice from 1981 to 2017 [58,61]. The yield losses (%) for each crop were determined by di-

viding the annual crop yield by the dynamically averaged yield value of the quadratic 

trend and multiplying the resulting ratio by 100 [78]. 

3. Results 

3.1. Historical Trend in Hydro-Meteorological Droughts 

The spatial pattern of droughts derived from SPEI at a six-month timescale (SPEI-6) 

reveals an increasing trend, mostly over the human-disturbed AEZ’s in Southern Pakistan 

(Figure 2). In contrast, a slightly decreasing trend is apparent in Central and Northern 

AEZs. These findings are consistent with previous studies conducted in the South Asian 

domain [32,79,80]. Time-series changes in SPEI-6 index show mild to extreme drought 

conditions in various AEZs. The drought episodes display a uniform pattern in some 

AEZs; however, predominantly non-uniform patterns have been observed among most 
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AEZs, likely due to heterogeneity in climate conditions in each region [17]. The interan-

nual rainfall variability and temperature are the primary factors of meteorological 

droughts in SA [81]. For instance, 1986, 1988, 2001, 2002, 2009, and 2018 were distinctly 

marked as mild to moderate drought years for the Wet Mountains zone, which generally 

receives a high amount of annual rainfall (~1200–1600 mm/year), whereas 1981, 1982, 1983, 

2000–2003, 2005 and 2018 were highlighted as moderate to severe and extreme drought 

periods for the Dry Western Plateau, which receives the lowest amount of rainfall (~100–

200 mm/year). Notably, arid to semi-arid zones (i.e., Western Dry Mountains, Dry West-

ern Plateau) experienced higher numbers of drought episodes, indicating that these areas 

are more vulnerable to drought [18,82]. The historic drought episodes have affected 150 

million people in the African Sahel, 83 million in China, and 19 million in Australia [79]. 

The intensity of La Niña and ENSO episodes (particularly between 1998 and 2003) signif-

icantly impacted climate extremes in terms of climate variability and transition across SA 

[30,33]. 

 

Figure 2. Spatial trend and time series of the standardized precipitation evaporation index at a six-

month timescale (SPEI-6) over different AEZs. Note: N and HD represent natural and human-dis-

turb zones, respectively.  

Figure 3 depicts the long-term spatial trend and time-series variations of SSFI-6 for 

10 stream gauges located in different AEZs. The SSFI data are unavailable for some zones 

(such as Suleiman Piedmont, Dry Western Plateau, and Western Dry Mountains) due to 

the lack of a stream network or observed records. The long-term (1981–2017) spatial trends 

of SSFI indicated an obvious increase in droughts for downstream gauge stations located 

across human-disturbed AEZs (Figure 3), whereas the reverse patterns are seen for up-
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stream gauge stations located in the natural zones. The upstream stations are mostly lo-

cated over the core monsoon zone, which receives adequate rainfall during the summer 

monsoon and winter rainfall in the form of snow [83]. In addition, the influence of urban-

ization and land-use patterns on streamflow variability is also evident in the literature 

[84]. Drought episodes detected by SSFI overlapped with drought episodes observed with 

SPEI for some years. Overall, extensive dry events occurred in 2001–2003, whereas most 

of the selected stream gauging stations registered wet events in 1994–1996. Interestingly, 

SSFI time series for the Yogo, Terbela, Nowshera, and Mangla stream gauge stations lo-

cated in the natural zones (e.g., Wet Mountains and Northern Dry Mountains) depicted 

less frequent drought episodes. However, the historical trend of SSFI over human-dis-

turbed stream gauging stations, such as Balloki Headwork (located in the Northern Irri-

gated Plain), Sukur Barrage (Southern Irrigated Plain), and Kotri Barrage (Indus Delta), 

showed continuous shifts from wet to dry conditions during 1981–2018, which is likely 

associated with a large diversion of surface water for irrigation supply in these zones 

[39,40]. This finding agrees with a hydrologic study (i.e., monthly mean streamflow and 

long-term trends) of the mountainous areas in northwestern Pakistan [85]. Human activ-

ities (i.e., water abstraction for surface irrigation) lower the streamflow regime and exac-

erbate hydrological droughts. Various studies further confirm water abstraction’s effects 

on streamflow droughts worldwide [86,87]. 

