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Abstract: Recently, object detection in natural images has made a breakthrough, but it is still challeng-
ing in oriented ship detection for remote sensing imagery. Considering some limitations in this task,
such as uncertain ship orientation, unspecific features for locating and classification in the complex
optical environment, and multiplicative speckle interference of synthetic aperture radar (SAR), we
propose an oriented ship detector based on the pairwise branch detection head and adaptive SAR
feature enhancement. The details are as follows: (1) Firstly, the ships with arbitrary directions are
described with a rotated ground truth, and an oriented region proposal network (ORPN) is designed
to study the transformation from the horizontal region of interest to the rotated region of interest. The
ORPN effectively improved the quality of the candidate area while only introducing a few parameters.
(2) In view of the existing algorithms that tend to perform classification and regression prediction
on the same output feature, this paper proposes a pairwise detection head (PBH) to design parallel
branches to decouple classification and locating tasks, so that each branch can learn more task-specific
features. (3) Inspired by the ratio-of-average detector in traditional SAR image processing, the
SAR edge enhancement (SEE) module is proposed, which adaptively enhances edge pixels, and the
threshold of the edge is learned by the channel-shared adaptive thresholds block. Experiments were
carried out on both optical and SAR datasets. In the optical dataset, PBH combined with ORPN
improved recall by 5.03%, and in the SAR dataset, the overall method achieved a maximum F1 score
improvement of 6.07%; these results imply the validity of our method.

Keywords: ship detection; deep learning; remote sensing imagery; SAR feature enhancement; pair-
wise head

1. Introduction

Target detection is to calibrate the coordinates and categories of objects in a given
image, which has important research value in aerospace, satellites, face recognition, and
other fields. Ships in remote sensing images (RSIs) comprise an important detection target.
RSI ship detection is of great significance in both military and civil scenarios, such as
military detection, urban planning, illegal resource exploitation, and so on, so it is a hotspot
in the field of remote sensing research.

With the continuous progress of imaging technology, rapid, accurate, and automatic
detection of ships is required. However, as remote sensing images are shot from a top-down
perspective, the image size is large and the scene is extremely complex, which brings some
difficulties to ship target detection. Traditional algorithms have difficulty dealing with
environmental interference such as cloud, sea clutter, etc. [1,2]. Secondly, ship targets
are densely arranged in uncertain directions and have variable sizes. Therefore, RSI ship
detection is still a challenging research direction.

In addition to the design of algorithms, datasets also have an impact on detection
performance. According to different imaging principles, these can be roughly divided into
two types: optical and synthetic aperture radar (SAR). Among them, SAR is not affected
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by cloud cover or weather conditions and can be used for all-weather Earth observation.
It has become a necessary tool for spaceborne and airborne Earth observation. It is help-
ful to analyze the characteristics of real targets from SAR images. Before deep learning
technology matured, the SAR object detection was mainly through artificially designed
feature extraction methods. Researchers have tried and proposed many schemes. Wang [3]
proposed water body segmentation through GLCM combined with wavelet texture data,
and Dellinger proposed the SAR-SIFT algorithm [4], which is widely used in artificial feature
combination for SAR data processing. However, with the continuous updating of hardware
such as GPUs, the computing power of computers has been continuously improved, and
the method of extracting features through neural networks has become the mainstream
choice in the detection field. Some mature detection network perform well on optical image
datasets, but applying them directly to SAR images will have problems of incompatibility.

The grayscale characteristic in SAR imagery is quite different from that of optical
imagery, and the information of images is less. A single target in the SAR image is usually
represented as a collection of discrete backscattering points, resulting in unclear target
geometry and semantics. In addition, due to the coherence imaging mechanism, SAR
images often have strong speckle noise, which further reduces the detection effect of
the depth learning algorithm. Therefore, it is necessary to design a CNN-based feature
extraction method suitable for SAR imagery characteristics.

In this paper, considering the above difficulties in ship detection in remote sensing
images, the ship is represented by the rotated ground truth, and a two-stage detection frame-
work is proposed by improving the basic feature extraction module, rotation candidate
region extraction, and detection head of the oriented ship detection network.

1.1. Related Work
1.1.1. Deep Learning Object Detection

CNN-based object detection methods usually adopt a network structure used in classifi-
cation tasks as the feature extraction backbone, such as AlexNet [5], ZF-Net [6], googleNet [7],
vggNet [8], ResNet [9], and other networks, and ResNet is the most commonly used back-
bone for object detection. According to the difference in construction, the CNN-based object
detector can be roughly divided into the following three types: two-stage detector, one-stage
detector, and anchor-free detector.

Two-stage detectors first obtain the candidate area that may cover targets and then
complete the category identification and location prediction. RCNN [10] is the pioneering
work of two-stage detectors. He et al. [11] proposed SPP-Net, which solves the limitation
of the full connection layer. In 2015, Grishick et al. proposed Fast RCNN, which can train
classification and regression at the same time [12]. In the same year, Ren et al. designed
the real end-to-end method Faster RCNN [13]. In 2016, Dai et al. [14] introduced FCN [15]
to propose a novel region-based full convolution network (R-FCN), which designed the
location-sensitive ROI pooling.

On the other hand, the speed of single-stage detectors is greatly improved. They
abandoned the region proposal stage and directly predict the location and category at
once. You Only Look Once (YOLO)v1–v3 [16–18] are the most classic one-stage algorithms.
They continuously promote the performance through the improvement of the backbone
and different settings of the preset anchors. In addition, the single-shot multibox detector
(SSD) [19] and DSSD [20] use multi-scale features for detection. Aiming at the imbalance
between positive and negative samples, retinanet [21] introduces focal loss for difficult
sample mining.

In 2018, Law et al. [22] proposed CornerNet based on key point detection and opened
the design paradigm of anchor-free detectors. CenterNet [23] seeks the center point of the
target candidate box through a heat map. Tian et al. [24] built a highly accurate FCOS
network, and the predicted bounding box far from the target center is suppressed through
the CenterNetstrategy. FoveaBox [25] simulates how the human visual system perceives the
world and predicts category-related semantic maps to represent the probability of targets.
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1.1.2. Ship Detection

The mainstream methods of ship detection in remote sensing images are mainly
divided into traditional and depth-learning-based methods. The traditional algorithm is
based on a large number of artificial design features, and the main strategy is coarse-to-fine
multi-stage detection [26–28]; ship targets are identified by extracting features [29–31] such
as the edge, corner, color, and texture of candidate positions.

