
Citation: Rodrigues, G.; Potes, M.;

Penha, A.M.; Costa, M.J.; Morais,

M.M. The Use of Sentinel-3/OLCI for

Monitoring the Water Quality and

Optical Water Types in the Largest

Portuguese Reservoir. Remote Sens.

2022, 14, 2172. https://doi.org/

10.3390/rs14092172

Academic Editors: Giuseppe Ruello

and Donato Amitrano

Received: 28 February 2022

Accepted: 27 April 2022

Published: 30 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

The Use of Sentinel-3/OLCI for Monitoring the Water Quality
and Optical Water Types in the Largest Portuguese Reservoir
Gonçalo Rodrigues 1,2,* , Miguel Potes 1,2,3 , Alexandra Marchã Penha 1,4 , Maria João Costa 1,2,3

and Maria Manuela Morais 1,4,5

1 Institute of Earth Sciences, Institute for Advanced Studies and Research, University of Évora,
7000-671 Évora, Portugal; mpotes@uevora.pt (M.P.); mapenha@uevora.pt (A.M.P.);
mjcosta@uevora.pt (M.J.C.); mmorais@uevora.pt (M.M.M.)

2 Earth Remote Sensing Laboratory-EaRSLab, Institute for Advanced Studies and Research, University of
Évora, 7000-671 Évora, Portugal

3 Department of Physics, Science and Technology School, University of Évora, 7000-671 Évora, Portugal
4 Water Laboratory, University of Évora, Parque Industrial e Tecnológico de Évora, Rua da Barba Rala N1,

7005-345 Évora, Portugal
5 Department of Biology, Science and Technology School, University of Évora, 7000-671 Évora, Portugal
* Correspondence: grodrigues@uevora.pt

Abstract: The Alqueva reservoir is essential for water supply in the Alentejo region (south of Portugal).
Satellite data are essential to overcome the temporal and spatial limitations of in situ measurements,
ensuring continuous and global water quality monitoring. Data between 2017 and 2020, obtained from
OLCI (Ocean and Land Color Instrument) aboard Sentinel-3, were explored. Two different methods
were used to assess the water quality in the reservoir: K-means to group reflectance spectra into
different optical water types (OWT), and empirical algorithms to estimate water quality parameters.
Spatial (in five different areas in the reservoir) and temporal (monthly) variations of OWT and
water quality parameters were analyzed, namely, Secchi depth, water turbidity, chlorophyll a, and
phycocyanin concentrations. One cluster has been identified representing the typical spectra of the
presence of microalgae in the reservoir, mainly between July and October and more intense in the
northern region of the Alqueva reservoir. An OWT type representing the area of the reservoir with the
highest transparency and lowest chlorophyll a concentration was defined. The methodology proposed
is suitable to continuously monitor the water quality of Alqueva reservoir, constituting a useful
contribution to a potential early warning system for identification of critical areas corresponding to
cyanobacterial algae blooms.

Keywords: Alqueva reservoir; clustering; microalgae blooms; OWT; spatial variations; temporal
variations

1. Introduction

In the context of climate change, the monitoring of water quality in lakes and reservoirs
is relevant to have an effective control of this resource due to an increasing scarcity in the
Mediterranean region, with intermittent rainfall regimes, severe droughts, and an increase
in evapotranspiration. Projections from climate models for the Alentejo region (southern
Portugal) follow the global context and particularly indicate a decrease in wet days, increase
in heat waves, a significant increase of the maximum/minimum temperatures in all seasons,
and more frequent extreme temperatures [1–3]. High-resolution projections project relevant
losses of precipitation in Portugal in spring, summer, and autumn, the simulations being
more severe to the southern basins [3], where the Alqueva reservoir is located. Moreover,
it is expected that by the end of the century, more than half of the heat waves will be
stronger than the historic heat wave of 2003 in Portugal [2]. It is also anticipated that there
will be longer heat waves that could, in the future, last for more than one month. All
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these factors will lead to a higher evaporation rate throughout the year, and especially
in the warmest months. Lakes respond directly to climate change, and some effects in
water quality are expected, such as changes in salinity, water level, intensification of
eutrophication which favors periodic proliferation by cyanobacteria, an increase of invasive
species, increased turbidity, and enhanced vertical stratification, among other effects [4–10].
Water temperature, which is highly correlated with air temperature, exhibits a rapid and
direct response to climatic forcing. With the expected warmer water and decreased water
level (due to the expected increase in evaporation in the Mediterranean region), only with
reductions in the inputs of nitrogen (N) and phosphorus (P) into the lakes and reservoirs
will it be possible to control harmful algae blooms in the future [6].

An adequate monitoring of water bodies is essential, associated with an increas-
ing of pressures as well as water need for human consumption, irrigation, and other
purposes [11–14]. Satellite data can be very useful in this context, with a better temporal
and spatial coverage compared with in situ methods. Estimates of water quality using
satellite data are normally made using empirical algorithms established with satellite re-
flectances and in situ or laboratory measurements of water quality parameters. Several
studies have proved that band ratio algorithms from remote sensing data are effective to
estimate water quality parameters in lakes and reservoirs, such as chlorophyll a (Chl-a)
concentrations, phycocyanin concentrations (PC), water turbidity (Turb), Secchi depth
(SD), or suspended particulate matter [15–24]. Other authors [25–29] demonstrate how
remote sensing sensors combined with machine learning allow for retrieval of water quality
parameters, such as Chl-a concentrations, total suspended matter, or colored dissolved
organic matter.

The phycocyanin pigment is more suitable for monitoring cyanobacterial blooms than
Chl-a [19]. Cyanobacterial blooms are currently a great threat to the ecological integrity
and sustainability for some of the lakes and reservoirs in the world. Episodes of microalgae
bloom emergence in the Alqueva reservoir were identified through satellite data [30,31].
The present study analyzes the appearance of these microalgae blooms, also identifying
and quantifying the presence of the pigment that signals the presence of cyanobacteria,
the phycocyanin.

Spectral reflectances are grouped through clustering methods in order to be classified
into different optical water types (OWT). This methodology allows for mapping a lake with a
qualitative class, consenting to easily distinguish between areas with different spectral reflectance
behavior and consequently different water quality. It can also be used to select which empirical
water quality algorithm is used, that is, to use more than one empirical algorithm to estimate
the same parameter for the same reservoir [32–35]. Hierarchical [33,36,37] or non-hierarchical
approaches are normally used as clustering techniques to obtain OWT classifications.
Non-hierarchical approaches consider the overall distribution of spectral pairs, the most
popular of this techniques being the k-means [34,35,38,39] and fuzzy-c means [40–43].
These clustering techniques are commonly used for the classification of surface reflectances
into groups based upon differences in magnitude and shape.

Empirical algorithms were already developed for the Alqueva reservoir to estimate the
pigment Chl-a, cyanobacteria concentration, and water turbidity from the MERIS sensor
onboard the ENVISAT satellite [44,45]. The same authors applied the semi-empirical bio-
optical models from the MERIS sensor to the Sentinel-2 Multi-Spectral Instrument (MSI),
estimating the turbidity and Chl-a/cyanobacteria concentrations during a microalgae
bloom that occurred in late summer/early autumn of 2017 [31]. Empirical algorithms have
recently been established for Secchi depth and diffuse attenuation coefficient using the
instrument MSI [30].