 

Figure 3. Spatial trend and time series of standardized streamflow index at a 6-month timescale 

(SSFI-6) for 10 stream gauging stations located in the AEZs. Note: N and HD represent natural and 

human-disturb zones, respectively. 
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An increasing drought trend (spatial pattern) is apparent for the AEZs located to-

wards southwestern and northeastern Pakistan (Figure 4). Drought events were high-

lighted based on the threshold value of SSWSI < −0.5. The spatial trend of droughts exhib-

ited mixed patterns during 1981–2017. The southwestern, central, and northeastern zones 

are highly susceptible to drought risks because of the arid to semi-arid climate conditions 

[33]. These results are in good agreement with earlier studies on hydrological droughts 

[88,89]. Notably, the historical time series of droughts obtained from SSWSI-6 reflects 

drought events associated with SPEI-6 time-series variations over most AEZs. More fre-

quent hydrological droughts based on SSWSI-6 were recorded for the years of 1981, 1985, 

1989, 1993, 1999–2002, and 2017–2018. Since SSWSI was calculated as the sum of soil mois-

ture, canopy water, and runoff, changes in SSWSI are more sensitive to any change in the 

precipitation cycle and climate variability. For instance, it can be seen that the time series 

of changes in SSWS-6 across the Sandy Desert show a declining trend between 1984–1990 

and 1998–2003, strongly associated with changes in precipitation extremes during this pe-

riod [18]. Furthermore, the recent decrease in SSWS-6 during drought episodes may also 

be linked to El Niño events [52]. 

 

Figure 4. Spatial trend and time series of standardized surface water storage index at a 6-month 

timescale (SSWSI-6) for 10 different AEZs. Note: N and HD represent natural and human-disturb 

zones, respectively. 

We also investigated the sub-surface hydrological droughts in terms of aquifer de-

pletion using SGWI index at a 6-month timeframe (Figure 5). It is important to evaluate 

this index since groundwater is being depleted continuously to meet the demands of ag-

riculture and population [36,37]. The spatial trend of SGWI index shows heterogeneity in 

drought patterns with an increasing trend observed in the North Irrigated Plain. Climate 
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and land-use patterns have significantly impacted the hydrological cycle in the Punjab 

province of Pakistan, reducing groundwater recharge by 15% [88]. The drying trend in 

groundwater in the Mediterranean and Eastern Europe regions has been associated with 

changes in land-use land cover patterns [90]. Most of the zones had drought episodes in 

recent years. However, drought episodes (i.e., during 2004, 2005, 2007, and 2011) were 

more frequent in human-disturbed zones (North Irrigated Plain) compared to other zones. 

Earlier studies also reported the sensitivity of groundwater drought to hydroclimatic con-

ditions, where anthropogenic activities had a larger effect on groundwater recharge than 

climate change [88,90,91]. All AEZs except Barani-Rainfed and Wet Mountains show a 

continuous decline in groundwater storage and a shift from wetter to drier conditions 

during 2002–2018, which is probably associated with a large abstraction of groundwater 

for irrigation supply [35,37].  

 

Figure 5. Spatial trend and time series of standardized groundwater storage index at a 6-month 

timeframe (SGWI-6) for 10 different AEZs. Note: N and HD represent natural and human-disturb 

zones, respectively. 

Overall, the spatial pattern (trend) of hydro-meteorological droughts reflected by 

each indicator is different across the AEZs; however, an increasing trend is observed in 

downstream human-disturbed zones (e.g., SIP) based on SPEI, SSWSI, and SSFI, but not 

based on SGWI, which suggests a decreasing trend in groundwater drought; this may be 

associated with the fact that irrigation primely relies on surface water, as shown in Figure 

1c. The interannual rainfall variability and extreme high temperatures have made the 

downstream zones more vulnerable to drought risks [17,33], which may be explained by 

the concomitant lower precipitation and discharge resulting in hydrological drought [92]. 

Notably, one-third of the global population lives in water-scarce regions, particularly over 
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arid to semi-arid regions of Asia, the Middle East, North Africa, and the Mediterranean 

countries [93], where anthropogenic activities largely influence the groundwater re-

sources [94]. We also evaluated the seasonal distribution of hydro-meteorological condi-

tions for SPEI, SSWSI, SSFI, and SGWI in two main cropping seasons, namely, Rabi (cor-

responding to winter crops) and Kharif (corresponding to summer crops). It was seen that 

the drought years explained by hydro-meteorological indices were more frequent and in-

tense during the Rabi season compared to Kharif (see Figure S3 in the Supplementary 

Material). These findings are in good agreement with previous studies across SA [81]. 