In recent years, with the gradual development of deep learning technology, many
convolutional neural networks for ship target detection have appeared. Zhang et al. [32] re-
ferred to the design idea of RCNN and built detection frameworks for ships of different sizes
in different scenes. Zou et al. [33] tried to integrate CNN with the idea of singular-value
decomposition (SVD) and proposed SVD-Net to detect ships. Tang et al. [34] introduced
extreme learning machine into the CNN detection architecture. Lin et al. [35] used the
full convolution neural network to detect the presence of remotely sensed ships and then
obtained the accurate position of ship targets through the visual attention mechanism.

Most detection methods in the field of natural images rely on the horizontal bounding
box for feature extraction. However, Liu et al. [36] pointed out that the horizontal region
of interest (HRoI) contains multiple densely arranged objects or background areas, so it
is difficult to extract accurate features for classification and regression. In the field of ship
detection in remote sensing imagery, in order to accurately detect ships with an arbitrary
orientation, an oriented target detection framework is adopted.

First of all, in order to accurately describe the multi-direction target, a rotated ground
truth is used to model the target with a specific angle. Secondly, the rotating region
proposal network is used to obtain multi-direction candidate regions. Then, rotation-
invariant regional features are extracted for fine classification. Finally, the detection head is
introduced to further predict the category and position of the candidate region. RRPN [37]
added an angle constraint into the anchor generation mechanism, set the combination of
three scales, three ratios, and six angles for any feature point, and generated RoIs directly
from the rotated anchors. RoI Transformer [38] learns the conversion from the HRoI to the
RRoI through the RoI Learner module and generates rotation-invariant features by PS RoI
Align.

1.2. Problem Description and Motivations

There are many differences between remote sensing images and natural images, and
the target representation is also different in the two types of imagery. The problems
described below make the CNN-based algorithm designed for natural images not be
directly applicable to remote sensing imagery.

Firstly, the scenes of remote sensing images are complex and diverse. Ships are
generally distributed in any direction, and most of them are densely distributed in nearshore
ports. Although CNN has a certain degree of translation invariance, it lacks rotation
invariance. As the target orientation is uncertain, the consistency of similar target features
will be weakened by directly using the general detector to train the data with rotation
angle information. Some existing rotated object detectors set dense anchors to obtain
multi-directional candidate regions for the prediction of additional directional parameters,
resulting in high model complexity and computational cost.

Secondly, a target detector usually consists of two tasks, target classification recognition
and boundary box regression positioning, which share the same features extracted from
the backbone network. Object classification should correctly identify the category of an
object regardless of its position, size, and orientation, and the regression task predicts a
tight bounding box related to the geometric configuration of the instance. Classification
confidence is usually used to reflect the positioning accuracy of the post-processing stage
(such as NMS [39]). Although a bounding box has a high confidence, it may still have
a low one with the ground truth it matches. Similarly, some bounding boxes close to
the ground truth with high positioning accuracy may be inhibited in the NMS stage due
to low confidence. Therefore, the features suitable for classification and localization are
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inconsistent. Current rotated object detectors often fail to take this into account. As a result,
when ships are densely arranged, the positioning of the correctly classified bounding box
may be inaccurate.

Furthermore, SAR is a coherent system, and speckle noise is its inherent property.
Coherent speckles appear as many high-intensity noises in an image. A single target is
represented as a collection of discrete or isolated backscattering points, which is distorted
from the original physical form. The edge of an image is the boundary between one
region and another region, which contains rich information, and extracting the edge can
distinguish the target from the background. In view of the multiplicative noise in SAR
images, edge detection is usually carried out by using the ratio operator [40,41] in traditional
SAR image processing. However, the traditional ratio operator needs to manually set the
threshold with experience, which is inefficient. Moreover, the threshold set has no specificity
for each image, and the effective edge of each image cannot be extracted in batches.

1.3. Contributions and Structure

This paper has carried out a series of research on the problems of RSI ship detection.
The main contents and innovations are as follows:

(1) Aiming at the problem of high complexity caused by preset multi-oriented anchors,
we propose an oriented region proposal network (ORPN). In generating the candidate
regions, ORPN has abandoned artificial oriented anchors and instead designs a branch
that learns the projective transformation from the HRoI to the RRoI, capturing high
levels of the RRoIs while only a few parameters are added.

(2) Aiming at the inconsistency of features suitable for classification and localization, this
paper proposes the pairwise branch detection head (PBH). By analyzing the respective
characteristics of the fc-head and conv-head, separate branches are set for classification
and localization tasks. Each branch is specifically designed to learn the appropriate
features for the corresponding task.

(3) To reduce the negative impact of the multiplicative coherent speckle on SAR ship
feature extraction, we combine traditional SAR edge detection algorithms with the
CNN framework to propose an adaptive threshold SAR edge enhancement (SEE)
module. The SEE module combines the mean ratio operator to effectively remove the
influence of coherent speckles and enhances the edge adaptively. The threshold value
is adaptively learned by the network after setting the initial value, which enables the
module to have better generality for different datasets.

This article is organized as follows: Section 2 briefly introduces some existing methods
that have inspired our work. The next Section 3 describes the principle and significance of
the three proposed modules. The description of the datasets and experimental results are
shown in Section 4, and the final conclusion is stated in Section 5.

2. Preliminaries
Ratio-of-Averages Edge Detector for SAR Image Processing

The edge of an image is an important clue for visual perception. In the computer
vision system, image edge detection affects the overall effect to a great extent. Classic
gradient-based edge detection operators usually rely on the assumption that the image is
contaminated by additive noise, but the noise of SAR images is multiplicative. The edges
obtained by gradient detectors are not constant false alarms, but vary with the local average
intensity of the image, so that false edges are easily detected in bright areas, while many
real edges are lost in dark areas.