The main motivation of the present work is to explore Sentinel-3 OLCI data for
full spatial cover and continuous monitoring of water quality in the Alqueva reservoir.
Although the instrument OLCI from Sentinel-3 has much lower spatial resolution (300 m)
compared to Sentinel-2/MSI and Landsat data, it presents an adequate resolution to
represent the spatial variations of water quality in the reservoir (the largest artificial lake
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in Western Europe). The instrument OLCI has very high temporal resolution (better
compared to MSI and much better than Landsat), with one overpass every day. OLCI is
equipped with very adequate spectral bands (21 bands in the spectral range of 400–1020 nm)
suitable for inland waters and for monitoring algae blooms. In this work is presented a
qualitative analysis (OWT scheme) associated with estimations of water quality parameters
(quantitative analyses) over a long period in the Alqueva reservoir, between 2017 and
2020. The added value of a qualitative analysis in lakes is the abridgment associated with
the assignment of classes, allowing a faster and more effective analysis in the context of
monitoring water quality. Associating the OWT classification with the estimates of water
quality allow a robust analysis, which will ensure a very good degree of confidence in the
estimations, also permitting to associate a degree of severity to each of the classes. The
main contribution of the present study is the establishment of these two methods defined
independently (OWT scheme and empirical algorithms), allowing to identify cases/pixels
where the results have high or low reliability, without the need to confirm them in the field.
With the traditional approach [32–35] there is a relationship between these two methods
(empirical algorithm depending of the OWT assignment); therefore, it is not possible to
directly assess the reliability of the retrievals using only satellite data.

The present work aims to improve estimates of bloom occurrence over inland waters for
risk assessment, as well as to provide global spatiotemporal variations of water quality in the
Alqueva reservoir, using remote sensing data. Section 2 gives a description of the area of study
and data used. Section 3 summarizes the methodology used. Sections 4 and 5 present the results
and their discussion. Section 6 summarizes the main conclusions of the work.

2. Materials
2.1. Area and Period of Study

The Alqueva reservoir (southeast of Portugal in Alentejo region) is the largest artificial
lake in Western Europe, with a surface area of 250 km2, 85 km length and a maximum
depth of 65 m. Currently, the Alentejo region is an area with droughts that can persist for
more than two years, and several months of low precipitation associated with very high
maximum temperatures, between 25 ◦C and 45 ◦C (June to September). In this context,
and with increasing water needs for human consumption, agriculture, and industries, the
Alqueva reservoir constitutes a fundamental water resource in southern Portugal. The
primary inflow to Alqueva is the river Guadiana (north of reservoir) bordered by Spain
in the east. Temporal and spatial variations of water quality in the present study are
analyzed in the Alqueva reservoir as a whole, and by five areas, the same used in the
previous study [30] and shown in Figure 1. The period of study using OLCI data in this
work comprises four years, between 2017 and 2020. However, the data used to define the
empirical algorithms belong to different periods. Table 1 shows the periods of all data used
in this paper.

Table 1. Periods considered for each dataset used.

Data Objective Period

Sentinel-3/OLCI
(Satellite data) Estimate water quality and OWTs 2017–2020

(Period of study)

Surface reflectances
(Satellite data and measurements) Validation of OLCI surface reflectances May 2016–September 2020

SD
(Measurements) Empirical algorithm May 2016–October 2021

Chl-a/Turb
(Laboratory data) Empirical algorithms July 2017–October 2021

PC
(Laboratory data) Empirical algorithm February 2018–October 2021
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Figure 1. Alqueva reservoir divided into five areas for water quality analysis.

2.2. Sentinel-3/OLCI Data

The Ocean and Land Colour Instrument (OLCI) is a visible–near-infrared imaging
spectrometer onboard the Sentinel-3 satellites launched by the European Space Agency
(ESA). There is a constellation of two satellites: Sentinel-3A, launched in 2016, and Sentinel-
3B, in 2018. OLCI will be widely used for studying the open ocean and inland/coastal
waters since two more versions of the sensor are planned for launch over the next years
(Sentinel-3C in the period 2023–2030 and Sentinel-3D in 2025–2032), thus allowing continu-
ity. Since the launch of Sentinel-3B in April 2018, the Alqueva reservoir currently has a daily
revisit. The instrument OLCI has a spatial resolution of 300 m (full resolution, FR) or 1200 m
(reduced resolution, RR). Despite the spatial resolution of 300 m, it can be applied in large
lakes, and due to its fairly high spectral resolution (21 bands in the range of 400–1020 nm),
it is very useful for water and algae bloom monitoring. It also has a very relevant aspect in
the study of lakes and oceans: sun-glint minimization [46]. With sun-glint minimization,
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the OLCI allows to include in the study practically all cloud-free days between May and
August, months when deterioration of water quality and the emergence/evolution of
microalgae must be monitored. With the Sentinel-2/MSI instrument, despite its better
spatial resolution, many days would be excluded due to sun-glint presence, as discussed in
a previous work [30].

The dataset used in this study is the Sentinel-3 Level-1 (top of the atmosphere), with
300 m spatial resolution (full resolution product) and was downloaded from Copernicus
Open Access Hub (https://scihub.copernicus.eu/dhus/#/home, accessed on 1 November
2021). The OLCI Level-2 Water Full (300 m) and Reduced (1200 m) resolution products
are also available as Level-2 (with atmospheric correction). However, Level-1 reflectances
were used here in order to apply the suitable atmospheric correction scheme (Section 3.1)
to obtain the surface reflectances.

2.3. In Situ/Laboratory Data

Since 2016, measurements of SD have been carried out at various points in the Alqueva
reservoir. The SD is a quick and simple way to assess the transparency of water. It consists
of a disk divided into four, with black and white contrast, and it is used to measure the
depth until is visible in the water column. Generally, the lower the SD, the higher the Turb.
During the period 2016–2021, the highest SD value was obtained on 11 March 2019, with
7 m measured at two locations in the Alqueva reservoir (south region). This maximum is
much higher than the previous maximum of 5.5 m on 24 May 2017. The average value of all
measurements in the Alqueva reservoir from 2016 to 2021 is 2.94 m. A minimum value of
just 0.4 m was measured in August 2017 in the northern region of the reservoir. The lowest
values of SD were measured during periods with presence of microalgae in the reservoir.

Since 2017, water samples and laboratory analyses have been carried out to have
concentrations of Chl-a, PC, and Turb (Table 1). Water samples were collected at 0.5 m depth.
Chl-a determination was based in molecular absorption spectroscopy and the equations
developed by Lorenzen [47], according to the standard methods NP 4327:1996 [48] and
EN ISO 10260:1992 [49]. Turb was determined using the nephelometric method [50].
PC determination was performed following the procedure proposed by Horváth et al.
(2013) [51], extracted with phosphate buffer with the modifications suggested by Lauceri
et al. (2017) [52]. The highest values of Chl-a/PC concentrations and Turb were obtained in
late summer or early autumn (August/September), coinciding with microalgae blooms.

2.4. Meteorological Data

Since 2017, three stations were installed in the Alqueva reservoir, recording meteoro-
logical data with a temporal resolution of one minute, namely, wind intensity and direction,
air/water temperatures, relative humidity, solar radiation, and accumulated precipitation,
among other parameters. One of the stations is installed in a floating platform (Montante
station), and the other two meteorological stations (CidAlmeida and Barbosa stations)
are installed on the margins of the reservoir. The water temperature was measured on
the Montante station at various depths, namely, at 0.05, 0.25, 0.50, 0.75, 1, 2, 4, 6, 8, 10,
12, 15, 20, 30, and 60 m depth. In the Alentejo region, where the Alqueva reservoir is
located, the summers are very hot and dry, with high solar radiation. Between May and
September, the average rainfall is very low, and this rainfall is mainly convective. Almost
all the accumulated precipitation is recorded in the period between October and May. Wind
intensity is normally of weak (or weak to moderate) intensity in the Alqueva reservoir [53].
Over the entire analyzed period, only in March 2018 was the average wind intensity above
4 m/s. Figure 2 shows the monthly evolution of meteorological parameters in the period
2017–2020: air temperature, water temperature, and monthly accumulated precipitation.

https://scihub.copernicus.eu/dhus/#/home
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The water temperature follows the variations of the air temperature but presents smaller
differences between months due to its high heat capacity and thermal inertia.
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Figure 2. Monthly accumulated precipitation (above) and monthly average of air/water temperatures
(below), in the Alqueva reservoir.