3.2. Evaluation of Drought Characteristics  

We statistically evaluated attributes of hydro-meteorological drought propagation 

characteristics based on duration, frequency, months, and intensity in natural (N) and hu-

man-disturbed (HD) AEZs (Figure 6). Average drought intensity for each drought indica-

tor, except SSFI, was higher in the human-disturbed zones than the natural zones. The 

maximum drought intensity was recorded as −2.8 for SGWI, followed by −2.2 for SSWSI 

and −1.7 for SSFI. The drought intensity in recent years is a sign that rainfall following 

droughts was insufficient to restore the hydrological conditions to fulfill the growing de-

mand for agricultural, urban, and industrial sectors [95]. The number of drought months 

was higher for meteorological droughts (SPEI) than hydrological droughts (reflected by 

SSWSI, SGWI, and SSFI) across all natural zones. For example, the maximum drought 

months calculated with SPEI was 90 in zone 5 (Suleman Piedmont), whereas the maxi-

mum drought months for the SSWSI and SGWI in the same zone were 30 and 23 months, 

respectively. Drought duration calculated based on all hydro-metrological indicators had 

no significant difference in natural and human-disturbed AEZs. According to SPEI, the 

maximum drought termination duration was recorded as 9.25 months across the natural 

zone (Western Dry Mountains; WDM), which can be linked to the region’s dry climate 

and lower precipitation rate [33]. However, based on SSFI, SSWSI, and SGWI, drought 

termination durations were significantly longer across the human-disturbed zone (North 

Irrigated Plain; NIP), reaching 16, 19, and 25 months, respectively (Table 2). Overall, 

drought termination durations frequently last longer with a slower termination rate than 

across human-disturbed zones subject to different anthropogenic activities, including wa-

ter use for urbanization and agriculture and mixed influences [37,39]. In contrast, the 

drought termination rate appears to be higher in natural zones (with water transfer char-

acteristics), measuring 0.86 mm/month for Northern Dry Mountains (NDM), 0.72 

mm/month for Western Dry Mountains (WDM), and 0.61 mm/month for Indus Delta (ID). 

Because the termination rate is calculated from the termination duration (DTdur) and max-

imum intensity (MI), any change in termination rate can result from either DTdur or MI in 

a system [57]. Most natural regions had relatively short drought termination durations 

and fast drought termination rates. However, in some areas with anthropogenic opera-

tions, the termination rate is lower, but the system returned from drought to non-drought 

conditions in a shorter time period [57,59,96]. For instance, the mean termination dura-

tions and the corresponding rates calculated by SSWSI were 14.25 months (0.28 

mm/month) and 3.86 months (0.28 mm/month) for SD (Sandy Desert) and ID (Indus 

Delta), respectively. 
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Figure 6. Distribution of hydro-meteorological drought events (duration, intensity, drought 

months, and frequency) for SPEI, SSWSI, SGWI and SSFI, in natural (N) and human-disturbed (HD) 

AEZs. (Note: SPEI, TWSI, and SGWI were computed over 10 different AEZs, whereas SSFI was 

derived for 10 stream gauging stations distributed in different zones). 

Table 2. Drought termination characteristics in different zones. 

Zone Condition 

Mean Termination Duration 

(Month) 

Mean Termination Rate 

(mm/Month) 

SPEI SSFI SSWSI SGWI SPEI SSFI SSWSI SGWI 

DWP Natural 5.88 ** 6.50 5.00 0.65 ** 0.41 0.55 

SIP Human-disturbed 4.71 14.33 4.20 11.00 0.59 0.20 0.29 0.25 

SD Natural 6.11 23.50 14.25 10.00 0.20 0.18 0.28 0.28 

NIP Human-disturbed 5.28 16.00 19.00 25.80 0.42 0.13 0.11 0.10 

SPD Natural 4.42 ** 3.17 9.00 0.63 ** 0.54 0.23 

BRR Natural 8.22 11.60 12.75 6.80 0.28 0.23 0.21 0.33 

WM 
Natural + Human-

disturbed 
4.70 6.07 28.00 9.66 0.56 0.34 0.13 0.24 

NDM Natural 7.16 5.62 11.75 13.00 0.86 0.30 0.11 0.21 

WDM Natural 9.25 ** 2.22 6.33 0.38 ** 0.72 0.36 

ID Human-disturbed 4.98 12.31 3.86 12.00 0.61 0.31 0.50 0.28 

DWP—Dry Western Plateau; SIP—South Irrigated Plain; SD—Sandy Desert; NIP—Northern Irri-

gated Plain; SPD—Suleiman Piedmont; BRR—Barani-Rainfed; WM—Wet Mountains; NDM—

Northern Dry Mountains; WDM—Western Dry Mountains; ID—Indus Delta. ** Data is not availa-

ble for these regions. 
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3.3. Large-Scale Circulation Patterns and Composite Drought Events 

The composites of large-scale circulation patterns associated with historical droughts 

were investigated over Pakistan (Figure 7). The composite drought years identified by 

various hydro-meteorological indicators were 1981–1983, 1999–2004, and 2018 (Figure 7a). 