In actual physical scenarios, SAR images have inherent multiplicative speckle char-
acteristics. A single-channel SAR image I(x, y) can be represented by its backscatter
coefficients S(x, y) and speckle noise ε(x, y). Under the premise that S(x, y) is not related to
ε(x, y), which is also the correct assumption in most scenarios, this image can be expressed
by the following formula:

I(x, y) = S(x, y)ε̇(x, y) (1)
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where x, y are the horizontal and vertical coordinates of the pixel. If the number of looks is
1, the statistical model of ε(x, y) is a negative exponential distribution; the speckle noise of
a multi-look SAR image follows a gamma distribution.

Different from the classical edge detector based on the image gradient, the ratio-
of-averages (ROA) detector is defined as the ratio of the average pixel values of two
non-overlapping neighborhoods on opposite sides of the point.

In practice, a window centered at a given point is split into two contiguous neighbor-
hoods R1, R2. The grey value of pixel s is denoted Is, so that the mean µi of a given region
Ri having ni pixels is:

µi = (1/ni) ∑
s∈Ri

Is, i ∈ (1, 2) (2)

Thus, along the specified direction, the ratio γ may be formed as:

γ = min
(

µ1

µ2
,

µ2

µ1

)
(3)

It can be known from Equation (3) that when γ is closer to 0, it means that the difference
between the gray levels of the two regions is greater, and the detection point is more likely
to be an edge point; on the contrary, if the γ is closer to 1, the windows on both sides are
more likely to belong to the same homogeneous region. Therefore, the final response of the
ratio detector is then compared to a predetermined threshold T. If γ < T, then an edge is
deemed to be present at coordinate (x, y).

Considering the multi-directionality of edges, the ROA operator adopts four-direction
edge detection, and all considered directions must ultimately be judged using the same
threshold. Obviously, each direction corresponds to a different ratio γ. The minimum ratio
is taken as the final value γ = min(γ1, γ2, γ3, γ4), and the corresponding direction is the
most probable edge direction of the considered point.

The conditional probability density function (pdf) of the ratio in the above scenarios is
expressed as follows:

p(r/(P1/P2)) =
nΓ(2NL)
Γ(NL)2

[
(P1/P2)NL

(rn + P1/P2)2NL +
(P2/P1)NL

(rn + P2/P1)2NL

]
rnNL−1

r ∈ [0, 1]

(4)

where P1 and P2 respectively represent the average value of pixels in the neighborhoods
immediately to the right and left of the considered point, L is the number of looks, and
N is the number of pixels in each area. n is set to 1, 2 depending on whether the data are
intensity or magnitude.

It can be noticed that the performance of the ROA edge detector is only related to the
size of neighborhoods, the number of looks, and the ratio of two mean values, and the
probability of false alarms does not depend on the mean value. Therefore, the ROA edge
detector is a constant false alarm rate (CFAR) operator suitable for radar images.

In recent years, detection methods based on the ROA have been proposed one after
another. Most of these methods use thresholding to extract edges. It needs to preset two
thresholds: high threshold and low threshold, these two thresholds being usually set
manually through experiments. This not only increases the tedious process of parameter
tuning, but also, the obtained threshold may not be the optimal threshold. To avoid these
problems, many methods use adaptive threshold selection. Liu et al. [42] proposed a simple
and fast automatic threshold selection method, and they used the maximum entropy to
calculate the optimal threshold for edge detection in SAR images. Ibrahim et al. [43] and
Setiawan et al. [44] used the Otsu threshold selection method instead of manual threshold
selection to calculate the optimal threshold. However, these methods are still within the
category of manual operators, and the calculation process is often complicated and cannot
be integrated into the deep learning framework. Therefore, this paper further improves
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the threshold selection method and obtains the threshold through neural network training,
which effectively avoids the process of setting the threshold by repeated experiments.

3. Proposed Method
3.1. The Overall Framework

Figure 1 is the workflow of the proposed detection method, and the method in this
paper mainly consists of two parts: one is the input image enhancement module for the
SAR image, and the other is an oriented region detector with a pairwise head (ORP-Det).

Aiming at the problem of inconsistent features suitable for classification and regression
in detection and the multi-directional characteristics of remote sensing objects, an oriented
region detector with a pairwise head (ORP-Det) is proposed. In the region proposal
generation stage, ORP-Det proposes an improved oriented region proposal network (ORPN)
to learn the mapping from the horizontal region of interest (HRoI) to the rotated region
of interest (RRoI) and generates high-quality RRoIs while only adding a small number of
parameters. Subsequently, each RRoI will participate in rotated RoI align (RROI Align)
to fully extract the rotation-invariant spatial information of the target to obtain regional
features. Finally, ORP-Det designs a pairwise branch detection head (PBH) to disentangle
the classification and regression tasks.

Rotated RoI Align

θ

Horizonal   
Anchor

Horizonal
RoI

Rotated
RoI

Oriented Region 
Proposal Network

FCs

Convs

cls sub-head

reg sub-head

score

x,y,
w,h,

θ

Pairwise Branch 
Detection Head

Backbone

RRoIsOptical

edge 
enhanceme
nt module

SAR

ORP-Det

Figure 1. Overview of the proposed framework for ship detection.

3.2. SAR Image Edge Enhancement Module

The multiplicative noise in the SAR image can be suppressed by the ROA algorithm.
However, the performance of the traditional ROA algorithm is very sensitive to the setting
of the threshold, and it is usually difficult to set a suitable value for the threshold. In
addition, the optimal value varies depending on the input data. In view of this problem, as
shown in Figure 2, this paper first proposes a channel-shared adaptive threshold (CSAT)
block to achieve automatic threshold setting, avoiding the trouble of manual operation. At
the same time, a CNN-based image enhancement strategy combined with the ROA edge
detection results is designed; the edge information is adjusted and weighted through the
network; the edge is enhanced as the input of the subsequent backbone network.