3. Methodology

Satellite remote sensing of water quality parameters relies on the use of surface spectral
reflectances above water. However, Sentinel-3 OLCI measurements are taken at the top
of the atmosphere (TOA). It is thus necessary to atmospherically correct the data in order
to account for the absorption and scattering atmospheric effects and obtain the surface
signal. In Section 3.1, the atmospheric correction method and the empirical algorithms are
described. The k-means approach implemented to define different optical water types is
presented in Section 3.2. Section 3.3 shows the methodology followed in the comparative
analysis between quantitative and qualitative estimations of water quality. Figure 3 shows
a flowchart summarizing the methodology and main results of this work. The grey boxes
show the main results, and in parentheses the subchapter is shown.
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3.1. Atmospheric Correction and Empirical Algorithms

The satellite data of Sentinel-3/OLCI used are Level-1 (see Section 2.2) corresponding
to TOA spectral measurements, which are subsequently corrected for the effects of the
atmosphere in order to obtain the surface signal. Therefore, in order to obtain estimates of
water parameters, the following procedures were carried out:

(i) The preprocessing of TOA Sentinel-3 imagery, including image reading, subset to
Alqueva reservoir area, processing of radiances to reflectances, and extraction of the
products. These four steps were performed using the toolbox SNAP (Sentinel Applica-
tion Platform, http://step.esa.int/main/toolboxes/snap/, accessed on 1 November
2021), version 6.0. The top-of-atmosphere (TOA) reflectances were extracted from
the OLCI images. The products SZA (solar zenith angle), SAA (solar azimuth angle),
VZA (view zenith angle), and VAA (view azimuth angle) were also extracted, to be
used in the atmospheric correction scheme as geometrical conditions.

(ii) The second step is the atmospheric correction of the various effects of the atmosphere,
namely, ozone, water vapor, and aerosols. A reliable and adequate atmospheric correc-
tion process in the analysis of surface parameters in lakes or ocean is essential, as water
usually has low reflectances, so small errors in the atmospheric correction can lead to
large errors in surface reflectance estimates. In this work, the atmospheric correction
method 6SV was assessed to obtain the surface reflectances, applied to cloud-free
images acquired by the OLCI instrument. Python code was used to transform TOA
to surface reflectances. Other atmospheric correction methods were verified in the

http://step.esa.int/main/toolboxes/snap/
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literature, such as the ACOLITE or C2RCC (Case 2 Regional CoastColour) processor.
We selected the 6SV method mainly due to three factors: (a) There are high correlations
between estimated and measured reflectances in the Alqueva reservoir considering
previous studies [30,44,45]. These high correlations mean that when using the 6SV
method, despite the associated errors (in absolute value), there is similarity between
shape of estimated and measured reflectances, being a crucial factor for a correct
definition of OWTs. (b) It is a method that normally does not have null or negative
reflectances, in situations of high water transparency (low surface reflectances), while
with C2RCC and ACOLITE processors this happens. We tested the C2RCC processor
for days with clean water, i.e., low water reflectances, and we obtained negative
reflectances, without necessarily having high AOTs. This result for the Alqueva
reservoir is in agreement with other studies, where there is an underestimation of
the reflectances compared to the surface reflectances measured using the C2RCC
processor [20,54]. (c) It is a method of atmospheric correction that has been exten-
sively used in several lakes and with good accuracy compared to measured surface
reflectances [21–23,30,44,45,55,56].

The 6SV is a vector version of the 6S (Second Simulation of a Satellite Signal in the
Solar Spectrum), being a robust radiative transfer code that is highly accurate, and was also
used in the previous study in the Alqueva reservoir [30]. The 6SV method is used to correct
the OLCI images over the Alqueva reservoir, allowing to account for the various effects of
the atmosphere. We used input parameters for the 6SV process to model the atmospheric
effects and spectral/geometrical conditions, as shown in Table 2.

Table 2. Input parameters of 6SV model applied to Sentinel-3/OLCI.

Source Parameters

Input type Sentinel-3/OLCI TOA reflectance

Geometrical conditions Sentinel-3/OLCI

Solar zenith angle, solar
azimuth angle (◦)

View zenith angle, view
azimuth angle (◦)

Month, day

Atmospheric conditions (user)
Aeronet Water vapor (g/cm2)

Ozone Monitoring (OMI) Ozone (cm-atm)

Aerosol model (type) - Continental

Aerosol model (concentration) Aeronet Aerosol optical thickness at
550 nm

Spectral bands Sentinel-3/OLCI Spectral function responses

The validation dataset of surface spectral reflectances was obtained at the Alqueva
reservoir with a portable spectroradiometer FieldSpec UV/VNIR (ASD, Inc., Bouler, Col-
orado USA). More details about the FieldSpec UV/VNIR (ASD, Inc.) can be found in [57,58].
In addition to the correlation coefficient between in situ reflectances and satellite data, the
bias, the MAE (mean absolute error), and MAPE (mean absolute percentage error) were
used. The bias error and the MAE measure of the overall errors are that the MAE corre-
spond to absolute errors. MAPE is defined as the mean of absolute differences between
estimates (satellite-derived) and observations and measures the error in percentage terms.

The remote sensing algorithms obtained for the Alqueva reservoir were based on em-
pirical relationships between the water quality parameters and Sentinel-3/OLCI retrievals
of surface reflectances. In situ measurements of SD and laboratory analysis of Chl a, PC, and
Turb were related to the atmospherically corrected surface spectral reflectances obtained
from OLCI, through regression algorithms. Maximum differences of 1 day were accepted
between water quality parameters and OLCI surface reflectances. In order to relate satellite
data with measured/laboratory data, the nearest water pixel was used. An additional filter
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has been added to exclude pixels at the land/water boundary, the Modified Normalized
Difference Water Index (MNDWI). This index evidences the open water features compared
with NDWI (Normalized Difference Water Index) while efficiently suppressing land, vege-
tation, and soil noise [59]. Water pixel selection was performed considering an MNDWI
index greater than 0.5. It was found that this index excludes not only many mixing spectra,
but also pixels contaminated by cirrus and even light clouds visible by the RGB image and
distinguishable in the reflectance spectrum (much less variation in the visible to NIR bands,
comparatively to purely water pixels).

The defined regression algorithms were validated using different (independent) peri-
ods from those used to establish the algorithms. The period for the different water quality
parameters is distinct due to different covering periods. Algorithms for PC and Turb were
defined in the period 2018–2020 and 2017–2020, respectively. For these two water quality
parameters, the validation period is 2021. For SD and Chl-a concentrations, the definition
of the algorithms were in 2016–2018 and 2017–2018 respectively, and the validation period
corresponds to 2019–2021.