These drought years were grouped together and further analyzed as a single variable. 

This method has been widely used to reveal the dominant patterns of large scale climate 

variables for drought assessment [47]. Composites of 500 hPa geopotential height anom-

alies depict a high-pressure system over Pakistan. Furthermore, the two-meter air tem-

perature and soil temperature reveal positive anomalies, indicating hotter and drier cli-

mate favoring droughts in the region. As expected, the opposite patterns are apparent in 

the composites of 850 mb relative humidity, total precipitation, and soil moisture anoma-

lies (Figure 7b). The year 1997–1998 was marked by a strong El Niño Southern Oscillation 

(ENSO). This strong ENSO induced the historically worst drought (1999–2002) in south-

west Asia [30], affecting about 3.3 million people in Pakistan, and severely reducing the 

agricultural productivity [18]. 

 

Figure 7. Composite drought years (a) and composite anomalies (b) of the large-scale circulation 

patterns (i.e., 500 hPa geopotential height, 850 mb relative humidity, 2 m temperature, total precip-

itation, soil temperature, and soil moisture) during historical (1981–1983, 1999–2004, 2017–2018) 

drought episodes. 
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3.4. Historical Variations in Agricultural-Based DSI and Crop Yield 

The negative values of DSI represent moderate to severe (yellow to red color bar) 

drought conditions, and the positive values indicate normal to wet conditions (green to 

blue color bar) for vegetation growth (Figure 8). The spatial patterns of DSI reveal a drying 

pattern in the region during the years 2000, 2001, 2002, and 2004. The negative values of 

DSI show vegetation stress conditions for the zones of Indus Delta, Southern Irrigated 

Plain, Sandy Desert, Northern Irrigated Plain, Dry Western Plateau, and Suleiman Pied-

mont. In contrast, few AEZs depicted positive (higher) DSI values even during the 

drought years; this is mainly attributed to water resource availability, which tends to al-

leviate the moisture stress for crops [92]. Further, the regional average time-series analysis 

of standardized NDVI indicates a decline in vegetation growth during the intense drought 

episodes (Figure 8). ENSO-induced changes to vegetation stress conditions are already 

evident in the literature [97,98]. 

 

Figure 8. Spatial variations in Landsat drought severity index (DSI) in dry years (2000–2004) and 

average time series of NDVI from 1987–2018. Maps were prepared from Landsat images. 

Figure 9a shows the rate of change in crop yield of five major crops over 123 locations 

in 1981–2017. It is observed that crop yield changes are not homogeneous throughout the 

study region. For instance, wheat yield decreased by 5–10 ton/ha/year in Western Dry 

Mountains and Dry Western Plateau, whereas it increased 5–11 ton/ha/year in Northern 

Irrigated Plain. On average, the greatest decrease in crop production was found for wheat 

and maize crops. Further, a non-parametric Mann–Kendall (MK) test was used to investi-

gate the significance of long-term (1981–2017) trends in crop yield changes in different 

AEZs of Pakistan (see Table S2 in the Supplementary file). On average, the linear trend of 

the wheat, rice, and maize over most of the AEZs showed a significant increase in yield 

from 1981 to 2017. However, the trends seem to significantly decrease for some crops, such 

as sugarcane (in the Northern Dry Mountains), maize (in the Southern Irrigated Plain), 

rice (in the Wet Mountains), and cotton (in the Indus Delta) (see Table S2 in the Supple-

mentary file). In Bangladesh, droughts have affected 1.2 million ha of rice fields during 

the growing season of Rabi and Kharif [99]. The dry spells for the 2008/09 winter season 
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impacted 70% of the agricultural areas in Nepal [100], whereas prolonged drought epi-

sodes from 2002 to 2012 caused widespread damage to food crops in India [81]. Changes 

in yield over time are influenced by various factors in addition to climate conditions, in-

cluding new management methods, innovations, and crop planting area, resulting in a 

rising trend in yield [76]. Therefore, we detrended the historical crop yield to exclude the 

influence of these non-climatic shifts and thus isolate the variation caused by climate. Fig-

ure 9b shows the time-series variations in the standardized yield residuals index (SYRI) 

for five major crops over different AEZs in the study area from 1981 to 2017. SYRI of the 

maize, wheat, and cotton crops showed that yield increased from 1981 to 1993 and from 

2006 to 2015. However, frequent yield loss was observed during drought episodes be-

tween 1998 to 2005 due to an intense El Nino event [18,33]. For instance, extreme yield 

loss (SYRS ≤ −1.5) years were recorded for wheat (1981, 2001), cotton (1983, 1993, 2016), 

sugarcane (1986, 1989, 2005), maize (2000, 2003, 2005), and rice (1993, 2000), which are 

associated with drought episodes. Overall, the number of low-yield years (SYRI ≤ −1.5) 

was greater for sugarcane and maize (10 years) followed by rice (9), wheat (8), and cotton 

(6). 