Figure 2. Description of the SAR image edge enhancement (SEE) module.
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3.2.1. Channel-Shared Adaptive Threshold Block

In the developed channel-shared adaptive threshold block, the original image is first
input to convolutional layers to obtain feature maps U ∈ RH×W×C, where H and W are the
length and width of the feature map and C is the number of channels. In order to reflect
the role of all positions in the feature map, it is necessary to extract the overall information
of a single channel. Therefore, global average pooling (GAP) is first adopted to calculate
the spatial average value of each feature map, and a one-dimensional vector z ∈ R1×1×C

is obtained.

zc = FGAP(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (5)

The 1D vector is then propagated into two consecutive fully connected layers. Figure 3
depicts the schema of the CSAT block. To limit the complexity of the model, the first fully
connected layer is used as a dimensionality reduction layer, which reduces the number of
feature channels by reduction ratio r, and this parameter choice is discussed in Section 4.3.1:
setting r = 8 strikes a good balance between accuracy and complexity. The second fully
connected layer restores the channel dimension to the original number and applies the
sigmoid function at the end of this layer to output a scaling parameter α. This process can
be expressed as:

α = σ(W2δ(W1z)) (6)

where z is the output of GAP, δ and σ are the ReLU and sigmoid function, respectively, and
α is the corresponding coefficient of the output, which is limited in the range of (0,1). For
simplicity, the BN layer between the two fully connected layers is not reflected in the above
equation.

Figure 3. Description of the channel-shared adaptive threshold (CSAT) block.

The final output of the block is obtained by multiplying z by α and then averaging over
the channel dimension to obtain the final threshold. In summary, the thresholds learned in
CSAT are expressed as follows:

τ = average
c
|αc · zc| (7)

where τ is the final threshold and c is the index of the channel of the z. Through the
above operations, the thresholds are automatically learned by the deep architecture rather
than manually set by experts. At the same time, these network layers are trained by the
back-propagation algorithm, and each input image can have different thresholds in the
inference process.
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3.2.2. Feature Discrimination and Image Processing Strategy

In addition to the automatic learning of the ratio threshold in the ROA algorithm,
a new feature discrimination and image processing strategy is also proposed, which is
generally divided into four steps:

1. The ratio-of-averages value of each pixel of the input image is calculated according to
the ROA operator;

2. The threshold τ is compared with the ratio-of-averages values, and the pixels are
judged as edge points and non-edge points, respectively. The original image is then
divided into two mask images Maskedge and Masknon−edge;

3. The grayscale of edge pixels in Maskedge is enhanced; the grayscale of non-edge pixels
in Masknon−edge is suppressed;

4. Maskedge and Masknon−edge are concatenated and then input into the subsequent
detection network.

The flow of this structure is shown in Figure 4. First taking Maskedge as an example,
if the ratio value of a pixel is greater than τ, then copy the pixel value of this point to the
corresponding position of Maskedge. Finally, all pixels on Mask1 are enhanced by a 1 × 1
convolution. In Masknon−edge, the calculated ratio is less than τ, and a 1 × 1 convolution is
also used to suppress non-edge information. The threshold τ for positive samples of edges
in the experiment was initially set to 0.9.

Figure 4. Pipeline of the feature discrimination and image processing strategy.

3.3. Oriented Region Detector with a Pairwise Head
3.3.1. Oriented Region Proposal Network

In order to detect ships with a dense arrangement, arbitrary orientation, and different
scales, ORP-Det adopts the oriented bounding box (OBB) modeling method. The repre-
sentation of the HRoI is defined as (x, y, w, h), where (x, y) represents the geometric center.
A five-dimensional vector (xr, yr, wr, hr, θr) is used to represent the RRoI, where θr is the
minimum angle that rotates from the HRoI to the RRoI, defined as the angle with the
positive x axis, that is θr ∈ (−π/2, π/2). Rearrange the order of the four vertices of the
bounding box to minimize the angle as follows:

θr = θi
i = arg min0≤j<4

{∣∣θj − θ
∣∣} (8)

Since the HRoI and RRoI representing the same object have the same geometric center,
i.e., (x, y) = (xr, yr), the transformation from horizontal to arbitrary orientation bounding
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boxes can be performed only by learning the scaling and rotation parameters. Pi = (xi, yi)
(0 ≤ i < 4) are the four vertices of the HRoI, while P′i =

(
x′i , y′i

)
(0 ≤ i < 4) are those of the

RRoI. The transformation parameters can be calculated as:

Mθ =

[
cos θr − sin θr
sin θr cos θr

]
(9)

Ms =

( wr
w 0
0 hr

h

)
(10)(

x′i
y′i

)
= Mθ ∗Ms ∗

(
xi − x
yi − y

)
+

(
x
y

)
(11)

Mθ represents the rotation parameter of parametric transformation, and Ms represents
the parameter of size scaling. As shown in Figure 5, ORPN is a multi-task network whose
design follows RPN. The input of this module is a feature layer X ∈ RH×W×C, which is
then converted into H ×W× 256 through a set of 3 × 3 convolutional kernels and finally
passed in three branches after activated by the ReLU function.

Figure 5. Description of the oriented region proposal network.

Each point on the feature map corresponds to k preset anchors. Therefore, the cls
classification branch outputs 2k parameters for predicting the score of the presence of the
foreground; the reghbb regression branch outputs 4k parameters ux, uy, uh, uw for predicting
the parameters of the horizontal bounding box; in addition, a regtrans branch for predicting
the transformation matrix is added, for which 4k transformation parameters (v1, v2, v3, v4)
are output for completing the affine transformation from the HRoI to the RRoI. Finally, the
overall loss function of ORPN is as follows:

L({pi}, {ui}, {vi}) = 1
Ncls

∑i Lcls
(

pi, p∗i
)

+λ1
1

Nreg
∑i p∗i Lreg

(
ui, u∗i

)
+ λ2

1
Nreg

∑i p∗i Lreg
(
vi, v∗i

) (12)

where i is the index of the anchor box and pi, ui, and vi represent the outputs of the three
branches, respectively. p∗i represents the positive softmax probability, and when pi = 0,
it represents the background. ui, u∗i represent the predicted HRoI and the corresponding
ground truth, respectively, and vi and v∗i represent the predicted RRoI and the ground truth
with angle information. λ1 and λ2 are balance parameters that were both set to 1. Ncls
represents the number of anchors participating in the classification, and Nreg represents
the number of anchors assigned as positive samples. The cls branch uses the cross-entropy
loss function to calculate the classification loss, and the reghbb and regtrans branches use
the smooth L1 loss function. The transformation parameter vector v∗ is defined as follows:

v∗1 = wr
w cos(θr − θ), v∗2 = − hr

h sin(θr − θ)

v∗3 = wr
w sin(θr − θ), v∗4 = hr

h cos(θr − θ)
(13)