3.2. Definition of Optical Water Types (OWT)

Distinct optical water types (OWT) were identified based in the surface reflectance
spectra of Sentinel-3 data in the period 2017–2020. Each type of OWT represents a group
of similar optical characteristics and similar reflectance spectra. Prior to clustering, pre-
processing was performed. It was applied to each day with clear sky over the reservoir,
excluding pixels or days in the following cases:

â Days with at least one pixel having null values of view azimuth angle. These images
represent days when the reservoir is at the limit of the OLCI image, thus having
degradation in image quality and reflectance spectra.

â Pixels with MNDWI less than 0.5.
â Days when there are less than 200 pixels with MNDWI greater than 0.5.
â Days with at least one pixel with negative reflectance in one band between 490 nm

and 708.75 nm. Only five days were excluded with this filter, being days with high
AOT values.

After applying these four filters, all the water pixels were used to divide the spectra
with similar characteristics within each of the clusters. The wavelengths chosen were in the
range of 490 nm to 709 nm, that is, between band B4 and band B11 of the instrument OLCI.

K-means and fuzzy-c means, being unsupervised clustering methods, aim to cluster all
input samples within different classes but require a priori selection of the optimal number
of clusters and a method for excluding data from the analysis. Some studies identify very
similar results between these two clustering methods [30,38]. The k-means approach was
used, being one of the most popular non-hierarchical clustering techniques [33,34], as a
method with high efficiency in the classification of large datasets [60]. Python code was
used to run the k-means method and assign each of the OLCI pixels to a different OWT.
The k-means algorithm was applied to the normalized OLCI reflectances instead of using
the raw surface reflectances, to reduce the influence of the magnitude on the clustering and
give greater relevance to the spectral reflectance shape [32,34]. Giving greater relevance
to the shape allows absorption characteristics to have more impact on clustering. It also
allows to reduce the effects of errors in atmospheric correction because these uncertainties
have a greater effect on the amplitude of the spectra rather than their shape [32]. The
normalization of each reflectance was made using its integrated value between B4 and B11
bands. This method was used because it does not give a greater weight to a defined part of
the reflectance spectra, contrarily to other normalization methods. Unsupervised methods
such as the k-means approach do not allow to exclude spectra from the analysis. In this way,
this method may include spectra in a given OWT of pixels that are on the border between
two or more OWTs. However, after processing the clustering method, some spectra could
be excluded, through the information provided from the “silhouette width” [61]. The
silhouette width measures how well each spectrum is clustered, having ranges between
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−1 to 1. A value of 0 of the silhouette width indicates that the spectra are on the boundary
between two clusters and negative values indicate that those samples might have been
assigned to the wrong cluster. In this work, only spectra with silhouette width above 0.05
were used. It was found that the silhouette index filter below 0.05 (pixel not assigned to any
of the four clusters) excludes some spectra of doubtful quality (land/water mixture) that
had not been excluded with the selection of MNDWI above 0.5. The silhouette width also
allows to exclude spectra in areas that may have a mixture of two or more different OWTs.
The silhouette width was also used to choose the statistically optimal number of clusters.
The k-means method was run using two to ten clusters, and it was with four clusters that
the highest mean silhouette value was obtained, that is, on average, the spectra are further
apart spectrally compared to another selection of number of clusters.

3.3. Comparison between OWT and Water Quality Parameters

In order to have qualitative and quantitative estimations of water quality in the
2017–2020 period, the OWT classification was analyzed together with the estimations of
water quality parameters. Aiming at full spatial cover and continuous monitoring of water
quality parameters in the Alqueva reservoir, the atmospheric correction code 6SV was used
to process all water pixels, for every cloud free day, obtained from Sentinel-3/OLCI (TOA)
in the period. Filters were applied as explained in Section 3.2. The OWT classification
allows assigning a cluster to each of the OLCI pixels, that is, an OWT spatialization map of
the entire reservoir. The empirical algorithms provide, for every pixel, maps representing
the estimates of water quality parameters. Then, the spatiotemporal variations of OWT and
water quality parameters were analyzed, namely, Chl-a concentrations, PC concentrations,
SD, and Turb. The silhouette index below 0.05 was used to exclude pixels, in addition to
the MNDWI above 0.5. The water quality comparisons were performed based on boxplot
representing the average conditions (average and median) and also the 10th, 25th (first
quartile), 75th (third quartile), and 90th percentiles. The 10th and 90th percentiles were
used to analyze the value corresponding to the 10% of highest and lowest severity for
each water quality parameter. For the most correct comparison analysis between the OWT
classification and water quality parameters, an intercomparison pixel-by-pixel (300 m of
resolution) analysis was performed. The qualitative and quantitative comparisons were
carried out by areas of the reservoir, dividing into the same five areas used in the previous
study and presented in Section 2.1. The large differences in the number of OLCI pixels
assigned to each Alqueva area would mean that analyzing the average characteristics of
the entire reservoir would give greater relevance to the central and southern areas, possibly
masking local variations in areas with much fewer pixels. In Table 3, the daily average of
pixels per area and per year is presented. This average of pixels (by year and by area) was
calculated, counting the number of pixels of all OLCI images used in this study.

Table 3. Daily average of pixels for each year and area.

North Center South West East

2017 70 228 275 26 81
2018 70 227 282 27 85
2019 66 207 267 25 77
2020 47 172 237 20 62

4. Results
4.1. Definition of Optical Classification and Empirical Algorithms
4.1.1. Validation of OLCI Surface Spectral Reflectances

In order to estimate water quality parameters and the OWT classification, it is first
necessary to obtain the surface reflectances applying the atmospheric correction process, as
explained in Section 3.1. The validation of OLCI surface reflectances (after applying the
6SV method) is shown in Table 4 and corresponds to the period May 2016–September 2020.
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In the present study, only the surface reflectances between B4 band (490 nm) and B11 band
(709 nm) were used, where correlations are higher than 0.9 (close to 1) and MAPE lower
than 40% (except B11 band). The estimated values are overestimated compared to those
observed (positive bias).

Table 4. Statistical indicators between the measured and satellite-derived (OLCI) water reflectances
using the 6SV method.

N = 27 Correl. Bias MAE MAPE (%)

B4 0.92 0.006 0.006 39
B5 0.92 0.006 0.006 31
B6 0.96 0.004 0.005 18
B7 0.95 0.004 0.004 26
B8 0.94 0.003 0.003 31
B9 0.92 0.003 0.003 33

B10 0.92 0.003 0.003 29
B11 0.93 0.002 0.003 47

4.1.2. Definition of the Empirical Algorithms and the Four OWTs

Two independent methods were developed to estimate the water quality in the
Alqueva reservoir: empirical algorithms for definition (Section 3.1), and using the k-means
clustering method, four distinct OWTs were achieved (Section 3.2).

The best algorithm found for Chl-a, with the best results of R2 and NRMSE, was adding
the reflectance of the green band (560 nm) to the bands 709 nm and 665 nm. Normally, more
than half of the year, Alqueva reservoir present low Chl-a concentrations. This fact helps
to explain why the use of only red to NIR bands does not present good statistical results,
widely used in the context of lakes [62]. The green band of 560 nm is a chlorophyll reference
(chlorophyll minimum absorption), where the presence of greater reflectance represents
greater Chl-a concentrations. The green band (560 nm in Sentinel-3 OLCI) is widely used in
cases of lower Chl-a concentrations. The other two bands used in the algorithm (665 and
709 nm) are used in cases of high concentrations of Chl-a.