 

Figure 9. (a) The rate of change in crop yield for five major crops over 123 locations, and (b) com-

parison between standardized crop yield residual index (SYRI) for five major crops from 1981 to 

2017 over different AEZs. 

3.5. Accounting for Crop Yield Sensitivity and Losses 

Drought effects on different crop growth stages (sowing, growth, and harvesting) 

were studied using monthly Pearson correlation coefficients between SYRI for five crops 

and hydro-meteorological indicators from 1981 to 2017 (Figure 10a–e). The positive values 

of correlation depicted the significant impact of drought indicators on crop yields. The 
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correlation values (minimum to maximum) indicated by box plots vary among each 

drought indicator and among growth stages. During the sowing to growth stages, the 

strongest correlation was observed primarily for wheat, sugarcane, and maize. For exam-

ple, the correlation coefficient for winter wheat from sowing to harvesting ranges from r 

= −0.60 to 0.59 (p ≤ 0.05), with the highest correlation observed during the sowing and the 

growth (third leaf’s appearance from October–November) stages. In contrary, the maxi-

mum correlation through all drought indicators was higher during the growth and har-

vesting stage for maize. Overall, the correlation values appear to be higher using SGWI 

for all crops. Zone-wise, the analysis depicted that there is strong heterogeneity in corre-

lation among all AEZs (Figure 10f–j). Overall, the maximum correlation was recorded over 

the Dry Western Plateau (DWP), South Irrigated Plain (SIP), Northern Dry Mountains 

(NDM), and Western Dry Mountains (WDM), indicating that that droughts in these re-

gions had significant effects on crop production [101], which may be attributed to the fact 

that drought termination durations are frequently longer with the slower termination rate, 

as reported in Table 2. However, correlation values for each crop vary among AEZs. For 

instance, maximum values of correlation for rice were recorded in the Western Dry Moun-

tains (WDM), and Indus Delta (ID), whereas the lowest values were recorded in the Dry 

Western Plateau (DWP) (Figure 10f–j).  

 

Figure 10. (a–e) Box plot (minimum–maximum) values of the correlation coefficient between 

drought indicators and SYRI in different crop growth stages, and (f–j) average correlation between 

SYRI and combined drought indicators across different AEZs from 1981–2017. 
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Figure 11a shows the time-averaged sensitivity of total crop production in response 

to changes in hydrological indicators (precipitation, surface water storage (SWS), ground-

water storage (GWS), and streamflow) across the natural and human-disturbed AEZs. It 

is observed that yield sensitivity of total crop production tends to be higher with SWS, 

GWS, and streamflow variations in human-disturbed zones, except for precipitation var-

iations, which are more sensitive in natural zones. The higher sensitivity of crop yield in 

human-disturbed zones is associated with the frequently longer termination duration and 

the slower termination rate of these indicators (Table 2). Figure 11b shows the time-series 

variations in area-averaged crop yield sensitivity of each crop in response to precipitation, 

SWS, and streamflow variations from 1981 to 2017. For instance, the higher peaks of ex-

treme yield-sensitive years were observed during drought years, as found for wheat (2003, 

2004, 2005), cotton (1993, 2000, 2001, 2016), sugarcane (1996, 2003, 2005), maize (1996, 

2003), and rice (1988, 1993, 2003). Rice production seems to be more affected than other 

crops, with a maximum yield sensitivity value recorded as 9, followed by sugarcane (6.5), 

maize (6), wheat (5), and cotton (5). 

 

Figure 11. (a) Time-averaged sensitivity of total crop production in response to precipitation, surface 

water storage (SWS), groundwater storage (GWS), and streamflow changes from 1981 to 2017 over 

different AEZs, and (b) area-averaged crop yield sensitivity of each crop in response to precipita-

tion, SWS, and streamflow changes from 1981 to 2017. 

Table 3 shows that the percentage yield losses for five major crops during 1981–2017. 