ORPN generates RRoIs oriented in any direction without increasing the number of
anchors. Compared with RPN, ORPN only adds a 1 × 1 convolutional layer to learn
the affine transformation parameters from the HRoI to the RRoI and only adds a small
amount of parameters. During training, ORPN assigns positive samples based on the
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IoU between the anchor and the minimum circumscribed rectangle of the rotated ground
truth. ORPN first estimates the four parameters (x, y, w, h) of the HRoI and then obtains
v∗ through the regtrans branch as the input of Equation (11) to estimate the position of the
RRoI (xr, yr, wr, hr, θr).

3.3.2. Rotated RoI Align

Since the RRoI generated from ORPN contains different directions, the RoI pooling
operation in the traditional detector will make the features represented by the RoI not have
geometric robustness, so a rotation transformation matrix is used to convert the features of
targets in different directions into a unified one, so that the features have rotation invariance.
Furthermore, we learned the ideas in position-sensitive score maps [15] and RoI Align to
improve the quality of the extracted features.

We used rotated region of interest align (RRoI Align) to extract features from the RRoI.
By RRoI Align, the regions corresponding to the RoIs of different sizes on feature maps are
mapped into output features with a fixed size, and the oriented features are corrected to
the horizontal direction.

For an input feature map F of size H ×W × C and a five-dimensional vector of the
RRoI (xr, yr, wr, hr, θr), RRoI Align first divides the RRoI into K× K bins, and the size of
each bin is (wr

K , hr
K ). Then, in each bin bin(i, j)(0 ≤ i, j < K), ks × ks sampling points are set.

The local coordinates for the sampling points in bin(i, j) are:{
ihr

K
+

(ih + 0.5)hr

Kks

}
×
{

jwr

K
+

(jw + 0.5)wr

Kks

}
(ih, jw = 0, 1, . . . , ks − 1) (14)

For each local coordinate (xl , yl) in bin(i, j), it is converted to the global coordinate
(xg, yg) through the transformation matrix. After the corresponding feature regions are
obtained, bilinear interpolation and average pooling are applied to each bin(i, j), and finally,
a feature map of shape K×K×C is generated. Compared with the HRoI, ORRN cooperates
with RRoI Align to further eliminate the complex background interference, which is closer
to describing real objects, so it can provide better initialization features for the subsequent
detection head.

3.3.3. Pairwise Branch Detection Head

Two mainstream detection head structures commonly used in two-stage detectors are
the fully connected detection head (fc-head) and convolution detection head (conv-head).
The experiments in Wu et al. [45] showed that the fc-head and conv-head have the opposite
advantages towards the classification and regression tasks. Compared with the conv-head,
the fc-head assigns higher classification confidence to the RoIs with a higher IoU, which is
also proven by the Pearson correlation coefficient between classification confidence and the
IoU. The experiment also found that when the IoU is higher than 0.4, the conv-head has a
better regression effect. Since the fc-head is more sensitive to the spatial position, it applies
non-shared changes in different positions of the proposal feature map, giving the fc-head
the sensitivity of spatial information and the ability to detect the whole and local object.
Therefore, in the category identification task, the effect of the fc-head is better than the
conv-head. However, the conv-head shares the convolution filter parameters at different
positions of the proposal, and it has stronger robustness in the object regression task.

Figure 6 is the illustration of two different detection heads for common detection.
After the above discussion, it is necessary to decouple the classification task from the
regression task for better detection results. According to the characteristics of the fc-head
and conv-head, a pairwise branch detection head (PBH) is proposed, in which a special
fc-branch is used for target classification, while designing a conv-branch responsible for
position regression.
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Figure 6. Structure of different detection heads.

As shown in Figure 7, PBH is a two-branch structure, including a classification branch
(cls− head) and a multi-directional regression branch (reg− head). Finally, PBH integrates
and decodes the predicted results of the above two detection branches into the final pre-
dicted OBB five-dimensional vector (xpre, ypre, wpre, hpre, θpre). In the cls− head, the features
extracted by RRoI Align are first passed through two 1024-dimensional fully connected
layers and an N-dimensional fully connected layer to predict the category score of the
RRoI. In the reg− head, a residual block is added to further extract the depth features, and
then, four 3 × 3 convolutional layers are connected. Two implementations of the residual
block network architecture are shown in Figure 8. After the convolution operation, the
fully connected layer predicts the scale-invariant offset encoded by the relative coordinate
system. The predicted output obtained from the reg − head are (tx, ty, th, tw, tθ), where
(tx, ty) is the center position, (th, tw) is the scaling factor of the length and width, and tθ

is the angle offset. Finally, the prediction parameters and regression parameters can be
decoded according to the following formula:

tx = 1
wr

((
xpre − xr

)
cos θr +

(
ypre − yr

)
sin θr

)
ty = 1

hr

(
−
(
xpre − xr

)
sin θr +

(
ypre − yr

)
cos θr

)
th = log hpre

hr
, tw = log wpre

wr
, tθ = θpre − θr

(15)

where xr, xpre represent the RRoI and the predicted OBB, respectively. The overall loss
function is weighted by the cross-entropy loss function of the classification branch and
the smooth L1 loss function of the regression branch. In the final stage of detection, multi-
directional non-maximum suppression (Rotated-NMS) is used to suppress the repeated
rotated boxes to obtain the output prediction box of the final network.

Figure 7. Description of the pairwise branch detection head.
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Figure 8. (a,b) Schematic of two different kinds of resblocks in conv-head.