Chl-a = 7670.4 ×
(

B6 × B11
B8

)2
− 260.23 ×

(
B6 × B11

B8

)
+ 4.61 (1)

Although high concentrations of Chl-a are indicators for the appearance of cyanobac-
teria, they do not imply necessarily its presence. The pigment phycocyanin is a marker for
cyanobacterial presence in eutrophic water and has an absorption peak at approximately
615–620 nm [18,19]. The PC algorithm determined with the best coefficient of determination
uses this absorption peak ( of OLCI), as well as a near-infrared (NIR) band, centered at 709
nm (very low PC absorption) and also the green band ( of OLCI; medium absorption and
high reflectance):

PC = 213, 558.8 ×
(

B6 × B11
B7

)3
− 6715.41 ×

(
B6 × B11

B7

)2
+ 52.11 ×

(
B6 × B11

B7

)
+ 0.11 (2)

The SD algorithm developed by Rodrigues et al. [30] for Sentinel-2/MSI is adopted in
the present study, using instead Sentinel-3/OLCI. The equivalents OLCI bands are used
here, adjusting the linear regression coefficients:

SD = 0.036 ×
(

B4
B6 × B8

)
+ 0.79 (3)

The Turb algorithm, determined with the best coefficient of determination, uses bands
B4 and B11, presenting the following equation:
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Turb = 5.10 ×
(

B11
B4

)2
− 0.92 ×

(
B11
B4

)
+ 0.81 (4)

The scatter plots, with the best fit for each algorithm between satellite-retrieved
reflectances and water parameter data, are shown in Figure 4 (chlorophyll a, phycocyanin,
SD, and Turb).
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Four distinct sets of reflectance means were defined (Figure 5). These reflectance
means form the OWT classification in the Alqueva reservoir, which are representative of the
averaged conditions caused by the optical properties of the water column. In addition, the
median for each of the clusters was also calculated and showed very identical spectra for
the different selected clusters (not showed here). The OWTs were organized in ascending
number (1 to 4) based on ascending water turbidity of the water.

4.1.3. Validation of Empirical Algorithms

The results obtained using the developed empirical algorithms were compared with
in situ measurements (validation of the empirical algorithms) for a different period with
respect to that used to derive the four equations (Section 4.1.2). These algorithms were
applied to the nearest water pixel with respect to the sites where the water samples were
collected (Turb, Chl-a, and PC) and to SD measurements. In Figure 6, the relationships
between estimated water quality parameters and the corresponding data measurements
are shown.
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In the validation of empirical algorithms (Figure 6), note the good agreement between
observed and satellite estimates, with high coefficients of determination (above 0.9), except
for Turb, with r2 of 0.73. There are MAPEs close to 20% for SD and Turb, and 39% for
Chl-a concentrations. Note that the MAPE near 40% in the validation of PC algorithm is
also due to the fact that, in general, there are many low values of PC concentrations than
higher values. Therefore, for very low PC concentrations, there can easily be obtained
absolute mean errors in percentage above 100%. For SD and Turb, there is no relevant trend
of overestimation or underestimation of the estimated data in relation to the measured
data (bias close to 0). For Chl-a and PC, there is almost always an underestimation of the
estimated data relative to the laboratory data, with negative bias (bias practically equal to
the MAE), and almost all are points below the y = x line.

4.2. Qualitative and Quantitative Analysis of Water Quality

The clustering approach presented in this study (Section 3.2) has the advantage to
differentiate subsets based mainly on the shape of surface reflectances. Four optical wa-
ter types (OWT) were defined through a k-means approach applied to OLCI surface
reflectances during the 2017–2020 period. The differences along the spectra of surface
reflectances denote different optical characteristics and the predominance of one over
another in water constituents (e.g., phytoplankton or non-phytoplankton particles). One of
the essential features of spectral analysis is the verification of the variation between blue
and green bands. Greater differences between band B5 (or other blue band) and band B6
represent greater presence of Chl-a (the greener the water is, the greater the reflectance of
the green band in relation to the blue band). In the context of monitoring water turbidity,
for minor ratios between reflectances in the blue and the red/NIR bands, greater water
turbidity is expected.

Figure 7 shows the average raw reflectances (non-normalized) for each of the OWT
groupings using the normalized reflectances. The typical spectrum of the OWT1 cluster
(Figure 5 in Section 4.1.2 and Figure 7) represents conditions of low turbidity, that is, less
dispersion and absorption by particles contained in the water. In the comparison between
the typical conditions of the OWT1 and OWT2 cluster (Figure 5), a smaller difference was
identified between the normalized reflectances (average) in the blue bands (B4 and B5 of
OLCI); nevertheless, in the red and NIR bands (band B7) the cluster OWT2 overcomes
the OWT1. Therefore, the areas assigned to the OWT2 cluster will normally have greater
turbidity than areas assigned to the OWT1 cluster and weak or non-existent presence of
microalgae. Analyzing the slope between the green (B6) and red (B7) band, it is identified
that the OWT3 cluster represents the optical conditions with the highest absorption of
the non-phytoplankton particles (sediments, for example). It is noted that the clusters
OWT3 and OWT4 represent the most turbid optical waters, because in these clusters, on
average, there are lower differences between the blue and red/NIR bands. The main source
of turbidity in OWT3 is non-phytoplankton particles, while for cluster OWT4, it is the
presence of microalgae, because this cluster represents areas with high concentrations of
Chl-a. Another typical characteristic of the presence of microalgae in OWT4 is the peak at
708 nm, which is usually associated with high algae particle concentration [17,63].

The water quality algorithms and the OWT class through k-means clustering method
(Section 4.1.2) were applied to all water pixels in the period 2017–2020. Therefore, a
complete water quality characterization is obtained for all clear sky days, excluding pixels
and days in the conditions defined in Section 3.2.

Figure 8 show the monthly evolution of Chl-a, PC concentrations, SD, and Turb
obtained with the algorithms presented in Section 4.1.2 (Equations (1)–(4)). Each boxplot is
composed of the mean, median, 25th percentile (1st quartile), 75th percentile (3rd quartile),
and 10th/90th percentiles. In these graphs, the red bars represent the months (August to
October) that normally have the highest presence of microalgae in the Alqueva reservoir.
The frequency distribution of the four OWTs in the 4 years analyzed is shown in Figure 9.



Remote Sens. 2022, 14, 2172 15 of 31

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 32 
 

 

that the OWT3 cluster represents the optical conditions with the highest absorption of the 
non-phytoplankton particles (sediments, for example). It is noted that the clusters OWT3 
and OWT4 represent the most turbid optical waters, because in these clusters, on average, 

there are lower differences between the blue and red/NIR bands. The main source of tur-
bidity in OWT3 is non-phytoplankton particles, while for cluster OWT4, it is the presence 

of microalgae, because this cluster represents areas with high concentrations of Chl-a. An-
other typical characteristic of the presence of microalgae in OWT4 is the peak at 708 nm, 
which is usually associated with high algae particle concentration [17,63]. 

 

Figure 7. Average raw reflectance spectra derived for the k-means classification by class OWT. 

The water quality algorithms and the OWT class through k-means clustering method 
(Section 4.1.2) were applied to all water pixels in the period 2017–2020. Therefore, a com-

plete water quality characterization is obtained for all clear sky days, excluding pixels and 
days in the conditions defined in Section 3.2. 

Figure 8 show the monthly evolution of Chl-a, PC concentrations, SD, and Turb ob-

tained with the algorithms presented in Section 4.1.2 (Equations (1)–(4)). Each boxplot is 
composed of the mean, median, 25th percentile (1st quartile), 75th percentile (3rd quar-

tile), and 10th/90th percentiles. In these graphs, the red bars represent the months (August 
to October) that normally have the highest presence of microalgae in the Alqueva reser-
voir. The frequency distribution of the four OWTs in the 4 years analyzed is shown in 

Figure 9. 