The maize crop was most affected by droughts, with yields falling by 51% in 1985, fol-

lowed by cotton at 45% in 2010 and rice at 37% in 2001, whereas wheat yields were less 

affected (Table 3). The crop yield losses differ depending on which hydro-meteorological 

predictor (SPEI, SSWSI, SSFI, and SGWI) is used (Table 3), and also depend on the crop-

specific water requirement [35,36]. The percentage yield losses associated with shifts in 
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SSFI and SSWSI were greater than in SPEI due to the longer termination time and slower 

termination rate for all crops. For instance, the maximum maize yield losses were 52% and 

32% with SSFI and SSWSI, respectively, and 28% with SPEI. The arid to semi-arid zones 

are more vulnerable to drought risk because of the interannual rainfall variability and the 

extensive use of surface water and sub-surface water resources [18,37]. 

Table 3. Quantification of crop yield losses (%) during intense drought episodes from 1981 to 2017. 

Year 
Wheat Cotton Sugarcane Maize Rice 

SPEI SSWSI SSFI SGWI SPEI SSWSI SSFI SGWI SPEI SSWSI SSFI SGWI SPEI SSWSI SSFI SGWI SPEI SSWSI SSFI SGWI 

1982 0 19 0 0 0 0 0 0 0 15 11 0 0 0 29 0 0 0 23 0 

1983 0 13 0 0 0 38 13 0 0 15 0 0 27 15 0 0 16 0 0 0 

1984 19 0 12 0 0 19 0 0 16 0 15 0 0 0 39 0 0 0 20 0 

1985 0 0 16 0 0 0 0 0 0 0 20 0 5 11 51 0 8 0 36 0 

1987 0 12 0 0 23 0 0 0 0 0 0 0 25 0 0 0 15 0 0 0 

1988 13 0 0 0 8 23 13 0 19 0 0 0 0 0 0 0 6 0 0 0 

1989 0 0 12 0 14 19 0 0 0 0 15 0 26 17 27 0 15 0 13 0 

1992 0 14 0 0 0 28 14 0 0 16 0 0 0 0 0 0 0 0 0 0 

1993 0 0 0 0 30 0 0 0 0 0 13 0 0 0 44 0 0 0 22 0 

1994 0 0 0 0 0 0 16 0 0 30 0 0 0 0 0 0 0 0 0 0 

1999 15 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 8 0 0 

2000 23 0 0 0 19 29 0 0 23 0 14 0 19 0 0 0 15 23 0 0 

2001 16 0 15 0 21 34 0 0 0 0 26 0 21 17 2 0 19 37 9 0 

2002 18 0 0 0 15 0 0 0 0 0 17 0 0 0 0 0 17 21 0 0 

2004 20 0 0 0 0 0 0 0 0 0 14 0 0 32 28 19 0 0 24 17 

2005 0 16 0 13 0 0 0 0 0 12 0 16 0 0 0 0 0 0 0 0 

2006 12 0 0 0 0 0 0 12 0 12 0 11 0 0 0 0 0 0 0 0 

2007 0 19 0 0 0 0 0 14 0 13 0 14 0 0 0 0 0 0 0 0 

2011 15 0 0 0 0 45 15 23 0 0 0 0 0 0 0 0 0 0 0 0 

2015 0 14 0 0 0 35 12 16 0 17 0 16 0 0 0 15 0 0 0 0 

2016 0 11 9 0 0 21 0 0 18 10 0 0 28 0 0 17 19 0 0 0 

4. Discussion 

The study area covers AEZs that have diverse topography with varying hydro-cli-

mate constraints [29]. Therefore, characterizing drought conditions based on a single con-

straint can produce an incomplete or even misleading picture. The present study evalu-

ated the impacts of droughts on crop production by considering various hydro-meteoro-

logical and agricultural droughts indicators, such as SPEI, SSFI, SSWSI, SGWI, and DSI. 

Spatiotemporal patterns of SPEI indicated extreme drought conditions in Southern Paki-

stan. A recent study investigated moderate to severe drought episodes in the arid region 

of Baluchistan, Pakistan, suggesting that the meteorological-based SPEI index adequately 

captures dry events in contrast to SPI, which does not take into account temperature, a 

critical factor for drought characterization [102]. Various previous studies further con-

firmed the use of SPEI for meteorological drought analysis over SA [32,46,48,79,80]. No-

tably, arid to semi-arid AEZs (i.e., Western Dry Mountains, Dry Western Plateau) experi-

enced more frequent drought episodes, indicating their vulnerability to climate threats 

[18,82]. The extreme high-temperature events and below-average rainfall are critical fac-

tors of meteorological droughts in semi-arid environments [81]. Hydroclimate variability 

over the SA domain has been significantly influenced by ENSO episodes, particularly be-

tween 1998 and 2003 [33]. Notably, historical drought events have badly affected the so-

cioeconomic and environmental conditions across the globe [79,99,103]. 