4. Experiments and Analysis
4.1. Introduction to SAR Ship Dataset

The datasets used in experiments were derived from ship images captured by remote
sensing satellites. In order to better verify the effectiveness of our work, the optical datasets
DOTA-Ship and SAR datasets HRSID and AIR-SARShip-1.0 were used for verification:

(1) HRSID: HRSID is a high-resolution SAR remote sensing image ship dataset released
by Wei et al. [46]. The dataset contains three annotation formats of ships: horizontal
rectangle annotation, rotated rectangle annotation, and pixel-level segmentation annotation.
In the HRSID dataset, 136 panoramic high-resolution SAR images with resolutions ranging
from 1 m to 5 m are cropped to a pixel size of 800 × 800, resulting in a total of 5604 high-
resolution SAR images. It includes different scenarios such as various sea conditions,
large-scale sea areas, and near-shore ports. According to the statistics, there are a total of
16951 ships of various sizes. Examples of the dataset are shown in Figure 9. After randomly
dividing the dataset, the training set contained 3643 images and the validation set contained
1961 images.

Figure 9. Some samples from HRSID.

(2) AIR-SARShip-1.0: The AIR-SARShip-1.0 dataset has a total of 31 SAR images of
Gaofen-3, and the training set and test set have been specified. The image resolution
includes 1 m and 3 m, and the polarization mode is single polarization. The dataset is
annotated in VOC format and only labeled with horizontal boxes. The scene types include
ports, islands and reefs, and sea surfaces with different levels of sea conditions. The
background covers various scenes such as nearshore and distant seas, and the scene is
the most complex, as shown in Figure 10. The size of the original image of the dataset is
generally around 3000 × 3000, and the ship targets are mostly small. In the experiment, we
intercepted the target area in the large image to form 180 small images with a size of about
500 × 500, of which 126 images were used for training and 54 images were used for testing.
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Figure 10. Some samples from the AIR-SARShip-1.0 dataset.

(3) DOTA-Ship dataset: The optical ship dataset DOTA-Ship comes from DOTA-v1.0,
which is a large-scale geospatial object detection dataset open sourced by the Key Lab-
oratory of Remote Sensing of Wuhan University. The images come from Google Earth,
the Gaofen-2 satellite, airborne aerial images, etc. The resolution of satellite and airborne
images is between 0.1 m and 1 m, and the resolution of images derived from Google Earth
is between 0.1 m and 4.5 m. DOTA-v1.0 contains a total of 15 categories. DOTA-Ship built
a dataset based on images containing ship categories in the DOTA-v1.0 dataset. A total
of 573 images were selected, including ship targets of various sizes and directions, and
covering many potentially complex scenarios, as shown in Figure 11. In the experiment,
the original image was cropped to form a total of 8063 images with a resolution of 1024 ×
1024, and the dataset was randomly divided into two parts as follows: one group included
5644 images for training, and a group of 2419 images was used for testing. The position of
objects in the dataset were determined by rotated boxes.

Figure 11. Some samples from DOTA-Ship.

4.2. Experimental Setting

The experimental section mainly verifies the effect of the SAR image edge enhancement
(SEE) module and oriented region detector with the pairwise head (ORP-Det) proposed in
this paper. Since SEE is a method specifically for SAR images, the verification experiment
of SEE was carried out on the AIR-SARShip-1.0 dataset. In order to verify the difference
between the background area of the image and the target area, the target uses a horizontal
bounding box. In addition, the verification experiments of ORP-Det were carried out on
DOTA-Ship and HRSID, and finally, the ablation experiments and joint experiments of the
two modules were carried out on HRSID.

The experiments used Faster RCNN as the baseline network and chose ResNet-50
as the backbone with ImageNet pre-trained weights. The number of training iterations
was 36 epochs, and the mini batch was set to 2. All experiments were performed in
mmdetection-2.6.

In order to better compare the effectiveness of the detection algorithm proposed in
this paper, the algorithm benchmark was firstly constructed, including four algorithms:

(1) Baseline: Faster RCNN with ResNet-50 as the backbone network, which was
pre-trained by ImageNet.

(2) Faster RCNN (OBB): Based on Faster RCNN, the RPN part was retained, and the
HBB detection branch and RoI Pooling were replaced with the OBB detection branch and
RRoI Align.

(2) Faster RCNN+RRPN: Based on Faster RCNN, RPN was replaced with rotating
region proposal network (RRPN).

(3) Mask RCNN (OBB): Based on Mask RCNN, the predicted mask of the Mask branch
was input into the post-processing step to obtain the OBB represented by the smallest
enclosing rectangle.
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4.3. Experimental Results and Analysis
4.3.1. Experiment Evaluation of SEE

To evaluate the effect of the proposed SAR image edge enhancement module, this sec-
tion analyzes the experimental results from both qualitative and quantitative perspectives.

It is worth noting that the two SAR datasets AIR-SARShip-1.0 and HRSID both use
horizontal ground truth as predicted targets for performance analysis in this section.

First, we analyze the impact of parameters in the SEE module on the network perfor-
mance. r introduced in the SEE module is an important hyperparameter, which directly
affects the capacity and computational complexity of the SEE module. To investigate this
relationship, we conducted experiments with different r-values based on the baseline. The
results in Table 1 show that detection performance is not always positively correlated with
network complexity. In particular, we found that setting r = 16 struck a good balance
between accuracy and complexity, and this value was used in all subsequent experiments.

Table 1. AP, AR, and network parameter amount on AIR-SARShip-1.0 at different r. Here, original
refers to Faster RCNN with ResNet-50.

r AP (%) AR (%) Million Parameters

4 75.0 90.9 53.7
8 74.4 90.5 49.6
16 73.9 90.1 45.4
32 72.6 88.3 43.5

Original 72.0 87.6 41.4

The best results are in bold.

The proposed SEE module was added in the initial stage of the network to realize
the enhancement of image edges and the suppression of non-edge parts. It learns the
discriminative threshold of the ROA operator through network back-propagation. In this
section, the adaptability of the SEE module on different types of detectors is first judged
by the experimental results. The SEE module was embedded on three representative
networks in the field of two-stage, single-stage, and anchor-free algorithms. Table 2 shows
the performance improvement of the SEE module on the three representative networks on
two SAR datasets.

Table 2. Experiment results for the SEE module on two SAR datasets.