Figure 7. Average raw reflectance spectra derived for the k-means classification by class OWT.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 32 
 

 

 

Figure 8. Boxplots with the monthly evolution of Chl-a, PC, SD, and Turb in the 2017–2020 period. 
The sample median is indicated by a horizontal line within the box while the triangle represents the 
monthly average. 

Figure 8. Boxplots with the monthly evolution of Chl-a, PC, SD, and Turb in the 2017–2020 period.
The sample median is indicated by a horizontal line within the box while the triangle represents the
monthly average.



Remote Sens. 2022, 14, 2172 16 of 31
Remote Sens. 2022, 14, x FOR PEER REVIEW 17 of 32 
 

 

 

 

 

Figure 9. Frequency of the four OWTs by year and by month. 

Three main characteristics are presented and described below. The first is related to 

the presence of microalgae blooms in the reservoir in late summer and early autumn. The 
second is the high turbidity resulting from the overturn period. These two periods of 
greater turbidity occurred sequentially in the 4 years analyzed, having generally occurred 

between August and November. Finally, there is verification that in the rest of the months 
there are low Chl-a/PC concentrations and high percentage of OWT1 or OWT2 attribution. 

(1) There is worse water quality in the months between August and October, associ-
ated with the presence of microalgae in the Alqueva reservoir. This fact can be seen with 
the identification of OWT4 pixels (Figure 9) and even higher values of Chl-a/PC concen-

trations (Figure 8). It is identified that the OWT4 cluster is practically present only in this 
period, associated with the appearance of microalgae. In three of the four years analyzed, 

the worst month in terms of water quality was September, with the highest presence of 
OWT4 pixels (in frequency), greater turbidity, and highest Chl-a/PC concentrations (Fig-
ure 8). 

In the four years analyzed, September of 2017 is by far the month with the highest 
presence of microalgae in the Alqueva reservoir: 

• 58.3% of the pixels in the entire reservoir presented the OWT4 classification. Septem-
ber 2020 had the second highest attribution to OWT4 cluster with 37.1%. 

Figure 9. Frequency of the four OWTs by year and by month.

Three main characteristics are presented and described below. The first is related
to the presence of microalgae blooms in the reservoir in late summer and early autumn.
The second is the high turbidity resulting from the overturn period. These two periods of
greater turbidity occurred sequentially in the 4 years analyzed, having generally occurred
between August and November. Finally, there is verification that in the rest of the months
there are low Chl-a/PC concentrations and high percentage of OWT1 or OWT2 attribution.

(1) There is worse water quality in the months between August and October, associated
with the presence of microalgae in the Alqueva reservoir. This fact can be seen with the
identification of OWT4 pixels (Figure 9) and even higher values of Chl-a/PC concentrations
(Figure 8). It is identified that the OWT4 cluster is practically present only in this period,
associated with the appearance of microalgae. In three of the four years analyzed, the worst
month in terms of water quality was September, with the highest presence of OWT4 pixels
(in frequency), greater turbidity, and highest Chl-a/PC concentrations (Figure 8).
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In the four years analyzed, September of 2017 is by far the month with the highest
presence of microalgae in the Alqueva reservoir:

• 58.3% of the pixels in the entire reservoir presented the OWT4 classification. September
2020 had the second highest attribution to OWT4 cluster with 37.1%.

• Water quality estimates in September present the highest values of biomass load
(higher Chl-a concentrations), a greater presence of cyanobacteria (much higher PC
concentrations than any other month) and Turb, and lower SD. A highlight is the
value corresponding to the 90th percentile for an SD of less than 2 m, which denotes a
very high turbidity in practically the entire reservoir and in all the days available for
analysis.

Therefore, there is a clear sign of deterioration in water quality in September, with the
results obtained from two distinct and independent methodologies (OWTs analysis and the
use of empirical algorithms) giving the same indication. It is important to highlight the very
relevant differences between the 75th and 90th percentile (as well as the difference between
the mean and median) for Chl-a and PC concentrations in all the months of September of
the 4 years, mainly in September 2017 (Figure 8). This fact denotes that the upper extremes
of Chl-a and PC are very far from the median/average value of the entire sample. As will
be explained in Section 4.3, this is related to the large spatial disparities in the reservoir.

(2) Every year, the phenomenon of the overturn occurs in the reservoir, associated
with the cooling of the surface temperature, leading to the mixing between layers from
surface to the bottom. In recent years, the overturn has mostly taken place in the end of
November. Except for the year 2020 (when the overturn took place in December), it was in
November that the highest turbidity values in the reservoir have been identified, caused by
non-photosynthetic particles (not associated with the presence of microalgae). That is,

• Lower frequency (%) of spectra (OWT1) associated with the most transparent water.
• The month with the highest frequency (%) of pixels assigned to the OWT3 cluster,

representative of pixels with high turbidity.

In November 2019, only one OLCI image was used for the monthly analysis of OWT
and water quality parameters. In this month, the overturn was identified as happening
between early and mid-November. The temperature profile was determined by measur-
ing the water temperature at various depths (Section 2.4), from surface to the bottom
(60 m depth). In mid-November the reservoir was fully mixed and the overturn was con-
cluded, i.e., a homogeneous temperature profile was found throughout the water column
(Figure 10). The only day (15) used in this month is precisely the day before the completion
of the overturn. From the sample of 639 pixels used, 99.7% of these (Figure 9) were assigned
to the OWT3 cluster.

In 2020, the overturn occurred in December, and it was the second month with the
highest frequency of OWT3 pixels in this year.

(3) Most of the months present low to moderate values of Chl-a concentrations (range
of 0–8 µg/L) and low turbidity. These months also present a frequency greater than 60% of
all pixels assigned to clusters representing the best water quality, that is, with the attribution
of OWT1 and OWT2 class. In the period between January and August, only in August 2020
was there an exception, with less 60% of the pixels assigned to the OWT1 and OWT2 cluster.
There are a few months with the allocation of (OWT1 + OWT2) close to or greater than
90% of all pixels analyzed for each of those months. These are the months of March/April
(2017), June/July (2017), July 2019, and April 2020. It can then be concluded that there are
representative pixels of lower water turbidity and lower Chl-a concentrations in winter
months (except December), spring, and early summer months. The influence of runoff
in water turbidity is a fourth aspect that will only be analyzed in chapter 4.4, as it was
only relevantly identified in narrower areas of the reservoir. This is also evidenced in the
reflectance spectra, that is, in the OWT classification.
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A pixel-by-pixel intercomparison was also carried out in order to find relationships
between the results of the water quality algorithms and the OWT attribution. To summarize
the relationship between the four clusters and the parameters of water quality, four graphs
are presented (Figure 11).

The water quality estimates from empirical algorithms generally present results in
agreement with those expected for each of the clusters. That is, the typical values of Chl-
a/PC concentration increased and SD decreased from OWT1 to OWT4. In the pixel-by-pixel
intercomparison, a very significant number of points assigned to the OWT1 classification
showed very low Chl-a/PC concentrations, and very low Turb. On the opposite side,
almost all the pixels assigned to the OWT4 cluster presented estimates of very high Chl-
a/PC concentrations and high Turb/low SD. Table 5 presents the main conclusions for each
of the defined clusters.

Table 5. Summary of key findings from the four defined OWTs. Water turbidity and Chl-a concentra-
tions increase from cluster OWT1 to OWT4.