SSFI time series for stream gauge stations located in the natural zones (Wet Moun-

tains and Northern Dry Mountains zones) experienced less frequent droughts [92]. Due 

to less anthropogenic influences, the streamflow data from these stations represent the 

natural condition, and changes in streamflow are mainly attributed to climate variability. 

Water transfer catchments with natural streamflow have fewer severe and extreme 

droughts than human-impacted systems [57]. By comparison, streamflow stations located 
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in the human-disturbed regions display more frequent drought conditions. Previous stud-

ies also found that rising food demands and climate threats, along with population 

growth, have greatly increased the risk of water shortage in Pakistan’s irrigated regions 

[36,104]. 

SSWSI is also influential in driving the surface water storage cycle, and it is a key 

indicator in the evaluation of drought based on extreme hydrological events [105]. More 

frequent hydrological droughts based on SSWSI were recorded at Barani-Rainfed and 

Western Dry Mountains, which may be related to the extensive use of groundwater re-

sources during dry season irrigation, and to climate variability [106,107]. Earlier studies 

further confirmed the impacts of water abstraction on hydrological droughts worldwide 

[86,87]. The interannual rainfall variability and extreme high temperatures have also made 

these zones more vulnerable to drought risks [17,33]. The long-term changes in the surface 

water storage are negatively correlated with ENSO. Simultaneously, the modulation of 

Pacific Decadal Oscillation (PDO) may significantly impact this relation [108].  

Groundwater storage based on SGWI depicted that the human-disturbed zones 

(Northern Irrigated zone) are threatened by extensive groundwater depletion, forcing the 

region into persistent groundwater drought [50,109]. In addition, the southwestern region 

shows a significant decline in groundwater levels due to continuous groundwater storage 

depletion in recent decades [37]. The sensitivity of groundwater storage to hydroclimate 

constraints is evident in the literature; however, anthropogenic activities had a more sig-

nificant effect on groundwater recharge than climate change [88,90,91]. The effects of hy-

dro-metrological indicators are not the same throughout the study region, affecting the 

drought termination characteristics (termination duration and rate) across the natural and 

human-disturbed AEZs. For example, the ID plain shows a quicker transition from its 

most intense month of drought back to non-drought conditions compared to SD. This may 

be linked to the region’s active water management practices, such as water-saving 

through adapting cropping patterns to the current irrigation settings, and even the com-

bined implementation of optimal cropping patterns and improved irrigation technologies, 

i.e., sprinkler and drip irrigation [36]. Human-disturbed systems appear to increase the 

average drought termination duration and the rate at which the system returns from the 

peak of drought to non-drought conditions [57]. 

The spatial and temporal patterns of DSI depict vegetation stress conditions in the 

human-disturbed AEZs. Vegetation changes during intense dry spells have been linked 

to different ENSO phases [97,98]. However, fewer AEZs revealed positive (higher) DSI 

values during the dry years, mainly due to water resource availability, which alleviates 

crop moisture stress [92]. Overall, the analysis of hydrometeorological and agricultural 

drought indices showed different frequency and intensity of drought events across AEZs, 

which are subject to varying climate and land-use constraints. The AEZs having natural-

ized climate conditions register less frequent drought events. These naturalized AEZs are 

mostly located over the core monsoon region of Pakistan, which receive rainfall during 

the summer season and winter rainfall in the form of snow [83], and have relatively short 

drought termination durations and fast drought termination characteristics [57,59,96]. In 

addition to climate variability, the catchment characteristics (i.e., geology, area, and lag-

time) also play an important role in drought propagation. Human-disturbed AEZs expe-

rience the most frequent drought events, suggesting that human activities are more in-

clined to play a negative role in aggravating droughts by altering the flow regime and 

their spatiotemporal characteristics [86,87,90,91,110]. For instance, all AEZs except Barani-

Rainfed and Wet Mountains show a continuous decline in groundwater storage and a 

shift from wetter to drier conditions during 2002–2018, which is probably associated with 

a large abstraction of groundwater for irrigation purposes [35,37]. The risks of climate 

change for crop production in Pakistan have been reported in the literature [101]. The 

composite analysis of atmospheric circulation revealed large-scale changes in geopoten-

tial height, near-surface air temperature, soil moisture conditions, relative humidity, and 

total precipitation are the likely drivers of droughts over Pakistan. The impacts of climate 
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change on agricultural productivity (i.e., rice, wheat, maize, cotton, and sugarcane) varied 

across AEZs due to different climate and hydrological constraints. Temperature is a dom-

inant factor in defining drought episodes during the Rabi season, whereas rainfall influ-

ences the Kharif growing season [49]. Notably, an increase in the mean seasonal temper-

ature above 25.5 °C severely impacts the wheat yield in arid and semi-arid environments 

[111]. Extreme high temperature has negatively impacted the maize crop yield in the 

Northern Dry Mountains zone [112]. The below-average rainfall amount also negatively 

influenced the yield of major food crops, especially in the rainfed regions [101].  