Detector AIR-SARShip-1.0 HRSID

AP(%) AR(%) AP(%) AR(%)

YOLO v3 70.3 86.9 85.9 91.2
YOLO v3 w. SEE 72.1 88.3 87.0 91.9

FCOS 65.5 84.3 86.8 89.1
FCOS w. SEE 66.9 86.2 87.5 90.4
Faster RCNN 72.0 87.6 88.5 90.6

Faster RCNN w. SEE 73.9 90.1 89.3 91.5

The best results are in bold.

From the above table, it can be seen that the network after adding the SEE module
was improved in both the AP and AR, and the difference between them was not obvious:
the AP improvement on HRSID was 0.8%, 1.1%, and 0.7%, respectively; the AR increased
by 0.9%, 0.7%, and 1.3%, respectively. Since the increase was reflected in both the AP
and AR, we concluded that the SEE module enhances the network’s ability to correctly
classify the target area and reduces the misdetections of the network by inhibiting noise
and enhancing edge information. Meanwhile, after adding the SEE module to the three
detectors, the AP improvement on the AIR-SARShip-1.0 was 1.9%, 1.8%, and 1.4%, while
the improvement on the AR was 2.5%, 1.4%, and 0.9%. This shows that the SEE module
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alleviates the insufficient feature extraction of SAR images in the case of small datasets
and complex scenes and improves the adaptability to different scene. Finally, the detection
effect on AIR-SARShip-1.0 of the SEE module improved more than HRSID.

4.3.2. Experiment Evaluation of ORP-Det

This section mainly carries out the quantitative experimental analysis of the proposed
oriented region proposal network (ORPN), pairwise branch detection head (PBH), and
combined ORP-Det. Faster RCNN(OBB) was used as the baseline, and Precision, Recall,
and F1 scores with a confidence level of 0.5 were used as the evaluation criteria in the
experiment. The optical and SAR datasets in this section use rotated annotation boxes for
network training and testing.

(1) Experiment Evaluation of ORPN

The effect of ORPN is first verified, and the RRPN proposed in [37] was used as a
comparison method. The results on the two datasets are shown in the following Table 3.

Table 3. Evaluation experiments for oriented region proposal network.

Detector
DOTA-Ship (Optical) HRSID (SAR)

Precision
(%) Recall (%) F1 Precision

(%) Recall (%) F1

Baseline 91.55 86.43 88.92 83.2 81.45 82.31
+RRPN [37] 91.98 87.69 89.78 83.69 80.97 82.3

+ORPN 93.27 88.52 90.83 86.37 84.92 85.64

The best results are in bold.

Compared with the baseline results, the F1 score of ORPN on the DOTA-Ship and
HRSID increased by 2.24 and 4.35, which are more stable than that of RRPN. This proves
that the strategy of learning the transition from the HRoI to the RRoI through additional
branches in ORPN is beneficial to multi-directional detection accuracy, and the RRoI
obtained by ORPN can better provide regression initialization positions. At the same time,
the improvement of the recall rate shows that ORPN can have a better ability to avoid
misdetections, especially in densely arranged scenarios. HRoIs may surround multiple
ship targets, and the redundant features will interfere with the regression, while RRoIs can
effectively avoid the above situation.

(2) Experiment Evaluation of PBH

After replacing the detection head in the baseline with BPH, the results in Table 4
reflect that the precision on DOTA-Ship increased by 0.56%, the recall rate increased by
1.92%, and the F1 score increased by 1.28. In HRSID, the recall rate increased the most
(2.68%), followed by the F1 score (2.56%) and precision (2.42%). It can be seen that the
strategy of using the fc detection branch for classification and the conv branch for regression
is effective, and its detection effect is better than using a single fc detection head to complete
the classification and regression at the same time.

Table 4. Evaluation experiments for pairwise branch detection head.

Detector
DOTA-Ship (Optical) HRSID (SAR)

Precision
(%) Recall (%) F1 Precision

(%) Recall (%) F1

Baseline 91.55 86.43 88.92 83.2 81.45 82.31
+PBH 92.11 88.35 90.2 85.62 84.13 84.87

The best results are in bold.
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(3) Experiment Evaluation of ORP-Det

Table 5 integrates the comparison performance of ORP-Det and its sub-modules with
the baseline. It can be seen that ORP-Det achieved an F1 score of 92.50 on DOTA-Ship, which
was 3.58 higher than the baseline; on HRSID, the F1 score increased by 4.44 to 86.75. This
result shows that the ORP-Net proposed in this paper has a more obvious improvement in
SAR ship detection. At the same time, the detection effect of ORPN combined with PBH is
better than that of either of them alone. ORPN learns the mapping from the HRoI to the
RRoI, which can generate a more accurate RRoI to provide a better initialization position
for PBH; for rotation-invariant features, PBH can play the respective advantages of fully
connected layers and convolutions for classification and regression.

Table 5. Ablation experiments for ORP-Det.

Detector
DOTA-Ship (Optical) HRSID (SAR)

Precision
(%) Recall (%) F1 Precision

(%) Recall (%) F1

Baseline 91.55 86.43 88.92 83.2 81.45 82.31
+ORPN 93.27 88.52 90.83 86.37 84.92 85.64
+PBH 92.11 88.35 90.2 85.62 84.13 84.87

ORP-Det 93.57 91.46 92.50 88.43 85.14 86.75

The best results are in bold.

4.3.3. Comparison of Performance between the Proposed Overall Framework and the
State-of-the-Art

The proposed detection framework is compared to several detectors in this section.
Table 6 shows the overall evaluation of the detector on the two datasets.

Table 6. Experimental results of the overall framework on HRSID and DOTA-Ship.