OWT Type(s) Summary

OWT1 Characteristic of more transparent water spectra with lower Chl-a
concentrations, and no presence of PC

OWT1 + OWT2 Characteristic of high water transparency

OWT2 OWT2 typically with lower water transparency and higher Chl-a
concentrations than OWT1

OWT3 + OWT4 Water with low/moderate water transparency

OWT3 Low to moderate water transparency, but not necessarily
associated with microalgae blooms

OWT4 High or very high Chl-a concentrations; microalgae blooms and
risk of cyanobacterial presence
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4.3. Spatial Variations of the Optical Water Types and Water Quality

In order to verify spatial variations, the reservoir was divided into five areas, cal-
culating the OWT frequency for each month and area (Figure 12). Figure 13 shows the
water quality mean by area and by month for the period 2017–2020. Spatial variations of
OWT and parameters of water quality were analyzed, evidencing the following differences
between the five areas of the reservoir:

• The northern area of the reservoir represents the area with the highest percentage of
pixels assigned to OWT3 cluster or OWT4 during the four years analyzed. It is the
area of the reservoir most affected by microalgae blooms (between July and October)
and also by runoff phenomena after heavy rainfalls.
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• The central area, being much wider than the northern area and further away from
the Guadiana river inlet (in the north region), presents better water quality in all
analyzed years compared to the north area. Precipitation and runoff affect this area
less. However, microalgae blooms also disturb this area, mainly in the period between
August and October, being the second area with greater deterioration of water quality
in this period. This is verified not only by the analysis of OWT frequencies, but also
by the estimates of Chl-a and PC concentrations.

• The southern area, one of the areas farthest from the area with the worst water quality
(north area), presents, on average, the best conditions (lowest water turbidity and
highest frequency of OWT1 + OWT2 pixels) of the entire reservoir. It also has the
lowest impact of runoff effects or microalgae blooms.

• The western area (branch that starts in the south area towards the west/northwest)
presented the most discrepant behavior in the 4 years analyzed, with respect to the
July–October period, compared to the average of the entire reservoir. It was the area
with the lowest frequency of pixels assigned to the OWT4 cluster in 2017, in the months
with the presence of microalgae, being in 2018 the second worst (highest frequency of
OWT3 + OWT4) area with high frequency identification of OWT3 pixels, in the month
with highest rainfall (March 2018).

• The east area, despite being much narrower than the central and south areas, generally
presents similarity to these two areas in relation to the frequency of OWT1 and OWT2.
This area is also less representative of microalgae in 2018 and 2020, i.e., it presents
lower frequency of pixels with OWT4 attribution and lower Chl-a/PC concentrations.

It is generally noted that in months without high rainfall and/or without the presence
of microalgae (July to October mainly), a similar frequency of characteristic low turbidity
spectra (OWT1 + OWT2) is observed between the four areas in the reservoir (except the
north area). However, in these periods, the percentage of pixels assigned to the cluster
featuring greater water transparency (OWT1) differs significantly between areas, being
more significant in the south, center, and east areas. The north area is by far the one with the
lowest frequency of OWT1 pixels. In this area, in 2020, there was no month with frequency
higher than 20% attributed to the OWT1 cluster. In 2018, only June exceeded the 20% of
pixels classified as OWT1, and in several months it did not even reach 0.1%. In 2018, the
northern region of the reservoir presents 8 of 12 months with more than 85% of the pixels
associated with either OWT3 or OWT4. Of these eight months, this area presents 4 months
with practically 100% of the pixels attributed to the OWT3 cluster, representing turbid
water. Of these four months, three coincide with high rainfall in the Alqueva reservoir and
the other with the overturn phenomenon (November).
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4.4. Extreme Events (Microalgae Blooms and Runoff after Heavy Rainfall)

The situations identified with the greatest spatial variations in the reservoir are related
to intense precipitation events and microalgae blooms. In spring 2018 there was high
rainfall, especially in March, with an accumulated value close to 200 mm at the CidAlmeida
station (much higher than the average monthly precipitation). In a large reservoir, water
quality varies more slowly than in a small reservoir. This can explain why March 2018
does not present high percentage of pixels associated with the OWT3 cluster in the entire
reservoir (Figure 9). However, locally (in narrower areas) there is a significant increase in
characteristic spectra of high turbidity, that is, associated with the OWT3 cluster. For the
same month, the northern and western areas of the reservoir present 99% and 89% of the
OWT3 class, respectively (Figure 12). These results are further corroborated by the RGB
image obtained from the Sentinel-2 on 26 March 2018, identifying a brown color in north
and west areas (Figure 14). This increase in water turbidity in the northern and western
areas is identified by two methods of estimating water quality: OWT classification and
water quality parameters. Figure 15 shows the maps of OWT and SD on 27 March 2018.
The SD map is obtained by applying the algorithm (defined in Section 4.1.2) to all water
pixels. In the central region, most pixels are assigned to the OWT1 cluster (blue pixels) with
associated high water transparency (SD greater than 3 m). In the northern and western
areas, practically all the pixels are assigned to OWT3 cluster, that is, representative of low
to moderate water transparency. It is also in these two areas that the lowest values of SD are
verified, with SDs normally below 2 m. On the frontier between the highest (OWT1) and
lowest water transparency (OWT3) pixels, there are some intermediate water transparency
(OWT2) pixels (blue pixels) with SDs around 2.5 m. There is a strong agreement between
the brownish color in the RGB image (Figure 14) with the reduced SD and the OWT3
attribution (Figure 15).
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During microalgae bloom events (July–October), there is also agreement between RGB
images and water quality estimates (not shown here). Greenish colors in the RGB image
(representing microalgae in water surface) correspond, in most cases, to the attribution
of OWT4 cluster and high concentrations of Chl-a, PC, and low SDs. As in the intense
precipitation events, there are high spatial variations. In July, the northern region of
the reservoir normally presents microalgae, with high Chl-a concentrations and OWT4
classification. However, the other areas of the reservoir usually do not have a relevant
frequency of OWT4 attribution. An example in Figure 16 for 23 July 2017 shows a map
of Chl-a concentrations and the OWT classification. Very low Chl-a concentrations are
associated with OWT1 assignment. Low to intermediate Chl-a concentrations are associated
with the OWT2 or OWT3 cluster. High or very high Chl-a concentrations appear on this day
in the northern region of the Alqueva reservoir and are already associated with the OWT4
cluster. At the end of summer, in September 2017, the microalgae evolve towards the south,
also occupying the entire central area of the reservoir. The OWT classification and maps of
Chl-a, PC, and SD for 26 September 2017 are presented in Figure 17. The areas without the
presence of algae are assigned to the OWT1 or OWT2 clusters, and also have the lowest
water turbidity in these areas (highest SD). On this day, several areas are identified with
the presence of cyanobacteria blooms. There is agreement between the OWT classification
(Cluster OWT4) with the estimates of Chl-a and PC (very high concentrations). These are
therefore areas with a high probability of cyanobacteria presence.
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5. Discussion
5.1. Monitoring Water Quality and Optical Water Types