Results from the current study suggest that sowing to growth stages are the most 

susceptible times in terms of water deficit for crop production, resulting in substantial 

yield loss [75]. Temperature variability is critical during crop development stages 

[33,36,37,101,113]. Robust increases in mean temperatures resulted in crop yield failure, 

causing damage to spikes or smaller grains at later crop development stages [111,112,114]. 

Global warming is expected to increase the risk of warmer temperatures that will likely 

impact crop plants [22]. The development of drought-tolerant high-yield varieties is 

needed to alleviate climate change impacts [101]. All the zones depict drought episodes 

in different periods; however, drought episodes from 2000–2004 occurred in most AEZs, 

affecting the yield (80%) of agricultural crops and GDP to a greater extent [41,42]. Wheat 

yield was impacted more in Northern Irrigated Plain, whereas the yields of rice and maize 

crops were largely impacted in the zones of the Western Dry Mountains [115]. Many other 

factors may also contribute to changes in crop production in the study area, including 

changes in population patterns, soil management technologies, the density and propor-

tion of agricultural land, fertilizer type and availability, and capital invested [76,116]. 

However, we primarily studied the sensitivity of crop productivity to precipitation, SWS, 

GWS, and streamflow variations. Large crop yield variations with a slight variation in the 

hydro-climate constraints shows high sensitivity [22,60,75]. Based on our yield sensitivity 

index analysis, rice production is generally more sensitive than other crops. The yield sen-

sitivity of total crop production seems to be higher in human-disturbed zones correspond-

ing to SWS, GWS, and streamflow variations, which is related to the frequently longer 

termination duration and their slower termination rate of hydro-meteorological droughts. 

5. Limitations and Future Directions 

Our study tried to evaluate the historical crop yield losses associated with hydro-

meteorological and agricultural drought propagation over different AEZs in the study 

region; however, there are still some limitations which may be the subject of future inves-

tigations. Groundwater storage analysis was presented for a short-term period of 2002–

2018 due to data limitations from ground observations and the limited coverage of 

GRACE. In-depth groundwater studies are required to investigate the groundwater 

changes behind the GRACE data period. Although we compared the GRACE-driven 

GWSA estimates with observational data, additional uncertainty analysis is required to 

validate the other satellites and reanalysis products used in current study. In addition, 

future efforts should account for the variety of each crop in the AEZs, water balance, irri-

gation efficiency, and water productivity to better understand the effects of extreme hy-

dro-meteorological droughts on each crop in the study area. Given the sensitivity of agri-

cultural systems to hydro-meteorological drought, future research should investigate the 

new phenotypes capable of surviving extreme temperatures and producing higher yields 

in Pakistan’s diverse agro-ecological conditions. This study served as a first step to explore 

how the potential impacts of extreme hydro-mereological droughts are affecting the agro-

ecosystem of the study region; however, deeper insight into the socio-economic and fu-

ture climate impacts should be investigated. Notwithstanding these issues, the findings 

of the current study represent an important asset to identify emerging issues in a wider 

context with a focus on its potential applications to other South Asian regions.  
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6. Conclusions 

This study demonstrated the utility of hydro-meteorological indicators in early crop 

yield assessment for drought mitigation and water resources management across various 

AEZs in Pakistan. The spatiotemporal changes in extreme hydro-meteorological droughts 

and their influence on crop yield variability were investigated across natural and human-

disturbed AEZs. All hydro-meteorological indicators effectively captured the common 

drought episodes (1981–1983, 1999–2004, and 2017–2018) during historical analysis from 

1981 to 2019. Large-scale changes in geopotential height, near-surface air temperature, soil 

moisture conditions, and total precipitation are the likely drivers of droughts in the re-

gion. The satellite-based NDVI and DSI depict a decreasing vegetation growth trend dur-

ing extreme drought years. The drought periods based on SSWSI, SGWI, and SSFI were 

more frequent and intense in human-disturbed AEZs compared to natural settings. 

Drought termination durations were frequently longer, corresponding to shorter termi-

nation rates in the human-disturbed AEZs compared with the natural zones. Percentage 

yield losses of major crops were found to be greater and more sensitive to SSFI and SSWSI 

variations than SPEI due to the longer drought termination duration and slower termina-

tion rate of these indices. 
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