Detector Backbone

DOTA-Ship (Optical) HRSID (SAR)

Precision
(%)

Recall
(%)

F1 Precision
(%)

Recall
(%)

F1

Anchor-Free Method

FCOS (OBB) R-50-FPN 86.53 84.11 85.30 79.65 76.54 78.06
FCOS (OBB) R-101-FPN 86.42 83.10 84.73 78.45 75.52 76.96

Single-Stage Method

RetinaNet (OBB) R-101-FPN 72.67 70.14 71.85 83.18 72.56 72.07
DRN H-104 85.48 83.79 82.96 72.66 72.85 72.75
R3Det R-101-FPN 77.45 74.54 75.97 70.13 69.55 69.84

Two-Stage Method

Faster RCNN (OBB) R-101-FPN 91.55 86.43 88.92 83.2 81.45 82.31
Mask RCNN (OBB) R-101-FPN 92.03 88.14 90.04 85.58 84.17 84.87

R2CNN R-101-FPN 55.76 52.32 53.98 50.1 51.5 50.81
R2CNN++ R-101-FPN 66.79 64.07 65.40 59.8 60.77 60.28

SCRDet R-101-FPN 72.34 69.88 71.09 69.91 68.57 69.23
RoI Transformer R-101-FPN 92.76 90.22 91.47 87.32 83.24 85.23

Faster RCNN+ORPN R-101-FPN 93.27 88.52 90.83 86.37 84.92 85.64
Faster RCNN+PBH R-101-FPN 92.11 88.35 90.2 85.62 84.13 84.87

ORP-Det R-101-FPN 93.57 91.46 92.50 88.43 85.14 86.75
ORP-Det w. SEE R-101-FPN \ \ \ 90.18 86.66 88.38

The best results are in bold.

After the RRPN was added to Faster RCNN, the F1 score on DOTA-Ship improved by
0.86, while the recall on the SAR dataset HRSID reduced by 0.48%, and the F1 score was
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almost unchanged. On the one hand, this indicates that RRPN can achieve some limited
effects by the preset anchor generation mechanism of six angles. Compared with the HRoI
output of RPN, the RRoI had a better regression fitting effect on the rotated ground truth
(RGT). On the other hand, the reduced recall may be due to the fact that many manually
set anchors were judged as negative samples, which led to a more serious unbalance in
positive and negative samples. Therefore, the aforementioned RRPN adding the artificial
multi-angle prior is not the best method for modeling oriented anchors.

Compared with the baseline, the precision, recall, and F1 scores of Mask RCNN
(OBB) on the SAR dataset improved by 2.38%, 2.72%, and 2.56, respectively. This may be
attributed to the semantic information introduced by the full convolutional segmentation
branch of Mask RCNN, which provides more location information for the SAR dataset
with less semantic information, proving that the conv-head is helpful for target localization.
However, the introduction of the segmentation branch causes more computation, and
the post-processing stage also requires additional masks to convert to OBB, which is not
an end-to-end algorithm. On the contrary, our PBH designs independent f c− head and
conv− head, realizing end-to-end information integration, and achieves better detection
effect. We also verified the effect of using both the SEE module and ORP-Det on SAR
dataset. The results show that our overall method can further improve the precision by
1.75% and recall by 1.52%. In general, our overall approach respectively achieved 6.98%
and 5.21% for the precision and recall compared to the baseline.

4.3.4. Visualization and Analysis of the Detection Results

To demonstrate the advantages of our method over previous ones, some visual com-
parison results are necessary. First, the visual contrast of the SEE module is given in
Figure 12, and we give some qualitative analysis of ORP-Det on DOTA-Ship in Figure 13.

During the training process, the output of the SEE module is extracted and compared
with the original image, and some visual comparison results are shown in Figure 12. It can
be seen from the figure that the non-edge part of the original image is suppressed and the
edge is enhanced. The interference of speckles in the background is effectively removed,
while the severe speckle is blurred effectively, which weakens the interference to the gray
pixel distribution.

(a)

(b)

Figure 12. Some of the enhanced results obtained by the SAR image edge enhancement (SEE) module.
(a) Original input images. (b) SEE outputs.
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(a)

(b)

(c)

Figure 13. Some of the detection results of different methods on DOTA-Ship. The green, red, and
blue boxes indicate the correctly detected ships, false alarms, and the missing ships. (a) R2CNN. (b)
Faster RCNN. (c) Our proposed ORP-Det.

Figure 14 shows the detection results of ORP-Det on ship targets in various scenarios.
It can be seen from the figure that the algorithm proposed in this paper can accurately
detect the ship target no matter whether in the monotonous offshore area, the nearshore
area with land interference, or in the complex scene with a dense arrangement and strong
interference.

(a)

(b)

Figure 14. (a,b) Some of the detection results of a complex environment on DOTA-Ship. The green
boxes indicate the correctly detected ships.

However, because the method in this paper does not consider the utilization of the
semantic information of image context, the ORP-Net also had some misdetection and false
alarm problems. For example, the failure cases are given in Figure 15. In Figure 15a, a ship
is detected as two targets; in Figure 15b, because objects such as the dock container and
vehicles on land are close to the ship in shape, some vehicles are judged to be ships.
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(a) (b)

Figure 15. Examples of some failure cases on DOTA. (a) Single object. (b) Easily confused objects on
land.

5. Conclusions

In this article, we proposed an accurate ORP-Det for RSI ship detection and a powerful
SEE module for SAR images’ enhancement. In ORP-Det, the oriented region proposal
network was designed to achieve high-quality performance for rotated ship RoIs. A
pairwise branch detection head was proposed to overcome the features’ deviation to be
suitable for classification and regression tasks. It enables the head to perform prediction
in a more flexible manner. Furthermore, the SEE module was proposed to better enhance
SAR edge features and greatly reduce the speckle noise. Experiments on both optical and
SAR datasets showed that the proposed method can achieve state-of-the-art ship detection
performance, and the highest precision improvement was 6.98% on HRSID, while the
highest recall improvement was 5.21% on the same dataset. However, the method in this
paper did not give too much consideration to the semantic extraction of the image context,
and it is still inadequate for dealing with the false alarm of land similarity, which will be
the focus of our future research.
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SAR Synthetic aperture radar
RSI Remote sensing images
CNN Convolutional neural network
SVD Singular value decomposition
CFAR Constant false alarm rate
HRoI Horizontal region of interest
RRoI Rotated region of interest
IOU Intersection over union
ROA Ratio-of-averages
GAP Global average pooling
HBB Horizontal bounding box
OBB Oriented bounding box
ORPN Oriented region proposal network
PBH Pairwise detection head
SEE SAR edge enhancement
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