We present two different methodologies to estimate the water quality in a large reser-
voir: the water quality parameters using a quantitative analysis (empirical algorithms), and
the assignment of an optical water type (qualitative analysis). Water quality is expected
to worsen from the OWT1 towards the OWT4 cluster, i.e., an increase in water turbidity
and Chl-a concentration is likely. The OWT1 class represents the pixels with greater trans-
parency and without the presence of microalgae. Cluster OWT4 is expected to be associated
with microalgae blooms. The OWT4 pixels have a reflectance spectrum completely different
from the other three clusters, mainly in relation to the peak in the green band (560 nm), and
an increase from the B10 (681.3 nm) to B11 band of OLCI (708.75 nm). The OWT4 cluster
typifies, then, an area of possible risk of presence or future appearance of cyanobacteria.
As it is a cluster only representative of months of microalgae blooms (between July and
October), it presents the lowest number of pixels assigned in the period 2017–2020 over the
reservoir. This cluster only represents 8.2% of all pixels analyzed in the 4-year period. The
OWT1, OWT2, and OWT3 represent 26.5%, 40.2%, and 25.1%, respectively. For the overall
period, 66.7% of the pixels in the reservoir were attributed to the clusters OWT1 or OWT2,
that are groups of spectra representative of slightly turbid water, and low concentrations of
Chl-a. This means that the Alqueva reservoir, for most of the year and in most of the areas,
has good water quality, considering these parameters, being little affected by runoff events
and microalgae blooms. However, there are periods and areas of the reservoir (mainly
the northern region of the reservoir, between Monsaraz and Lucefecit—see Figure 17)
with the presence of high Chl-a and cyanobacteria concentrations. This conclusion is in
line with results from previous works [30,64,65] identifying the northern area as the key
area for the emergence of microalgae blooms, mainly in the period between August and
October. Although the west area of the reservoir is far from the area with the worst water
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quality (northern area), one microalgae bloom was also identified in the summer of 2018
in this area. As the summer progressed, there was an increase in the number of pixels
assigned to the OWT4 cluster for areas further south in the reservoir. During autumn, with
lower temperatures (air and water), the decrease in light intensity and even the increase
in the wind events normally lead to the dissipation of these microalgae blooms, and to
the improvement of the water quality. The episodes of extreme precipitation have been
identified to mainly affect the narrowest areas, namely, the northern and western areas of
the reservoir. This great distinction can be seen in March 2018, with practically 100% of the
pixels being defined with OWT3 class in the north and west region (denoting the influence
of runoff in the reflectance spectra), and with little variation in the other areas comparing
with months without runoff.

In several studies, the empirical algorithms (to obtain estimates of water quality)
are chosen depending on the OWT assignment. This methodology has great advantages,
namely because there are empirical algorithms that work well in a given OWT, but present
large errors in another. Thus, each algorithm is used for the OWT in which it works best.
This means that for the same reservoir, two or more empirical algorithms are defined to
represent the same water quality parameter. However, if the OWT assignment is wrong, the
quantitative water quality estimate is also wrong. This methodology is also possible with a
very significant number of data measured on site and can lead to relevant water quality
discontinuities in nearby pixels with distinct OWT (and empirical algorithms) assigned. In
the present study, the OWT and water quality parameters analysis was carried out indepen-
dently, that is, without defining empirical algorithms dependent on the OWT assigned to
each pixel. There are always some uncertainties when estimating water quality parameters
using satellite remote sensing, but using two different and independent methodologies to
represent the water quality in the same day/area provides greater reliability in the results.

5.2. Microalgae Blooms and Early Cyanobacteria Detection

Cyanobacterial blooms can emerge quickly in lakes with high nutrient levels, associ-
ated with calm weather and high water temperatures. The microalgae blooms already doc-
umented in the Alqueva reservoir using high-resolution satellite (Sentinel-2/MSI) [30,31]
were also identified here. In summer and early autumn, until the arrival of the first rain
episodes, the areas with low SD (high Turb) and high Chl-a concentrations are mainly due
to microalgae and cyanobacteria presence. The existence of one OWT group associated
with microalgae indicates that a pixel or an area in the lake will likely have high concentra-
tions of Chl-a and presence of microalgae, but adding the quantification of Chl-a and/or
PC concentrations will allow for quantifying the degree of severity. Moderate or high
concentrations of Chl-a do not imply the presence of cyanobacteria in a lake. However,
it increases the probability of cyanobacteria blooms’ emergence. Therefore, two different
risk levels were identified for the presence of cyanobacteria in the Alqueva reservoir using
Sentinel-3/OLCI data:

Level (a) Moderate risk—area covered by OWT4 pixels, with high Chl-a concentra-
tions, but low to moderate PC concentrations.

Level (b) High to very-high risk—area covered by OWT4 classification and simulta-
neously with high Chl-a and PC concentrations.

In order to predict an increase of the risk level for the presence of cyanobacteria in
the following days or weeks, it is important to analyze the spatial/temporal predictions of
meteorological parameters. For higher water temperature/solar radiation and lower wind
intensities, there may be a risk of increase of PC concentrations. In the summer, the wind
direction is mostly from the northwest, increasing in intensity in the late afternoon [53].
This fact may explain the shift of microalgae blooms, with increasing of frequency in the
OWT4 cluster and high concentrations of Chl-a/PC during the summer towards to the
south of Alqueva reservoir. On the other hand, if the weather forecast for the following
days is of intense precipitation or a sudden decrease in air temperature, a decrease in the
risk of the existence of cyanobacteria is expected.
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The retrieval of the pigment phycocyanin coupled with information from OWTs can aid
in the monitoring of cyanobacterial blooms. However, high presence of phycocyanin does
not imply a public health risk, because most cyanobacteria do not produce toxins harmful
to people. Areas simultaneously identified by OWT 4 and high Chl-a/PC concentrations
(level b) may constitute relevant areas for water collection and subsequent laboratory
analyses to confirm the presence of cyanobacteria and to check the toxicity to humans
and wildlife.

6. Conclusions

In this work, we propose a methodology to combine the qualitative information from
optical water type (OWT) classification with the estimations of water quality parame-
ters (quantitative information) using Sentinel-3/OLCI data. Instead of using the OWT
classification to determine which empirical algorithm is used, we propose to use this in-
formation independently. This allows to validate water quality estimates by verifying
that the information from the OWT classification and from the empirical algorithms are
in accordance.

The 2017–2020 satellite retrievals of atmospherically corrected spectral reflectance
were separated into four distinct clusters using the k-means clustering method, with water
turbidity and Chl-a concentrations increasing from cluster OWT1 to OWT4. The OWT4
group is representative of areas with microalgae presence, and with potential for emergence
of cyanobacteria. These areas also show, in a pixel-by-pixel comparison, the highest Chl-a
and PC concentrations, obtained from the empirical algorithms determined with OLCI
band relationships and laboratory data. The presence of group OWT4 was identified
mainly between July and October and more intensely in the northern region of the Alqueva
reservoir. In three of the four years analyzed, the month in which the overturn took place
was the month with the highest frequency (%) of OWT3 pixels. During the overturn process,
the increase in turbidity and in OWT3 class occurs in the whole reservoir, whereas during
the high precipitation and runoff events, this increase is more perceptible in some areas,
mainly the west and north area of the reservoir. The period of greatest turbidity and worst
water quality estimated in the four years analyzed was between August and November in
the north area. On the other hand, between January and July, the conditions are generally
of high water transparency and low Chl-a/PC concentrations, the southern area most of
the time being the one with the best water quality in these indicators. In these months, at
least 60% of the pixels were assigned to the OWT1/OWT2 clusters representing spectra
with a large decrease in surface reflectance from green to red/NIR wavelengths. However,
it is recommended to analyze specific areas of the reservoir, such as the northern area and
the eastern/westernmost area of the reservoir, even if, on average, the results are of good
water quality. This is because these three areas have much fewer OLCI pixels than the
southern and central areas of the reservoir, thus masking local variations when the reservoir
is analyzed as a whole.

This work proposes to increase the knowledge of the dynamics and evolution of the
water quality in the Alqueva reservoir, as well as constitute a useful tool to be used in the
future as part of an alert system to monitor sudden changes in water quality.
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